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1 Introduction 

The present article is a summary of the paper [13]. We refer the reader to [13] for more 
details and full proofs. 

In [11, 12], Milnor defined a family of isotopy invariants of classical links in the 3-sphere, 
called Milnor µ-invariants. Given an n-component classical link L, the Milnor number 
µL(I) E Z of L is specified by a finite sequence I of indices in {1, ... , n }. This integer 
is only well-defined up to a certain indeterminacy i:lL(I), i.e. the residue class µL(I) of 
µL(I) modulo i:lL(I) is an invariant of L. It is shown in [12, Theorem 8] that µL(I) 
is invariant under link-homotopy when the sequence I has no repeated indices. Here, 
link-homotopy is an equivalence relation generated by self-crossing changes and isotopies 
(cf. [11]). In [6], Habegger and Lin defined Milnor numbers for classical string links in the 
3-ball, and proved that they are integer-valued invariants. In this sense, Milnor numbers 
are suitable for classical string links rather than classical links. These numbers for classical 
string links are called Milnor µ-invariants. 

The notion of welded links, introduced by Fenn, Rimanyi, and Rourke in [5], is a 
diagrammatic generalization of classical links in the 3-sphere. It naturally yields the 
notion of welded string links. Welded (string) links are generalized (string) link diagrams 
considered up to an extended set of Reidemeister moves. The aim of this article is to give 
an extension of Milnor µ-invariants to welded links in a combinatorial way. 

In [4], Dye and Kauffman first tried to extend Milnor link-homotopy µ-invariants to 
welded links. Kotorii pointed out in [7, Remark 4.6] that the extension of Dye and 
Kauffman is incorrect. In fact, there exists a classical link having two different values of 
the Dye-Kauffman's µ. Hence the Dye-Kauffman's µ is not well-defined even for classical 
links (see Remark 6.5). 

A successful extension is due to Kravchenko and Polyak in [8]. Using Gauss dia
grams, they extended Milnor link-homotopy µ-invariants to welded tangles, which are 
slight generalizations of welded string links. In [7], Kotorii gave an extension of Milnor 
link-homotopy µ-invariants to welded links via the theory of nanowords introduced by 
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Turaev in [15]. Both extensions are combinatorial, but they are restricted to the case of 
link-homotopy invariants. 

In [1], Audoux, Bellingeri, Meilhan and Wagner defined a 4-dimensional version of 
Milnor µ-invariants. Combining this version of Milnor µ-invariants with the Tube map, 
they extended Milnor isotopy µ-invariants to welded string links. Here, the Tube map is 
a map from welded string links to ribbon 2-dimensional string links in the 4-ball (cf. [16, 
14]). Recently, Chrisman in [3] defined Milnor µ-invariants for welded links with similar 
ingredients as in [1], and proved that they are welded concordance invariants. While 
Milnor invariants for welded objects are given in [1, 3], their approaches are topological. 
The authors believe that it is important to consider a combinatorial approach, since the 
advantage of welded objects is that they are combinatorial. 

In [12], Milnor gave an algorithm to compute µ-invariants for a classical link based on 
its diagram. This algorithm can be applied to generalized link diagrams. By the result of 
Chrisman in [3], the values given by the algorithm are invariants of welded links. Hence, 
it is theoretically possible to prove that the values are invariant under welded isotopies, 
from a diagrammatic point of view. In this article, we actually give such a diagrammatic 
proof. Our approach is purely combinatorial, self contained, and different from [8, 7, 1, 3]. 

2 Preliminaries 

For an integer n ~ l, an n-component virtual link diagram is the image of an immersion 
of n ordered and oriented circles into the plane, whose singularities are only transverse 
double points. Such double points are divided into classical crossings and virtual crossings 
as shown in Figure 2.1. 

X X 
classical crossing virtual crossing 

Figure 2.1: Two types of double points 

Welded Reidemeister moves consist of Reidemeister moves Rl-R3, virtual moves Vl
V4 and the over-crossings commute move OC as shown in Figure 2.2. A welded isotopy 
is a finite sequence of welded Reidemeister moves, and an n-component welded link is 
an equivalence class of n-component virtual link diagrams under welded isotopy. We 
emphasize that all virtual link diagrams and welded links are ordered and oriented. 

