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On quantum character varieties of knots 

Jun Murakami 
Waseda University 

INTRODUCTION 

Quantum character varieties of knots are considered to be constructed from the skein 
modules of the knot complements. Here, we start with the skein algebras of punctured 
disks, apply the theory of Haboro's bottom tangles to describe the braid group action, and 
then, to get the quantum character variety of the knot complement, pick up the invariant 
part of the action of the braid representing the knot . The actions of braids are given by 
matrices and the quantum character variety is given by relations that the determinants 
of certain matrices are equal to 0. 

The first half is the reformulation of our previous work [4] presented in ILDT2020 [3]. 
Last time, the space of representation is constructed from a braided Hopf algebra, and 
this time, such space is constructed by using the bottom tangles. The second half is the 
construction of the quantum character variety of a knot by using the skein algebra of a 
punctured disk combined with the action of bottom tangles. This is a joint work with 
Roland van der Veen. 

1. ALGEBRA OF FREE RIBBONS 

1.1. Free ribbons. Let t be an indeterminate and K be the field C(t). Let Dk be a 
k-punctured disk, and qi, ... , qk are its puncture points. Let Pi be a point in 8Dk, which 
is called a puncture on the boundary of Dk, and p0 is another point in 8Dk, which is 
called the base point. The thickened Dk is Dk x I where I = [0, 1] is the unit interval. 
An open ribbon in the thickened Dk x I is non-intersecting framed arc in I x Dk whose 
boundary points are contained in p0 x I. A closed free ribbon is a closed framed loop 
in the thickened Dk. A ribbon in the thickened D x I is presented by a diagram on Dk 
as in Figure 1 where the base point p0 is expressed by an arrow where the right hand 
point represents the higher points of p0 x I. Such diagram is called the ribbon diagram. 
Here the framing of a free ribbon is given by the black board framing, that is the framing 
determined by the normal vector perpendicular to Dk directed upward with respect to 
the orientation of Dk. 

For n = 0, l, 2, ... , let Fk,n be formal K-linear combinations of the set of isotopy classes 
of thickened k-puncture disks equipped with non-intersecting closed ribbons, and let Fk,i 

be the set of thickened k-puncture disks equipped with several or no non-intersecting 
closed ribbons and n ribbon with boundaries. Inside the thickened k-puncture disk, we 
require that there is no intersection of ribbons, and the labels qi, ... , qk of puncture points 
are fixed. We call Fk,n the space of free ribbons. 
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Po 0 1 0 1 
D2 X [O, 1] diagram on D2 

FIGURE 1. Free ribbons in thickened D2. 

The tensor product ® from Fk1 ,n1 X Fk2 ,n2 to Fki+k2 ,n1 +n2 is defined by concatenating 
two punctured disks as in Figure 2. 

k1 punctures k2 punctures k1 + k2 punctures 

0°0 ~ 
n 1 ribbons n2 ribbons n 1 + n 2 ribbons 

1.2. Algebra of free ribbons. We define a multiplicationµ from Fk,ni xFk,n2 to Fk,ni +n2 

by stacking two punctured disks as in Figure 3. Let 

) 

Fk = EB Fk,n, 
n=O,l, ... 

then Fk is a graded algebra with the multiplication µ whose grading is given by the 
number of open ribbons. 
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For Fk,I, we define another product m from Fk,I x Fk.I to Fk,I· Let F1 , F2 be two 
ribbon diagrams in Fk,I· Then m(Fi, F2 ) is obtained from µ(Fi, g) by connecting the 
upper end point of Fi to the lower end point of F2 . 

2. ACTION OF BOTTOM TANGLES 

2.1. Bottom tangles. 

Definition 1. Let Tic,n be the subspace of Fk,n, which consists of non-closed free arcs 

1 = ('-y1, · .. , 'Yn) such that the heights of their end points h('Y;(O)) and h('Y;(l)) satisfy 

h('Y1(l)) < h("/1(0)) < h('Y2(l)) < · · · < h('Yn(l)) < h('Yn(O)). 

