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Annulus presentation and dualizable pattern 
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1 Introduction 

The 0-trace XK(O) of a knot is the 4-manifold obtained from B4 by attaching a 2-handle 
along the 0-framing of the knot. The following theorem gives one of the important prop
erties of 0-traces. 

Theorem 1.1 (folklore, [5, Theorem 1.8]). A knot is slice if and only if its 0-trace smoothly 
embeds in S4 . 

In particular, the 0-trace of a knot has the complete information to determine the 
sliceness of the knot. On techniques to construct knots with the same 0-trace, the following 
are known. 

• Osoinach [6] introduced an "annular twisting" technique to construct infinitely many 
knots admitting the same 0-surgery. Abe, Jong, Omae and Takeuchi [1] extended the 
technique to 4-dimensional cases under some additional conditions ( see Section 2). 

• Gompf and Miyazaki [3] introduced a technique to construct a pair of knots ad
mitting the same 0-surgery by utilizing a pattern with duality, which is called a 
dualizable pattern in this manuscript. Miller and Piccirillo [5] explained that Gompf 
and Miyazaki's pairs of knots always have the diffeomorphic 0-trace (for dualizable 
patterns, see Section 3). 

Miller and Piccirillo [5] proved that Abe, Jong, Omae and Takeuchi's extension of 
Osoinach's technique can be explained in terms of dualizable patterns. In particular, they 
constructed a dualizable pattern from Abe, Jong, Omae and Takeuchi's "(special) annulus 
presentation" (see Section 3.2). 

In this manuscript, we overview these works on 0-trace and introduce the author's 
resent result [8]. We also introduce an analogy of dualizable pattern, which is called "r
dualizable pattern". An r-dualizable pattern can be used to construct a pair of knots with 
a homeomorphism between their 0-surgeries which may not extend to a diffeomorphism 
on 0-traces. Moreover, we explain that r-dualizable patterns can be regarded as "RBG 
links" given by Manolescu and Piccirillo [4]. 

This manuscript is organized as follows. In Section 2, we recall Osoinach's technique 
and related works. In Section 3, we survey Miller and Piccirillo's work. In Section 4, we 
concretely draw the dual of Miller and Piccirillo's dualizable pattern which is obtained 
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from Abe, Jong, Omae and Takeuchi's special annulus presentation. This is the main 
result of [8]. In Section 5, we introduce a notion of r-dualizable pattern. 

Throughout this manuscript, 

• unless specifically mentioned, all knots and links are smooth and unoriented, and all 
other manifolds are smooth and oriented, 

• for an n-component link L1 U · · · U Ln, we denote the 3-manifold obtained by m;

surgery on a knot L; for any i by ML1 u---uLJm1, ... , mn), 

• we denote a tubular neighborhood of a knot Kin a 3-manifold by v(K), 

• we denote the unknot in S3 by U. 

2 Annulus twist and annulus presentation 

Let A C S3 be an embedded annulus with ordered boundaries 8A = c1 U c2 . An n-fold 
annulus twist along A is to apply (lk(c1 , c2) + 1/n)-surgery on c1 and (lk(c1 , c2) - 1/n)
surgery on c2 , where lk(c1 , c2) is the linking number of c1 and c2 and we give c1 and c2 

parallel orientations. We see that the resulting manifold obtained by an annulus twist is 
also S3 . 

Let A C S3 be an embedded annulus with 8A = c1 U c2 . Take an embedding of a band 
b: I x I ➔ S3 such that 

• b(I x I) n 8A = b(8I x I), 

• b(I x I) n Int A consists of ribbon singularities, and 

• AU b(I x I) is an immersion of an orientable surface, 

where I= [O, 1]. If a knot Kc S3 is isotopic to the knot (8A \ b(8I x I)) Ub(I x 81), then 
we call (A, b) an annulus presentation of K. An annulus presentation (A, b) is special if 
A is a Hopf band (that is, A is unknotted and lk(c1 , c2 ) = ±1) (see Figure 1). 

b(I x I) 

Figure 1: Special annulus presentation 

Remark 2.1. In this manuscript, for an annulus presentation (A, b), we often draw the 
attaching regions An b by bold arcs and we omit the band b (see the right picture in 
Figure 1). 
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Let K be a knot with an annulus presentation (A, b). Let A' c A be a shrunken 
annulus with 8A' = c~ Uc; which satisfies the following: 

• A \ A' is a disjoint union of two annuli, 

• each ~ is isotopic to ci in A \ A' for i = 1, 2 and 

• A\ (8A U A') does not intersect b(I x I). 