Let D be an n-component virtual link diagram. Put a base point Pi on some arc of 
each ith component, which is disjoint from all crossings of D (1 :S i :S n). A base point 
system of D is an ordered n-tuple p = (p1 , ... ,Pn) of base points on D. We denote by 
(D, p) a virtual link diagram D with a base point system p. The classical under-crossings 
of D and base points p1 , ... ,Pn divide D into a finite number of segments possibly with 
classical over-crossings and virtual crossings. We call such a segment an arc of ( D, p). 

As shown in Figure 2.3, let ai1 be the outgoing arc from the base point Pi, and let 
ai2 , •.• , aim,+l be the other arcs of the ith component in turn with respect to the orienta-
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Figure 2.2: Welded Reidemeister moves 

tion, where mi+ 1 is the number of arcs of the ith component of (D, p) (1::::; i::::; n). In 
the figure, Uij E {ak1} denotes the arc which separates aij and aiHI· Let Eij E {±1} be 
the sign of the crossing among aij, Uij and aij+I, and we put 

V . __ ue:i1ue:i2 .•• ueij 
'1 - il i2 ij 

for 1 ::::; j ::; mi. We call the word Vij a partial longitude of ( D, p). 

ail 1~1~ a;j I aij+l ~1aim,+1 
~ ~ ... 

Pi 

Uil U;2 Uij Uimi 

Figure 2.3: A schematic illustration of the ith component 

Let A = (a1 , ... , an) be the free group of rank n, and let A be the free group on the 
set { aij} of arcs. For an integer q ~ l, a sequence of homomorphisms 

T/q = ryq(D, p) : A-----+ A 

associated with ( D, p) is defined inductively by 

T/1 ( aij) = ai, 

T/q+1(ai1) = ai, and T/q+I(aij) = ryq(v0~1)airJq(Vij-I) (2::::; j::; mi+ 1). 

Note that our definition of T/q is very similar to the original one in [12], but they are not 
the same because, in [12], ail U aim;+l is a single arc. In Section 3, we investigate virtual 
link diagrams with base point systems up to local moves relative base point system. The 
difference of the definition of arcs is essential for Theorem 3.1, see Remark 6.6. 

Let Z( (X1 , ... , Xn)) be the ring of formal power series in non-commutative variables 
X 1 , ... , Xn with integer coefficients. The Magnus expansion is a homomorphism 
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defined, for 1 ~ i ~ n, by 

E(a;) = 1 + X; and E(a;:1) = 1 - X; + X;2 - X;3 + · · · . 
Remark 2.1 ([9, Corollary 5.7]). Let q ~ 1 be an integer and Aq the qth term of the 
lower central series of A. For x E Aq, we have E(x) = 1 + (terms of degree~ q). 

For each 1 ~ i ~ n, let w; be the sum of the signs of all classical self-crossings of the 
ith component of (D, p). We call the word l; = a:;t'v;m, the ith preferred longitude of 
(D,p). 

Definition 2.2. For a sequence j 1 ... Jsi (1 ~ s < q) of indices in {1, ... , n }, the Milnor 

number µi~,Pi(j1 .. . j 8 i) of (D,p) is the coefficient of Xj, · ··XJ. in E(77q(l;)). 

Remark 2.3. For 1 ~ s < q, we have µi~,p)(j1 .. . j 8 i) = µi'fy~~j(j1 .. . j 8 i). Therefore, 

by taking the integer q sufficiently large, we may ignore q and denote µi~,P)(j1 .. . j 8 i) by 
µ(D,p)(JI ... Jsi). In the rest of this article, q is assumed to be a sufficiently large integer. 

3 Milnor numbers and welded isotopy relative base point sys
tem 

A local move relative base point system is a local move on a virtual link diagram with a 
base point system such that it keeps the positions of base points. A w-isotopy is a finite 
sequence of welded Reidemeister moves relative base point system and a local move as 
shown in Figure 3.1. We emphasize that in a w-isotopy, we do not allow to use two local 
moves as shown in Figure 3.2. We call the two local moves base-change moves. 