Then an element of Tic,n is called a bottom tangle of type (k, n). 

For T E Tic,e and F E Fe,n, the composition T o F E Fk,n is defined by glueing the 
handles of F to the ribbons of T as in Figure 4. This composition gives an algebra 
structure in Tic,k and the action of Tic,k on Fk,n gives a Tic,k module structure on Fk,n· 

TE'h,2 

FIGURE 4. The composition of a bottom tangle TE 1,,,,e and an element FE Fe,n 
of the algebra of free ribbons in the case k = n = £ = 2. 

2.2. Braided Hopf algebra structure of bottom tangles. A braided Hopf algebra 
structure is given to bottom tangles by Habiro in [2] as in Figure 5. The operations in 
the figure satisfies the axioms of the braided Hopf algebras. We define 

µ; = id®(i-l) ® µ ® id®(n-i-l), 

7/; = id®(i-1) ® 7/ ® id®(n-i)' 

S; = id®(i-l) ® S; ® id®(n-i), 

!:).; = id®(i-1) ® !:). ® id®(n-i)' 

E; = id®(i-l) ® E ® id®(n-i), 

W; = id®(i-l) ® W ® id®(n-i-l). 

The multiplication µ of free ribbons is expressed as follows. 

µ = (~ o W2k-2 o (w2k-4 o W2k-3) 0 

k ••• o (w4 o w5 o ... o wk+i) o (w2 o w3 o ... o wk)-
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D LffJ ~ ~ ~ 
1 id µ T/ s 

identity for identity for multiplication unit antipode 
tensor composition 

M Co] ~ 
b. E \jJ 

coproduct counit braiding 

FIGURE 5. Braided Hopf algebra structure of bottom tangles. 

ad 

FIGURE 6. Bottom tangle expression of the adjoint action. 

2.3. Adjoint and braided commutativity. We can define the adjoint ad as usual Hopf 
algebra by the following. 

ad= µ 2 o w1 o (S 0 b.) ob.. 

Then ad is interpreted as a element of 7;,1 as in Figure 6. 

Proposition 1. The adjoint satisfies the following relation. 

µ 2 o (ad 0 id) = µ 2 o W1 o (id 0 ad) ow E 7;,2 . 

This relation is called the braided commutativity, which is crucial requirement for our 
previous work to construct a representation space of a knot from a braided Hopf algebra, 
which I presented this workshop of last year. In case of bottom tangles, the braided 
commutativity holds automatically. 

Proof. It is proved by using diagrams. See Figure 7. □ 

2.4. Flat bottom tangles. Here we introduce the notion of a flat bottom tangle and 
see its properties. 
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FIGURE 7. Proof of the braided commutativity. 

Definition 2. A tangle TE T,,,,n is called a fiat bottom tangle if T is presented a diagram 
without crossings. Let T.,~n be the subspace of T,,,,n spanned by all the flat bottom tangles 
in T,,,,n• 

Proposition 2. The composition of two fiat bottom tangles is a fiat bottom tangle. So 
the fiat bottom tangles form a subcategory BF of B. 

Proposition 3. Any element T of T.,~n commutes with the multiplication 

µ : Fn,li Q9 Fn,i, -+ Fn,li +b. 

Therefore, T induces an algebra homomorphism from Fn to Fk. 

Proof. Let T be a flat bottom tangle. In the flat bottom tangle, the heights of ribbons 
can be arranged at any order, so the ribbons of µ(F1 181 F2) can be separated so that the 
ribbons coming from F1 are lower than the ribbons coming from F2 as in Figure 8. In 
Figure 8, such separation is used at the equality with *· □ 

2.5. Adjoint action. Here we define the adjoint action to bottom tangles. 

Definition 3. Let Ad be the element in 'T,,,+1,k givern by 

Ad = ( id®k 181 µ) 0 (w k \[r k-1 · · · W2ad1) 0 (w k \[r k-1 · · · W3ad2) 0 · · · 0 (w kadk-1) 0 adk 

where adi = id®(i-l) 181 ad 181 id®(k-i). 