Then, by An(K), we denote the knot obtained from K by then-fold annulus twist along 
A' (for example, see Figure 2). More precisely, An(K) is defined as follows. Put 

Since 
K C S3 \ v( c~ U c;) C Mn, 

we can regard K as a knot in Mn. Let An: Mn --+ S3 be an orientation-preserving 
homeomorphism. Then, An(K) is given by An(K) C S3 . For simplicity, we denote 
A 1(K) by A(K) and A 0 (K) by K. 

A' 

K 

Figure 2: The knot A+l(K) obtained from K by an annulus twist. It seems that An(K) is obtained from 
K by twisting along A. 

By utilizing Osoinach's work [6, Theorem 2.3], for a knot K with an annulus pre
sentation (A, b), we see that there is a homeomorphism </Jn: MK(0) --+ MAn(K)(0). Ter
agaito [10] explained the homeomorphism by using surgery descriptions (see Figure 3). 
We call </Jn the n-th Osoinach-Teragaito's homeomorphism. Moreover, if (A, b) is spe
cial, by applying Abe, Jong, Omae and Takeuchi's result [1, Theorem 2.8] to the knot, 
we see that the homeomorphism </Jn extends to an orientation-preserving diffeomorphism 
<I>n: XK(0) --+ XAn(K) (0) for any n E Z. As a consequence, we obtain the following. 

Theorem 2.2. Let K c S3 be a knot with an annulus presentation (A, b). Then, there 
is an orientation-preservingly homeomorphism </Jn: MK(0) --+ MAn(K)(0) for any n E Z. 
In particular, </Jn is given as in Figure 3. Moreover, if (A, b) is special, </Jn extends to an 
orientation-preserving diffeomorphism <I>n: XK(0) --+ XAn(K) (0). 
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0 

K 
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lk(c,, c2) - ¾ 

lk(c,, c2) + ¾ 

---
lk(c,, c2) - ¾ 

lk(c,, c2) + ¾ 

-K 

Figure 3: (color online) Osoinach-Teragaito's homeomorphism <Pn· For simplicity we draw A as a flat 
annulus although A may be knotted and twisted. 

3 Relation between annulus presentation and dualizable pattern 

3.1 Dualizable pattern 

Here, we recall the definition of dualizable patterns [3]. 
Let P: S1 ---+ V be an oriented knot in a solid torus V = S1 x D2 • Suppose that the 

image P(S1) is not null-homologous in V. Such a P is called a pattern. By an abuse of 
notation, we use the notation P for both a map and its image. Define >.v, µp, µv and Ap 
as follows: 

• put >.v = S1 X {xo} C av C V for some Xo E 8D2 and orient >-v so that p is 
homologous to r >-v in V for some positive r E Z>o, 

• define µp C V by a meridian of P and orient µp so that the linking number of P 
and µp is 1, 

• put µv = {x1} X 8D2 C av C V for some X1 E S1 and orient µv so that µv is 
homologous to sµp in V \ v(P) for some positive s E Z>o, 

• define Ap by a longitude of P which is homologous to t>.v in V \ v(P) for some 
positive t E Z>O· 

For an oriented knot K c S3 , let lK: V ---+ S3 be an embedding which identifies V 
with v(K) and sends >-v to the prefered longitude of K. Then iKoP: S1 ---+ S3 represents 
an oriented knot. The knot is called the satellite of K with pattern P and denoted by 
P(K). 
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A pattern P: S1 ---+ V is dualizable if there is a pattern P*: S1 ---+ V* and an orientation
preserving homeomorphism f: V \ v(P) ---+ V* \ v(P*) such that f(>-v) = Ap•, f(>..p) = 

Av•, f(µv) = -µp• and f(µp) = -µv•- We call the pattern P* the dual of P. It is easy 
to see that P* is uniquely determined and (P*)* = P. 