Figure 3.1: A base point passing through a virtual crossing 

-1---1-
Figure 3.2: Base-change moves 

The following theorem gives the invariance of Milnor numbers under w-isotopy. 

Theorem 3.1. Let (D, p) and (D', p') be virtual link diagrams with base point systems. 
If (D, p) and (D', p') are TD-isotopic, then µ(D,p)(I) = µ(D',p')(I) for any sequence I. 

Let l; and l; be the ith preferred longitudes of (D, p) and (D', p'), respectively (1 ~ i ~ 
n). To show Theorem 3.1, we observe the difference between 7Jq(D, p)(l;) and 7Jq(D', p')(Z;) 
under w-isotopy. 



123

Proposition 3.2. If (D, p) and (D', p') are w-isotopic, then T/q(D, p )(li) = T/q(D', p')(l;) 
(mod Aq)-

We admit this proposition and prove that it implies Theorem 3.1. 

Proof of Theorem 3.1. By Proposition 3.2, we have 

This together with Remark 2.1 implies that 

E(TJq(D, p)(li)) - E(TJq(D', p')(l;)) = (terms of degree ~ q). 

Hence, by definition, µ(D,p)(j1 .. . j 8 i) = µ(D',p')(J1 .. . j 8 i) for any sequence J1 .. . j 8 i with 
s<q. □ 

Example 3.3. Consider the 3-component link diagram D and its base point system 
p = (p1 ,p2 ,p3 ) in the left of Figure 3.3. Let% be the arcs of (D, p). Since li = a21 , l2 = 
a2/(a11a23), and l3 = a:2}a22 , by definition we have 

By a direct computation, we have 

Hence it follows that 

µ(D,p)(21) = 1, µ(D,p)(12) = 1, µ(D,p)(123) = -1, and µ(D,p)(213) = 1, 

and that µ(D,p)(I) = 0 for any sequence I with length :'.S: 3 except for 21, 12,123, and 213. 
Consider another base point system p' = (p~,P~,p~) of D in the right of Figure 3.3. 

Then we have li = a22, l2 = a2/(a22a11), and [3 = a2la21, and hence 

This implies that 
µ(D,p')(21) = 1 and µ(D,p')(12) = 1, 

and that µ(D,p')(I) = 0 for any sequence I with length :'.S: 3 except for 21 and 12. Therefore, 
by Theorem 3.1, (D, p) and (D, p') are not W-isotopic. 
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p, Cn~( (;\ p3 

C\bl/V 
a~ ~1 

(D,p) 

Figure 3.3: A 3-component link diagram D with different base point systems p = (p1,P2,p3) and p' = 

(p~,p;,p~) 

4 Change of base point system 

In this section, we fix an n-component virtual link diagram D, and observe behavior of 
77q(li) under a change of base point system for D (Theorem 4.3). 

An arc of D is a segment along D which goes from a classical under-crossing to the 
next one, where classical over-crossings and virtual crossings are ignored. We emphasize 
that the definition of arcs of D is slightly different from that of arcs of ( D, p). For each 
1 :::; i :::; n, we choose one arc of the ith component and denote it by ail· Let ai2 , .•. , aim, 
be the other arcs of the ith component in turn with respect to the orientation, where mi 
denotes the number of arcs of the ith component. Throughout this section, we fix these 
arcs ail , ... , aim, for D. 

Given a base point system p = (p1 , ... ,Pn) of D, let p(i) denote the integer of the 
second subscript of the arc containing Pi (1 :::; i :::; n). Consider the virtual link diagram 
D with a base point system p = (p1 , ... , Pn). For each ith component of ( D, p), the base 
point Pi divides the arc aip(i) of D into two arcs. We assign the labels bf and aip(i) to the 
two arcs of ( D, p) as shown in Figure 4.1. The labels of the other arcs of ( D, p) are the 
same as those of the corresponding arcs of D. 

a~ 1--a_iP_(_i)____,. I ~:1 a~ 1-b_f ...._a_iP_(•➔) I ~1 

Pi 

D (D,p) 

Figure 4.1: 