The bottom tangle Ad is given by a flat bottom tangle as in Figure 9. 

Proposition 4. The bottom tangle Ad commutes with any bottom tangle TE T,,,,n, i.e. 

Ad o T = (T (2) id) o Ad. 

Proof. Ad commutes with T as in Figure 10. □ 
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~0µ(~ 0~) ~o~ 
~ -µ(~ {~) 
µ((~o ~ ) 0 (~o~)) 

FIGURE 8. Commutativity ofµ and a flat bottom tangle. 

Ad 

FIGURE 9. The adjoint action Ad. 

3. UNIVERSAL REPRESENTATION SPACE 

3.1. Action of braids. The braid group Bk acts on the punctured disk Dk. Let cr1 , ... , 

CTk-l be the standard generators of Bk twisting the i-th and ( i + 1 )-th strings. This action 
permutes the punctures and fixes the boundary of Dk. The generator cri swaps qi and qi+1 

by rotating counterclockwise a small disk containing qi and qi+l· This action induces an 
action of Bk to Fk, and the actions of er; and cr;1 are given by the bottom tangles. For 
two strings case, the twist er and cr-1 are given by Ta and Ta-' as £follows. 

Ta= µ2 o W1 o (id 0 ad), 

Tc,-,= µ1 o w11 o w21 o w11 o s21 o (ad 0 id). 
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FIGURE 10. The adjoint action Ad commutes with T E Tic,n· The gray lines 
represent bunches of strings. 

For general case, the action of u;1 is given by id®(i-l) ® TO'±, ® id®(n-i-t). Since TO'i and 

FIGURE 11. The bottom tangles corresponding (J" and (J"-l. 

TO'-:-' are both flat bottom tangles and any element b in Bn is a composition of u;1, so 
th~ bottom tangle corresponding to the action of b is a flat bottom tangle. Therefore, 
Proposition 3 implies the following. 

Proposition 5. The action of braids in Bk on Fk is an algebra automorphism. 

3.2. Ideals of Fk• Here we introduce a notion of ideal for Fk. 

Definition 4. Let b E Bk. The left ideal of Fk associated with b is a K-submodule 
Image(µo(id®k® (n-id®k))' where µo (id®k® (n-id®k) is a K-module homomorphism 
from F2k to Fk- This submodule is denoted by h- The right ideal of Fk associated with 
b is a k-submodule I;; = Image(µ o ( (n - id®k) ® id®k)). 

Proposition 6. The left ideal h is equal to the right ideal I;;. 

Proof. It suffices to show that µ(((n - id®k) Q9 id®k)(x)) Eh for X E F2k- Since n is a 
flat bottom tangle, it is K-algebra homomorphism. Hence we have Tb o µ = µ o (Tb® Tb) 
and 

µ(((Tb - id®k) ® id®k)(x)) 

= µ((n ® id®k)(x)) - µ(x) 

= µ((n ® id®k)(x)) - µ((n ® n)(x)) + µ((n ® n)(x)) - µ(x) 

= -µ((n ® (n - id®k))(x)) + (n - id®k) (µ(x)). 

Since the terms µ((Tb® (n - id®k))(x)) and (Tb - id®k) (µ(x)) are contained in h, 
µ(((n - id®k) ® id®k)(x)) is also contained in h- □ 
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3.3. Universal representation space. Let L be a link, b be a braid in Bk whose closure 
is isotopic to L, and Tb be the bottom tangle corresponding to b. Let h be the ideal 
generated by the image of n - id®k' and Ab be the quotient space Fk/ h. 

Theorem 1. If the closures of two braids b1 and b2 are isotopic, then Ab, and Ab2 are 
isomorphic as graded rings. 