There is a convenient technique to determine whether a given pattern is dualizable 
as follows. Definer: S1 x D 2 ---+ S1 x S2 by r(t,d) = (l, 1(d)), where,: D 2 ---+ S2 is 
an arbitrary orientation preserving embedding. For any curve c: S1 ---+ S1 x D2 , define 
C = r O C: S1 ---+ S1 X S2 . Then, we obtain the following proposition. 

Proposition 3.1 ([5, Proposition 2.5]). A pattern P in a solid torus V is dualizable if 

and only if p is isotopic to >..v in S1 X S2 . 

Moreover, in the proof of [5, Proposition 2.5], we can find a way how to draw the dual 
p• (see Figure 4). In Figure 4, the isotopy on S1 X S2 sends 4 to P* and p to x;;:-, 
respectively, where the curves are 0-framed. For example, by Proposition 3.1, we see that 
a patten of geometric winding number one is dualizable and its dual is itself (see Figure 5). 

By Figure 4, we obtain the following theorem obviously. 

Theorem 3.2 (e.g. [5, Theorem 3.1]). Let P be a dualizable pattern. Then there is 
a homeomorphism rp: M P(U) ( 0) ---+ M P* (U) ( 0) which extends to an orientation-preserving 
diffeomorphism <I>: XP(U) (0) ---+ XP*(U) (0). 

ra 
p \ 

ra J P* 

isotopy on 8 1 X 82 

Figure 4: ( color online) A dualizable pattern P and its dual P*. The pairs of two balls represent S 1 x S2 . 

The boxes labeled by p and p* are the tangles corresponding to P and P*, respectively. 
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Figure 5: (color online) A pattern of geometric winding number one. Such a pattern is dualizable and 
its dual is itself. 

3.2 From special annulus presentations to dualizable patterns 

In this section, we recall Miller and Piccirillo's construction [5, Section 5] of dualizable 
patterns from a special annulus presentation (see also [9]). 

Let Kc S3 be a knot with a special annulus presentation (A, b). In Figure 6, the left 
knots represent K, and each right knot represents A±l(K) for the corresponding left K. 
Then, for each case, take curves /3ic c S3 \ v(K) as in Figure 6. 

For example, in the top left of Figure 6, /3k runs near c1 and there is a sufficiently 
thin annulus bounded by /3k and c1 such that the thin annulus does not intersect the 
band b except the attaching regions. We remark that /3k is determined by a tubular 
neighborhood of c1 on A. 

Let P+ (resp. P_) be the pattern given by KC V+ = S3 \ v(/3k) (resp. KC V_ = 
S3 \ v(/3K)), where we give a parameter of V± so that P±(U) = K. Moreover, we give 
an orientation of P± arbitrarily. Then, we can check that P± are dualizable patterns (for 
example, slide K along the 0-framing of /3ic and apply Proposition 3.1). These dualizable 
patterns satisfy the following. 

Proposition 3.3 (e.g. [5, Proposition 5.3] and [9, Proposition 3.9]). Let K be a knot 
with a special annulus presentation (A,b). Let P+ and P_ be the dualizable patterns as 
above. Then we have P±(U) = K and P±(U) = A±l(K). 

Remark 3.4. The homeomorphisms given in Figure 3 induces homeomorphisms 

cfa±1: (MK(O), /3i)---+ (MA±l(K)(O), 0:A±l(K)), 

where aA±'(K) C S3 \v(A±l(K)) is a meridian of A±l(K). Here we regard /3ic and aA±'(K) 
as curves in MK(O) and MA±i(K)(O) under the identifications 

S3 \ v(K) ~ MK(O) \ v(LK), 

S3 \ v(A±l(K)) ~ MA±'(K)(O) \ v(LA±'(K)), 

respectively, where LK and LA±'(K) are the corresponding surgery duals. 
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P+ 

K 

p_ 

Ll 
p_ 

u 
Figure 6: ( color online) From a special annulus presentation ( A, b) of a knot K to dualizable patterns P + 
and P_ given by Kc S3 \ v(f3'/c) = V± 

Moreover, we can check that c/>±1 induce the following homeomorphisms 

4 Naturality of the correspondence between annulus presenta-
tion and dualizable pattern 

4.1 The dual P± 

The dual of the dualizable pattern obtained from an annulus presentation in Section 3.2 
is given as follows. 