In this setting, the homomorphism 77g( D, p) associated with ( D, p) is described as 
follows. We put TJf = TJq(D, p) for short. The domain of TJf is the free group A on 
{ai1} U {bf}. The homomorphism 77f from A into A is given inductively by 

TJi(%) = ai, 77f(bf) = ai, 

T/r+1(aip(i)) = ai, T/r+1(%) = 77r((vE-1)-1)ai77r(vE-1) (j =I- p(i)), 

and T/r+1(bf) = 77r((vfi,(i)-1)-1)ai77r(vfi,(i)-1), 
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where 
(p(i) ~ j ~ m;), 

(1 ~ j ~ p(i) - 1), 

and vfo = vfmi. Furthermore, the ith preferred longitude lf of ( D, p) is given by 

We now define a word >.f EA (1 ~ i ~ n) by 

and a sequence of homomorphisms cp~ : A --+ A by 

cpf(a;) = a; and 

(p(i) -/c 1), 
(p(i) = 1), 

cp~(a;) = 1Jr-1(,\;)a;1Jr-1((,\;)-l) (q ~ 2). 

Notice that the homomorphism cp~ sends each a; to some conjugate element. 
A semi-arc of Dis a segment along D which goes from a classical under-/over-crossing 

to the next one, where virtual crossings are ignored. Let P be the set of base point 
systems of D. Let Po C P be the set of all (p1, ... ,Pn) E P such that each Pi lies on a 
semi-arc which starts at a classical under-crossing. We denote by p. = (it, ... ,p~) E Po 
the base point system such that each P? lies on the arc a;1 . For the homomorphism 7)~* 

associated with (D, p.), partial longitudes vft*, and preferred longitudes lf* of (D, p.), we 
simply put 7/q = 1]~*, V;J = vft*, and l; = lf*. 

Let MJ' be the normal closure of { cp~([a;, 7/q(l;)]) I 1 ~ i ~ n} in A and let Mq = 
rrpE'Po MJ'. Notice that Mq = rrpE'Po cp~(MJ'* ). 

Proposition 4.1. Let p0 E P0 • For any 1 ~ i ~ n, 

7/~o (lfo) = cp~o (1Jq( (>.fo)-Il;>.fo)) (mod AqMJ'o). 

Proposition 4.2. Let p E P, and p0 E Po with p0(k) = p(k) (1 ~ k ~ n). For any 
1 ~ i ~ n, 1Jf(lf) = 1Jf0 (lf0 ) (mod AqMJ'°). 

Combining Propositions 4.1 and 4.2, the following is obtained immediately. 

Theorem 4.3. Let p E P, and Po E Po with p0(k) = p(k) (1 ~ k ~ n). For any 1 ~ i ~ 
n, 1Jf(lf) = cp~0 (1Jq((>.f0 )-1l;>.f0 )) (mod AqMJ'°). Hence 1Jf(lf) = cp~0 (1Jq((>.f0 )-1l;>.f0 )) 

(mod AqMq)-

5 Milnor numbers and welded isotopy 

Let D be an n-component virtual link diagram of a welded link L, and p a base point 
system of D. As shown in Example 3.3, the Milnor number µ(D,p)(I) depends on the 
choice of p. Hence it is not an invariant of the welded link L. On the other hand, we 
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show in this section that µ(D,p)(I) modulo a certain indeterminacy is an invariant of L 
(Theorem 5.1). 

For a sequence i1 ... ir of indices in {1, . .. , n }, the indeterminacy ~(D,p) (ii ... ir) of 
(D,p) is the greatest common divisor of all µ(D,p)(j1 .. . j 8 ), where j 1 .. . j 8 (2 :S s < r) 
is obtained from i1 ... ir by removing at least one index and permuting the remaining 
indices cyclicly. In particular, we set ~(D,p)(i1i 2) = 0. 

Theorem 5.1. Let D and D' be virtual diagrams of a welded link. Let p and p' be base 
point systems of D and D', respectively. Then µ(D,p)(I) = µ(D',p')(I) (mod ~(D,p)(I)) 
and ~(D,p)(I) = ~(D',p')(I) for any sequence I. 

This theorem guarantees the well-definedness of the following definition. 