Proof. The main idea is to show the isomorphism by using the Markov moves in Figure 
12. The argument for the proof is similar to that for Theorem 2 in [4]. The detail of proof 
is omitted. □ 

MI: +------+ MII: ~ +------+ JJl +------+ ~ 
WI LdnJ WI 

bb' b' b b 

FIGURE 12. Markov moves. 

4. SKEIN ALGEBRAS OF PUNCTURED DISKS 

4.1. Skein algebra Sk. For the punctured disk Dk, we define the corresponding skein 
algebra sk as follows. 

Definition 5. The skein module Sk,n is defined by the following. 

sk,n = Fk,n/ ~ 
where ~ is generated by the following two relations. 

K av,fJman bracket skein relation : X 
Boundary parallel relation: 

The Kauffman bracket skein relation relations implies that 

The skein algebra sk is the direct sum of sk,n, i.e. sk = EB~=Osk,n· Since the relations for 
~ are local and homogeneous relations, and the multiplication of Fk is just a stacking, 
the multiplicationµ induces a multiplication in Sk. This multiplication gives the algebra 
structure of sk, and sk,O is a subalgebra of Sk. Moreover, sk and sk,n are both sk,o-module. 
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4.2. Standart triangular decomposition of Dk. We first introduce a standard trian
gular decomposition of Dk, which is given in Figure 13. Dk is decomposed into 2k - 1 
triangles and the punctures p1 , q1 , ... , qk are vertices of triangles. Note that the base 
point p0 is not a puncture and it is not a vertex. Bu cutting along the edges p 1qj, we get 

D1CDp, D,~ D,. •·· Dm. 
ql ~"!)'CJ~ 
Po Po Po Po 

FIGURE 13. Standard decomposition of Dk. 

a picture in Figure 14. 

FIGURE 14. Developed standard triangulation of Dk. 

4.3. Flat basis of Sk. Any diagram in Fk,n can be represented as a K-linear combination 
of diagrams without crossings in Sk,n according to the Kauffman bracket skein relation. 
So, Sk,n is spanned by the elements of ~~n , which are flat bottom tangles. 

Definition 6. A flat bottom tangle T is called reduced if there is no trivial loop and all 
the boundary parallel ribbons are located at the left of the bottom arrow of the diagram. 
Let T[,~d be the set of reduced flat bottom tangles in fk,n· 

Proposition 7. T[,~d is a basis of sk,n· 

To prove the proposition, we need the following. 

Proposition 8. Let T be a triangle and S(T) be the skein algebra on T with an extra 
relation that, if the diagram has an arc parallel to an edge, then this diagram is 0. Then 
the basis of S(T) is given by Ta,b,c in Figure 15 where 

(1) a, b, c :::> 0, la - bi <::: c <:::a+ b, a+ b + c is even. 



99

0 
'----------y--

b 

FIGURE 15. Basis Ta,b,c of S(T). 

Proof of Proposition 7. By the relations of the skein module, every element is expressed 
as a linear combination of elements in T:,~d- For T in T:,~d, let us consider the set of 
numbers of the intersection points with each edge, and the number of boundary parallel 
ribbons. Then These numbers gives a partial grading to Sk,n, and for each grading, there 
is only one reduced flat bottom tangle having this grading by Proposition 8. This implies 
the linear independence of elements in T:,~d- □ 

Corollary 1. Let d be the grading of Sk,n given in the above proof and let st,n is the span 
of the elements in Sk,n whose grading is equal to or less than d, thenwe have the following. 

dim st,nl (E9 st:n) s 1. 
d'<d 

The quotient space is spanned by at most one reduced fiat bottom tangle. 

4.4. Basis of sk,O• 

Definition 7. The skein module with t = -1 is called classical skein module, and the 
skein algebra with t = -1 is called classical skein algebra. 

Proposition 9. sk,O is a K algebra generated by tfr··jm (j1 < ... < ]m, m s 3) given in 
Figure 16. 