Theorem 4.1 ([8, Theorem 4.3]). Let K be a knot with a special annulus presentation 
(A, b). Then the dual P± c V~ = S3 \ v(A±1 (K)) of the dualizable pattern P± in Sec
tion 3.2 is given as in Figure 7. 

Example 4.2 (Self duality). A pattern of geometric winding number one is a self-dual 
dualizable pattern (see Figure 5). However, the converse is not true. For example, for 
any dualizable pattern P, the composition Po P* of P and its dual P* is a self-dual 
dualizable pattern (see [5, Proposition 3.3]). We also find a self-dual dualizable pattern 
by utilizing Theorem 4.1. See Figure 8. The left picture in Figure 8 represents a dualizable 
pattern P = 83 c S3 \ v(/3). The center is obtained from the left by rotating around the 
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horizontal axis. The right is obtained from the center by flipping over the annulus of the 
annulus presentation. By Theorem 4.1, the right is the dual P* of P. Hence, P = P*. 
On the other hand the geometric winding number of the dualizable pattern is not one 
since the red curves in Figure 8 are not meridians of 83 (see [2, Proof of Lemma 5.4]). 
Since the algebraic winding number of a dualizable pattern is always one, the geometric 
winding number of a dualizable pattern is odd. Hence, the geometric winding number of 
the dualizable pattern in Figure 8 is three. 

K A(K) K A-1(K) 
I ✓ 

C ~ ': ~K : C/ 

Figure 7: (color online) The dualizable patterns P± c V± = S3 \ v(/JJ() and P± c V± = S3 \ v(,A±i(K)) 

Figure 8: (color online) The left dualizable pattern P = 83 C S3 \ v(fJ) is isotopic to its dual P* = 83 C 
S3 \ v(,). 
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4.2 Naturality 

Let K be a knot with a special annulus presentation (A, b). Then, we obtain a dualizable 
pattern P+ as in Section 3.2. Put k = A(K) and give the natural annulus presentation 
(A, b) of k from (A, b). Then we obtain another dualizable pattern P_ from k as in 
Section 3.2. We see that these patterns satisfy P+(U) = K, P~(U) = A(K), P_(U) = 

A(K) and P::.(U) = K. More strongly, Theorem 4.1 and Figure 7 imply that P+ = P::_ 
and P~ = P_. 

Let SAP be the set of special annulus presentations and DP be the set of unoriented 
patterns which are dualizable after giving some orientation. Then, by the above discussion, 
we obtain the following commutative diagram: 

SAP ~ SAP -----+ JC 

DP * -----+ DP -----+ JC 

where 

• A±l: SAP--+ SAP is the map induced by ±1-fold annulus twist, 

•±:SAP-+ DP is given by (A,b) c-+ P± as in Section 3.2, 

•*=DP-+ DP is given by Pc-+ P*, 

• SAP--+ JC : (A, b) c-+ Kand 

• DP--+ JC : Pc-+ P(U). 

4.2.1 Equivalence relations on DP and SAP 

Two dualizable patterns are equivalent if they are isotopic in the solid torus after forgetting 
the orientations. Denote the set of equivalence classes of dualizable patterns by DP/~. 

In [2], we give an equivalence relation of annulus presentations. Here, we consider 
another equivalence relation. 

Let (A, b) be an annulus presentation of a knot K. Let A' CA be a shrunken annulus 
given in Section 2. Define a surface F(A,b) by 

F(A,b) = (A\ A') u b(I X I), 

(see Figure 9). By definition of A', we see that F(A,b) is an embeded surface in S3 whose 
boundary oF(A,b) is the ordered 3-component link KU c~ Uc~. 