Definition 5.2. Let L be an n-component welded link. For a sequence I of indices in 
{1, ... , n }, the Milnor µ-invariant µL(I) of L is the residue class of µ(D,p) (I) modulo 
~(D,p)(I) for any virtual diagram D of Land any base point system p of D. 

Remark 5.3. The Milnor µ-invariant of welded links, defined above, coincides with the 
extension of Chrisman in [3] for any sequence. In particular, for classical links, the 
invariant coincides with the original one in [12]. 

In the remainder of this section, we fix D and its arcs aij (1 :S i :S n, 1 :S j :S 
mi), and use the same notation as in Section 4. In this setting, the Milnor number 
µ(D,pi(J 1 ... Jsi) of (D, p) is given by the coefficient of Xh · · · Xjs in E(TJr(lf)). For short, 
we put µp(I) = µ(D,p)(I) and ~p(I) = ~(D,p)(I). In particular, we put µ(I)= µ(D,p.)(I) 
and ~(I)= ~(D,p.)(I). 

For each 1 :S i :S n, we define a subset Vi of Z( (X1 , ... , Xn)) to be 

{'°' (. . )X- .. -X- I v(Ji ... j 8 ) = 0 (mod ~(j1 .. . j 8 i)) (s < q), } 
~VJI···Js J1 Js v(Ji ... Js)EZ (s?_q). · 

Lemma 5.4 (cf. [12, (12)-(15) on page 292]). Let x, y EA and p E P. For any 1 :Si :Sn, 
the following hold. 

(1) E(x- 1T)q(li)x) - E(TJq(li)) E 'Di. 

(2) E(rpr(TJq(li))) - E(TJq(li)) E 'Di. 

(3) If x = y (mod AqMq), then E(x) - E(y) E Vi. 

We admit this lemma and prove that it, together with Theorem 4.3, implies the fol
lowing proposition. 

Proposition 5.5. For any p E P, the following hold. 

(1) µp(I) = µ(I) (mod ~(I)) for any sequence I. 

(2) ~p(I) = ~(I) for any sequence I. 

Proof. (1) For any 1 :S i :S n, it is enough to show that 
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Let p0 E Po with p 0 (k) = p(k) (1 ::::; k::::; n). By Theorem 4.3, we have 

ry~(lf) = cp~0 (ryq((,\;0 )-1li,\;0 )) (mod AqMq)-

Put x = cp~0 (ryq(,\;0 )) EA. Then by Lemma 5.4 it follows that 

E(x-1cp~0 (ryq(li))x) - E(ryq(li)) (mod Vi) 

E(x-1cp~0 (ryq(li))x) - E(x-1ryq(li)x) (mod Vi) 

E(x-1) (E(cp~0 (ryq(li))) - E(ryq(li))) E(x) 
0 (mod 'Di)-

Since we may assume that q is sufficiently large, 

for any sequence J1 ... j 8 i. 
(2) This is proved by induction on the length k of I. For k = 2, we have ~p(I) = 

~(I) = 0 by definition. Assume that k ;::: 2. Let .Ji(I) (resp. J>i(I)) be the set of all 
sequences obtained from I by removing exactly one index (resp. ~t least one index) and 
permuting the remaining indices cyclicly. For any J E J1(I), we have ~p(J) = ~(J) by 
the induction hypothesis. Then it follows that 

gcd {µP ( J) I J E J;:,1 (I)} 

gcd ( LJ ({µp(J)} U {µp(J') I J' E J;:,1(J)})) 
JEJ1(I) 

gcd ( LJ ({µp(J)} u {~p(J)})) 
JEJ1(I) 

gcd ( LJ ({µp(J)} u {~(J)})). 
JEJ1(I) 

By (1) we have µp(J) = µ(J) (mod ~(J)). This implies that ~p(I) = ~(I). □ 

Proof of Theorem 5.1. Since (D, p) and (D', p') are related by w-isotopies and base
change moves in Figure 3.2, this follows from Theorem 3.1 and Proposition 5.5. □ 

6 Self-crossing virtualization 

A self-crossing virtualization is a local move on virtual link diagrams as shown in Fig
ure 6.1, which replaces a classical crossing involving two strands of a single component 
with a virtual one. In this section, we show the following theorem as a generalization of 
[12, Theorem 8]. 
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Figure 6.1: Self-crossing virtualization 

Theorem 6.1. Let L and L' be welded links, and let D and D' be virtual link diagrams 
of L and L', respectively. If D and D' are related by a finite sequence of self-crossing 
virtualizations and welded isotopies, then Th(/)= llv(I) for any non-repeated sequence I. 