Proof. For the classical case, it is proved by Bullok in [1]. The graded structure of Sk,o 
given by the number of intersection points of edges are the same for generic t and t = -1, 
so it is true for generic t. □ 

FIGURE 16. The generatros tfr••jm (j1 < · · · < jm, m::; 3). 

The graded structure of Sk,o also provides the following. 

Proposition 10. Sk,o is an integral domain. 
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Let 

Then we have the following. 

Proposition 11. sk,O !: generated by tj---j+m (m ::::; 3). Moreover, the set of monomials 

of tj---j+m is a basis of sk,O · 

This proposition is proved by looking at the grading. The detail is omitted. 

4.5. Basis of sk,l • Let 

and 

Proposition 12. S1,1 is a S1,0 algebra spanned by 1, o:1, and Sk,l is a Sk,o algebra spanned 
by four elements 1, o:1 , o:2 , o:1 o:2 = m(o:1 ® o:2) if k ~ 2. 

This proposition is also proved by looking at the grading. The detail is omitted. 

FIGURE 17. The generators 1, 0:1, 0:2, 0:1 0:2 of Sk,l· 

4.6. Ac_!ion ~f braids. Let L be a knot, b E Bk is a braid whose closure is isotopic to 
L, and h = sk,O ®sk,O h. 

Definition 8. Leth= sk,O ®sk,O (hi~), T,,,n = sk,O ®sk,O (h n Fk,n/ ~), Ab = Sk/1,,, 

and /2,n = sk,n/1,,,n, We call Ab the space of quantum SL(2) representations of L. 

Proposition 13. The ideal 1,,,1 is generated by Tb(a1)-a1 , · · ·, Tb(ak-l) -ak-l as a left 
sk,o-module. 

Proof for this proposition is similar to that in [4]. 

Remark 1. By definition, 1,,,1 is generated by Tb(x) - x for all x E Fk,l· But x = o:1, 

· · ·, ak-l are good enough. 
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5. QUANTUM CHARACTER VARIETY 

5.1. The action of n- id on S2,0 • From now on, we consider the case that the number 
of punctures k = 2. Let b be a 2-braid and L be a link which is isotopic to the closure 
b of b. The ideal h is generated by the image of Tb - id. So, if L is a knot, Tb(t1 ) = t2, 
Tb(t2 ) = t1, Tb(t12 ) = t12 , and the action of Tb - id gives a relation t1 = t2 for 1,,,0 . If L is 
a lin_!,:, n(t1) = t1, n(t2) = t2 and n(t12) = t12 , so the action of n - id gives no relation 
for S2,0 . Let 

S~o = {~,0/(t1 - t2) if~ is a knot, 
' S2,0 if b is a two-component link. 

5.2. The action of n - id o~ S~ 1 • Re:'.-all ~at S2,1 ~as a K-algebra struct~re w~h 
the product m. For the ideal h, h,1 = h n S2,1 and h,1 is also an ideal of S2,1 . h,1 
is generated by (n - id)(a1) as a left ideal, and S2,1 is generated by 1, 0:1, 0:2, 0:1 0:2 as 
S2,o-module, the left ideal S2,1 is spanned by (n-id)(a1), 0:1 (n-id)(a1), 0!2 (n-id)(a1) 
and 0:1 0:2 (Tb - id)(a1) as an S2,0-module. 

The braid group B2 is generated by a single element u and the action of Tu is given by 
Tu(a1 ) = 0:2 and Tu(a2) = a 21 0:1 0:2, The multiplications of 0!1 and 0:2 from the right in 

FIGURE 18. The action of u to cq. 

- - -S2 ,1 commute with the left multiplication of S2,0 and are S2J9-module maps, so they are 
given by the following matrices M1, M2 with coefficients in S2,0 . 