Let (A1 , b1 ) and (A2 , b2 ) be two annulus presentations. Then (A1 , b1 ) and (A2 , b2 ) are 
strnngly equivalent if F(A,,b,) and F(A2 ,b2 ) are isotopic in S3 and the isotopy preserves the 
orders of the boundary components. Denote the set of strong equivalence classes of special 
annulus presentations by SAP/~st• Since the curves /3"'i: are determined by the tubular 
neighborhood of c1 and c2 (see Section 3.2), the maps 

±: SAP/~st--+ DP/~ 
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Figure 9: F(A,b) for the annulus presentation in Figure 1 

are well-defined. Moreover, the following diagram is commutative: 

A±l 
------+ SAP/~ st ------+ K, 

1~ II 
~ D p I~ ------+ K, 

4.2.2 Is the correspondence from SAP to DP injective? 

It has explained that a patten of geometric winding number one is dualizable. In partic
ular, for any knot K, there is a dualizable pattern P such that P(U) = K. On the other 
hand, the four-ball genus g4 (K) of a knot K with an annulus presentation is smaller than 
2. Hence, the map±: SAP/~st---+ DP/~ in Section 4.2 is not surjective. How about 
the injectivity? 

Question 4.3. Are the maps±: SAP/~st---+ DP/~ injective? If the answer is "No", 
find a new equivalence relation on SAP so that the maps ± induce injective maps. 

5 0-surgery homeomorphism and its extension to 0-trace 

Dualizable patterns are used to construct a pair of knots with a diffeomorphism between 
their 0-traces. In this section, we consider a technique to construct a pair of knots with 
a homeomorphism between their 0-surgeries which may not extend to a diffeomorphism 
between their 0-traces. The technique introduced in this section is essentially due to 
Manolescu and Piccirillo [4]. 

5.1 r-dualizable pattern 

Define rr: S1 x D 2 ---+ L(r, 1) by Figure 10, where r E Zand L(r, 1) is the Lens space of 
type (r, 1) represented by the r-framed unknot R. For convenience, define L(O, 1) = S1 x S2 

and L(±l, 1) = S3 . 

Fix an integer r E z. For any curve c: S1 ---+ S1 X D2 , define C = rr O c: S1 ---+ L(r, 1). 
Then, a pattern Q in a solid torus W is r-dualizable if Q is isotopic to Aw in L(r, 1) 
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and the isotopy preserves their 0-framings (the 0-framings are the images under rr of the 
0-framings of Q and >.w in W). Obviously, a 0-dualizable pattern is a dualizable pattern. 

Let Q be an r-dualizable pattern in W. Define a pattern Qt by 

Qt= >.w c L(r, 1) \ v(Q) ~ L(r, 1) \ v(>.w) ~ S1 x D2 , 

where the parameter of L(r, 1) \ v(Q) is given so that Q is a longitude of the solid torus. 
Denote this solid torus by wt. We call Qt the dual of Q (see Figure 10). We see that 

w 

Q Q I lsotopy on L(r, I) 

Figure 10: (color online) An r-dualizable pattern Q and its dual Qt. The framed unknot R with framing 
r represents the Lens space L(r, 1). The boxes labeled by q and qt are the tangles corresponding to Q 
and Qt, respectively. 

there are natural homeomorphisms 

MQ(U)(0) ~ MRUQUAw(r, 0, 0) ~ MRu>,wtUQ!(r, 0, 0) ~ MQt(u)(0). 

Here we regard Q, >.w, Qt and >-wt as knots in S3 \ v(R) by abuse of notations. Denote 
the composition of the homeomorphisms by 4>(r): MQ(u)(0)-+ MQt(u)(0). 

We can check that for an r-dualizable pattern Q c W, the 3-component link RUQU>.w 
with framing (r, 0, 0) satisfies the conditions of "RBG link" introduced by Manolescu and 
Piccirillo [4]. By the same argument in [4, Theorem 3.7 and Lemma 4.2], we obtain the 
following result on the existence of an extension of 4>(r) to a homeomorphism between 
0-traces. 