Remark 6.2. In [2], Audoux and Meilhan proved that two virtual link diagrams are 
related by a finite sequence of self-crossing virtualizations and welded isotopies if and 
only if they have equivalent reduced peripheral systems. This result together with Theo
rem 6.1 implies that for welded links, the reduced peripheral system determines Milnor 
µ-invariants for non-repeated sequences. 

Let ( D, p) be an n-component virtual link diagram with a base point system, and let 
% (1 ::::; i ::::; n, 1 ::::; j ::::; mi+ 1) be the arcs of (D, p) as given in Section 2. Recall that 
A = ( a 1 , ... , an) denotes the free group of rank n, and A denotes the free group on { aij}. 
For 1 ::::; k::::; n, let A(k) = (a1 , ... , ak-l, ak+l, ... , an) be the free group of rank n -1. We 
define a homomorphism Pk : A ---+ A (k) by 

(i =J k), 
(i = k), 

and denote by rJt) = rJt\D, p) the composition Pk o 'T}q : A---+ A(k). 
Let R be the normal closure of {[ai, g-1aig] I g E A, 1 ::::; i ::::; n} in A, and let R(k) 

be the normal closure of {[ai,g-1aig] I g E A(k), 1 ::::; i =J k ::::; n} in A(k)_ Note that 
[g-1aig, h-1aih] E R for any g, h E A. In particular, rJq{[af., aft]) E R for any s, t and any 
c,6 E {±1}. Let A~k) be the qth term of the lower central series of A(k)_ 

Proposition 6.3. Let (D, p) and (D', p') be n-component virtual link diagrams with base 
point systems. For an integer k E {1, ... , n }, let lk and l~ be the kth prefe'r'red longitudes 
of ( D, p) and ( D', p'), respectively. If ( D, p) and ( D', p') are related by a self-crossing 

virtualization, then rJt)(D, p)(lk) = 'T/~k\D', p')(lU (mod A~k) R(kl). 

Forasequencej1 .. . j.i (1::::; s < q) of indices in {1, ... ,n}, we denote by µi~~i)(j 1 •• . j.i) 

the coefficient of XJ, · · · XJs in E(rJt\li)). By Remark 2.3, we have 

(q,k) (. . ") _ (q+l,k)(. . ") 
µ(D,p) ]1 · · · ]sZ - µ(D,p) ]1 · · · J8 Z • 

Furthermore, if the sequence j 1 .. . j. involves the index k, then µi~~il(j1 .. . j.i) = 0. On 

the other hand, if ]1 ... ]s does not involve k, then µi~~i) (j1 ... j.i) = µi~,P) (j1 ... j.i) ( = 

µ(D,p)(]1 · · .j.i)). 
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Theorem 6.4. Let ( D, p) and ( D', p') be virtual link diagrams with base point systems. If 
(D, p) and (D', p') are related by a self-crossing virtualization, then µ(D,p)(I) = µ(D',p')(I) 
for any non-repeated sequence I. 

Proof. Let k be the last index of a non-repeated sequence I. Then we may put I 
Jk. Since J does not involve k, we have µ(D,p)(Jk) = µ[t~~)(Jk) and µ(D',p')(Jk) 

µ[t~:P,i(Jk). To complete the proof, we will show that µ[t~~)(Jk) = µ[t~:P')(Jk). 

For x E A~k) R(k), we put 

By Proposition 6.3, it is enough to show that v(j1 ... Js) = 0 for any non-repeated sequence 
J1 ... j 8 with s < q. 