(1, 0:1, 0:2, 0:1 0:2) a1 = (1, 0:1, 0:2, a1 0:2) M1, 

(1, 0:1, a2, 0:1 0:2) a2 = (1, 0:1, 0:2, a1 0:2) M2, 

where 

0 
0 

-t2 t1 
1 

Let Mb the matrix corresponding to the right action of (Tb - id)(a1). Then Mb is the 
relation matrix of the s~,o-module s~,o ®s2,o S2,i/h,1- Therefore, the elementary ideals of 
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the matrix corresponding to (n - id)(a1) is invariants of the module Sf,o Q9g20 82,i/!i,,1, 
and so invariants of the link L. Especially, the determinant of Mb is an inva~iant of L. 
Let A= det Mb. Then A is also an invariant of L. 

Definition 9. The quantum character variety of L is the algebraic variety determined 
by the radical of Pb = 0, where Pb is a polynomial in t1 and t12 if L is a knot and is a 
polynomial in t1, t2, t12 if L is a two-component link. 

Theorem 2. By putting A= -1, the quantum character variety reduces to a multiple of 
the classical SL(2, C) character variety of L. 

Proof. In the classical case, 

(1, a1, a2, a1 a2) Mb = (0, 0, 0, 0) 

gives the relations among representation matrices of 1, a 1, a 2 and a 1 a 2. So, if the 
determinant det Mb -/- 0, then only 0 matrices can be assigned to such element. So, to 
allow non-zero representation, det Mb must be 0, so it is a multiple of the polynomial for 
the classical SL(2, C) character variety. D 

Remark 2. In the examples given below, the radical of det Mb at t = -1 coincide the 
polyonomial for the classical SL(2, q character variety. 

6. EXAMPLES 

6.1. Hopf link. The Hopf link H is isotopic to the closure of a-2. Since T.,.2(a1) = 
T.,.(a2) = a 2a 1 a 21, The matrix corresponding to (T.,.2 -id)(a1 ) is M21 M1 M21-M1 . So 
te quantum character variety of Hopf link is given by det(M21 M1 M2 - M1) = 0, which 
is the following. 

det(M2- 1 M1 M2 - M1) = t 16 + t14t1td2 

+ t12tM2 + t12tM - 2t12ti + t12ti2t~ - 2t12ti2 - 2t12t~ + 4t12 

+ t 10tftd2 + t 10t1tf2t2 + t 10t1td~ - 5t10t1td2 

+ t 8tf + t8titi2t~ - 4t8ti + t8tf2 - 4t8ti2 + t 8tt - 4t8t~ + 6t8 

+ t6tft12t2 + t6t1tf2t2 + t6t1t12t~ - 5t6t1t12t2 

+ t4titi2 + t4tit~ - 2t4ti + t4ti2t~ - 2t4ti2 - 2t4t~ + 4t4 + t2t1t12t2 + 1. 

By substituting t = -1, we get a polynomial for the classical character variety with some 
multiplicity. 

(-4 + ti + ti2 + t1t2t12 + t~)2. 
Moreover, by substituting t1 = x + 1/x, t2 = y + 1/y, t 12 = z + 1/z, we have 

det(M2- 1 M1 M2 - M1) = 
1 

444 (t2xy + z)(xy + t2z)(t2y + xz)(y + t2xz)(t2x + yz)(x + t2yz)(t2 + xyz)(l + t2xyz). 
xyz 
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and its classical version is 
1 
~ (xy + z)2(y + xz)2(x + yz)2(1 + xyz) 2 . 
xyz 

6.2. Trefoil. The trefoil is isotopic to the closure of cr3 and T,,3 ( o:1) = o:21 o:11 o:2 o:1 o:2. 
So the quantum character variety is given by det(M2 1 M11 M2M1M2 - M1), which is the 
following. 

det(M21 M;-1 M2M1M2 - M1) = C 4 (1 - t4 + t8 + t2t12 + t6t12 + t4ti2)2 

(1 + 2t4 + t8 - 4t4ti + t4ti - 2t2t12 - 2t6t12 + t2tit - 12 + t6tit12 + t4ti2)

By substituting t = -1, we get the following classical one. 