Theorem 5.1 (e.g. [4, Theorem 3.7 and Lemma 4.2]). The homeomorphism 

ef>(r): MQ(U)(0)-+ MQt(u)(0) 

extends to a homeomorphism <(>: XQ(U) (0) -+ XQt(u) (0) if and only if r is even. 
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Question 5.2. For r E 2Z \ {O}, give a sufficient condition for cp(r) to extend to a 
diffeomorphism <t>: XQ(u)(0)-+ XQt(u)(0). 

Remark 5.3. A pattern of geometric winding number one is (0-)dualizable. However, 
such a pattern may not be r-dualizable for some r =/= 0. For example, a pattern Q of 
geometric winding number one with Q(U) =/= U is not ±1-dualizable. 

On the other hand, any r-dualizable pattern has algebraic winding number one because 
of homological reason. 

5.2 Special RBG link 

Manolescu and Piccirillo [4, Section 3] showed that any pair of knots admitting the same 
0-surgery can be explained in terms of "RBG links". In particular, r-dualizable patterns 
are explained by using "special" RBG links in their sentences. 

A 3-component framed link RU B U G with framing (r, b, g) E Q3 in S3 is a special 
REG link if 

• B and G are meridians of R, 

• the linking number l = lk(B, G) of B and G satisfies l = 0 or rl = 2, where we give 
B and G homologous orientations in S3 \ v(R), 

• r E Z and b = g = 0. 

Note that Band G are unknotted but R may be knotted. A special RBG link is unknotted 
if R is unknotted. 

For an unknotted special RBG link RUB U G, we can obtain an r-dualizable pattern 
as follows; Take a disk ~a bounded by G. Slide B along R until B no longer intersects 
~a and denote the resulting framed knot by KB. Then, the framing b' of KB is zero 
because of homological reason. In fact, we have 

where A is the linking ( or framing) matrix of RU B U G 

A~o ~ n 
Since the determinant <let A is l(2-rl) = 0, we have b' = 0. Put QB = KB c S3 \ v(R) = 
S1 x D 2 . By replacing the roles of Band G, define Ka and Qa. Then, we can check that 
QB and Qa are r-dualizable and Qk = Qa (for example, the 0-framing of KB is isotopic 
to the 0-framing of Bin MR(r) = L(r, 1)). 

Conversely, for any r-dualizable pattern Q c W, we can construct an unknotted special 
RBG link RUB U G such that Q = KB c S3 \ v(R) and Qt = Ka c S3 \ v(R). In fact, 
for the 3-component link RU Q U µR with framing (r, 0, 0), there is a sequence of slidings 
G along R which changes the framed link into RU .>..w U µR with framing (r, 0, 0) because 
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of the definition of-2:::dualizable pattern. Note that µR is a meridian of R, where Q U µR 
is a split link and Aw U µR may not be split. Then we can compute that 

where A' is the linking ( or framing) matrix of R U Aw U µR 

( 
r l 1 ) 

A' = 1 0 l' , l' = lk(Aw, µR)-
l l' 0 

Note that we give Aw and µR homologous orientations in S3 \ v(R). The determinant 
det A' is l'(2 - rl'). Since the determinant is zero, we have l' = 0 or rl' = 2. Hence, 

RU Aw U µR is an unknotted special RBG link and this is the desired one ( compare with 
[7, Proposition 4.2]). 

Remark 5.4. A special RBG link RUB U G satisfies 

• there are homeomorphisms <PB: MRuB(r, b) --+ S3 and </Jc: MRuc(r, g) --+ S3 , 

• H1(MRuBuc(r,b,g);Z) ~ Z. 

Generally, a rationally framed 3-component link R U B U G satisfying the above two 
conditions is called an REG link (for more detail, see [4]). 

Remark 5.5. RGB diagrams defined by Piccirillo [7] and named by the author [9] can 
be regarded as special RBG links (after some deformations). The etymology of "RBG" 
and "RGB" are the RGB-color. In fact, the components R, G and Bare colored by red, 
green, and blue, respectively in [7, 9]. 
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