If x E At), then we have v(j1 .. . j 8 ) = 0 by Remark 2.1. If x E R(k), then we only 
need to consider the case x = [a;,g-1a;g] (g E A(k), 1::::; i =/- k::::; n). Then it follows that 

E(x) - 1 E([a;, g-1a;g]) - 1 
(E(a;g- 1a;g) - E(g-1a;ga;)) E(a-;1g-1a-;1g). 

Here we observe that 

E(a;g-1a;g) - E(g-1a;ga;) 

= (1 + X;)E(g-1)(1 + X;)E(g) - E(g-1)(1 + X;)E(g)(l + X;) 

= X;E(g- 1)X;E(g) - E(g-1)X;E(g)X;. 

This implies that each term of E(x) - 1 contains X; at least twice. Hence we have 
v(j1 ... Js) = 0 for any non-repeated sequence j 1 ... j 8 • □ 

Proof of Theorem 6.1. Let p and p' be base point systems of D and D', respectively. 
Then ( D, p) and ( D', p') are related by a finite sequence of self-crossing virtualizations, 
w-isotopies and base-change moves. If ( D, p) and ( D', p') are related by a self-crossing 
virtualization, then by Theorem 6.4 µ(D,p)(I) = µ(D',p')(I) for any non-repeated sequence 
I. This implies that fl(D,p)(I) = fl(D',p')(I). If (D, p) and (D', p') are related by a w
isotopy or base-change moves, then it follows from Theorems 3.1 and 5.1 that µ(D,p)(I) = 
µ(D',p')(I) (mod fl(D,p)(I)) and fl(D,p)(I) = fl(D',p')(I). This completes the proof. □ 

Remark 6.5. It is suggested in [7, 1] that Dye and Kauffman in [4] failed to define 
Milnor-type "invariants". We clarify why Dye and Kauffman's construction/definition is 
incorrect. In [4], Dye and Kauffman defined a residue class p,DK of Milnor numbers µ 
for virtual link diagrams with base point systems. Their construction follows Milnor's 
original work [12] but a different indeterminacy fl DK(j1 ... Jri), which is defined as the 
greatest common divisor of all µ(k1 ... ksi), where k1 ... ks is a proper "subset" of J1 .. -Jr, 
see [4, page 945]. (Here, "subset" should rather be "subsequence".) We stress that 
flDK(j1 ... Jri) is determined by Milnor numbers for sequences with the last index i. It is 
stated in [4, Section 4] that p,DK does not depend on the choice of base point system, and 
moreover that it is an invariant of virtual links. However, this is wrong. More precisely, 
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pDK is not well-defined even for classical link diagrams. In the following, we will show 
that pDK does depend on both Reidemeister moves and the choice of base point system: 
Let (D, p ), (D, p') and (D', p) be the 3-component link diagrams as in Figure 6.2. (We 
remark that the definition of arcs of a diagram in [4] coincides with the original one 
in [12].) Note that ( D, p) and ( D, p') have the same diagram and different base point 
systems, and that (D, p) and (D', p) are related by a single Rl move relative base point 
system. Let l, l' and l" be the 3rd longitudes of ( D, p), ( D, p') and ( D', p), respectively. 
Then by the definition of 7/q in [12, 4], 773 (l) = o:21rl11o:2o:1 , 773 (l') = 773 (l") = 1, and hence 
E(ry3 (l)) = 1 + X 2X 1 - X 1X 2 + (terms of degree ~ 3) and E(ry3 (l')) = E(ry3 (l")) = 1. 
Since ~fl,P/123) = gcd (µ(D,p)(13),µ(D,p)(23)) = 0, we have µfff,Pi(123) = -1, while 

µfff,p,i(123) = µfX,,p)(123) = 0. 

p,?:n~( C\ p3 
C~Y 

a31 
(D,p) 

P1?:::nn( \\p3 
C\J;Yd 

a31 
(D',p) 

Figure 6.2: 

(D,p') 

Remark 6.6. In Remark 6.5, for the original definition of arcs in [12], we see that 
µ(D,p)(123) =/= µ(D',p)(123), while (D, p) and (D', p) are related by a single Rl move 
relative base point system. This implies that Theorem 3.1 does not hold for the original 
definition of arcs. 