(1 + t12)4(-2 + ti + t12)2. 

Moreover, by substituting t1 = x + 1/x, t 12 = z + 1/z, we have 

1 
-- (t2x2 + z)(x2 + t2z)(t2 + x2z)(l + t2x2z)(t4 + t 2z + z2)2(1 + t2z + t4z2)2, t4x4z6 

and, by putting t = -1, we have 

1 
-- (x2 + z)2(1 + x2z)2(1 + z + z2)4. t4x4z6 

6.3. Figure-eight knot. The figure-eight knot is given by a closure of 3-braid. But, by 
using the method to reduce the representation space given in [4], the relation for the ideal 
is given by M2M1M2- 1 M11 M2M1- 1 M2 1 M1M2 - M1. This is similar to a presentation 
of the fundamental group of the figure-eight knot complement. The determinant of this 
matrix is the following. Here t1 and t12 is replaced by x + 1/x and z + 1/z respectively. 

det(M2M1M2- 1 M11 M2M1- 1 M2 1 M1M2 - M1) = 
1 

--- (t2x2 + z)(x2 + t2z)(t2 + x2z)(l + t2x2 z) t12x12 zlO 

(t8x2 + t6z + 3t6x2 z + t6x4 z + 2t4 z2 + 5t4x2z2 + 2t4x4 z2 + t2z3 + 3t2x2z3 + t2x4z3 + x2z4 )2 

(x2 +t2z + 3t2x2z + t2x4 z + 2t4z2 + 5t4x2z2 + 2t4x4z2 +t6z3 + 3t6x2z3 + t6 x4 z3 +t8x2z4)2. 

6.4. 52 knot. The 52 knot is given by a closure of 3-braid. But, the relation for the ideal 
is reduced as the figure-eight knot case, and is given by the matrix 

M2-l M1M2-l M1-l M2M1-l M2M1M21 M1M2M;-1 M2 - M1. 

This is similar to a presentation of the fundamental group of the 52 knot complement. By 
replacing t1 and t12 by x + 1 / x and z + 1 / z respectively, the polynomial for the quantum 
character variety is the following. 

det(M2- 1 M1M2 1 M11 M2M11 M2M1M2 1 M1M2M11 M2 - M1) = 
1 

--- (t2x2 + z)(x2 + t2z)(t2 + x2z)(l + t2x2z) t2Dx2Dz14 

(t12x4 + 2t10x2z + 5t10x4 z + 2t10x6 z + t 8z2 + 7t8x2z2 + 13t8x4 z2 + 7t8x6z2 + t8x8 z2 
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+ 2t6 z3 + 10t6 x2 z3 + 17t6 x4 z3 + 10t6 x6 z3 + 2t6 x 8 z3 

+ t4z4 + 7t4x2z4 + l3t4 x4z4 + 7t4 x6 z4 + t4 x8 z4 + 2t2x2z5 + 5t2x4z5 + 2t2x6z5 + x4z6)2 
(x4 + 2t2x2z + 5t2x4z + 2t2x6z + t4z2 + 7t4x2z2 + l3t4 x4z2 + 7t4x6z2 + t4 x8 z2 

+ 2t6 z3 + 10t6 x2 z3 + 17t6 x4 z3 + 10t6 x6 z3 + 2t6 x 8 z3 

+t8z4 + 7t8x 2z4 + l3t8 x4 z4 + 7t8x 6 z4 +t8 x8z4 + 2t10x2z5 +5t10x4 z5 +2t10x6z5 +t12x4z6)2. 

6.5. Observation. The examples of knots in the above computation satisfy the following. 
Let Q(t1, t 12 ) be the polynomial to determine the classical character variety. Then the 
polynomial to determine the quantum character variety is given by 

Q(t1, t z + r 1 z-1) Q(t1, r 1 z + t z-1). 
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