7 Welded string links 

In the previous sections, we have studied Milnor invariants of welded links. Now we 
address the case of welded string links. 

Fix n distinct points 0 < x1 < · · · < Xn < l in the unit interval [0, l]. Let [0, l]i, ... , [0, l]n 
be n copies of [0, l]. Ann-component virtual string link diagram is the image of an im
mersion 

n 

LJ[o, l];-+ [o, 1] x [o, 1] 
i=l 
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such that the image of each [0, l]i runs from (xi, 0) to (xi, 1), and the singularities are only 
classical and virtual crossings. The n-component virtual string link diagram { x 1 , ... , xn} x 
[0, 1] in [0, 1] x [0, 1] is called the trivial n-component string link diagram. Ann-component 
welded string link is an equivalence class of n-component virtual string link diagrams under 
welded isotopy. 

Let 1r : [0, 1] x [0, 1] --+ [0, 1] be the projection onto the first coordinate. Given 
an n-component virtual string link diagram S, an n-component virtual link diagram 
with a base point system is uniquely obtained by identifying points on the boundary of 
[0, 1] x [0, 1] with their images under the projection 1r. We denote it by (Ds, p 8 ), where 
Ps = (1r(x1, 0), ... , 1r(xn, 0)) = (1r(x1, 1), ... , 1r(xn, 1)). We see that if two virtual string 
link diagrams Sand S' are welded isotopic, then (Ds,Ps) and (D8 ,,p8 ,) are w-isotopic. 

For a sequence I of indices in {1, ... , n }, the Milnor number µ8 (1) of S is defined to 
be µ(Ds,Ps)(I). Theorem 3.1 implies the following directly. 

Corollary 7.1. Let S and S' be virtual diagrams of a welded string link. Then µ8 (1) = 
µs1 (1) for any sequence I. 

Combining Theorems 3.1 and 6.4, the following result is obtained immediately. 

Corollary 7.2 ([10, Lemma 9.1]). If two virtual string link diagrams Sand S' are related 
by a finite sequence of self-crossing virtualizations and welded isotopies, then µ8 (I) = 
µs,(I) for any non-repeated sequence I. 

Remark 7.3. The converse of Corollary 7.2 is also true. In fact, it is shown in [1, 10] 
that Milnor numbers for non-repeated sequences classify virtual string link diagrams up 
to self-crossing virtualizations and welded isotopies. 

We conclude this article with a classification result of virtual link diagrams with base 
point systems up to an equivalence relation generated by self-crossing virtualizations and 
w-isotopies. 

Theorem 7.4. Let (D, p) and (D', p') be virtual link diagrams with base point systems. 
Then the following are equivalent. 

(1) (D, p) and (D', p') are related by a finite sequence of self-crossing virtualizations and 
w-isotopies. 

(2) µ(D,p)(I) = µ(D',p')(I) for any non-repeated sequence I. 

Proof. (1) =} (2): This follows from Theorems 3.1 and 6.4 directly. 
(2) =} (1): For a small disk J which is disjoint from (D,p) (or (D',p')), by applying 

VR2 relative base point system and the local move in Figure 3.1 repeatedly, we can deform 
( D, p) ( or ( D', p')) such that the intersection between the disk J and the deformed diagram 
is the trivial string link diagram whose each component contains the base point. Hence, 
D \ 6 and D' \ 6 can be regarded as string link diagrams S and S', respectively. Since 
(Ds,Ps) and (Ds,,Ps,) are w-isotopic to (D,p) and (D',p'), respectively, it follows from 
Theorem 3.1 that 
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for any non-repeated sequence I. Hence we have µ8 (I) = µ 8 ,(I) by assumption. Then, 
by Remark 7.3, S and S' are related by a finite sequence of self-crossing virtualizations 
and welded isotopies. This implies that (Ds,Ps) and (D8 ,,p8 ,) are related by a finite 
sequence of self-crossing virtualizations and W-isotopies. □ 

Remark 7.5. By Theorem 7.4, the two virtual link diagrams with base point systems 
( D, p) and ( D, p') given in Example 3.3 are not related by a finite sequence of self-crossing 
virtualizations and W-isotopies. 
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