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Studying knot invariants that count diagrams 

David Leturcq* 

1 Introduction 

This survey presents some methods used to study knot invariants defined from 
configuration space integrals. In Section 2, the main tools are presented on the 
simple example of the linking number of two knots in ~ 3 • The most important 
feature of this section is the definition of propagators, an example of which was 
studied by Fukaya [3], and which were defined by Lescop in [4]. A detailed study 
of the perturbative expansion of Chern-Simons theory based on propagators can 
be found in [6]. Here, we focus on similar invariants, but for high-dimensional 
knots ~n '-----+ M 0 , where n is odd, and M 0 is a punctured homology (n+2)-sphere. 
In Section 3, we present the definition of generalized Bott-Cattaneo-Rossi (BCR) 
invariants for such knots, as from our article [10]. These invariants generalize a 
construction of Bott [1] and of Cattaneo and Rossi [2]. They admit an expression 
in terms of Alexander polynomial(s), which is the result of [8]. The obtention 
of such an expression relies on the use of specific propagators associated with the 
knot. Section 4 contains some insights on possible extensions of these constructions 
to other interesting objects, which are not knot invariants (i.e. 0-cocycles on the 
space of knots) anymore, but cochains on the space of knots. We hope that such 
constructions may lead to interesting cocycles. I thank the organizers of ILDT 
for the opportunity to present these topics, and especially Tomotada Ohtsuki for 
the invitation. I also thank Tadayuki Watanabe for his questions when I was in 
Matsue at Summer 2019, and after my ILDT talk, which are the starting point of 
some questions of Section 4. 

2 Simplest example : the linking number 

In this survey, all manifolds are smooth and oriented, and all maps are smooth. 

*RJMS, Kyoto university, Standard JSPS fellowship 
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2.1 General definition 

The most straightforward definition for the linking number is the following one. 

Definition 2.1. Let X and Y be two chains of an n-manifold M such that 
dim(X) + dim(Y) + 1 = n, and assume that X is null-homologous. Let ~x 
be a chain of M with boundary X and assume that Y and ~x are transverse. The 
linking number is the algebraic intersection 

and does not depend of the choice of a surface ~x as above. 

In this section, we will describe some equivalent definitions of linking number 
that 'count" the diagram of Figure 1. 

0---0 
J K 

Figure 1: A diagram representing the linking number 

2.2 Definition from Gauss map in IR.3 

Let us now assume that M = IR3 and fix two disjoint knots J, K: §1 '------+ IR3 . Their 
linking number is lk(J, K) = lk(J(§1), K(§1)). 

In this case, define the Gauss map 

Q: §1 X §1 --+ §2 
(t ) K(u)-J(t) 

'U M IIK(u)-J(t)II" 

Now, we can define the degree of this map G with two methods. 

Proposition 2.2. Letw be a 2-form on § 2 with total area 1. The number J§1x§1 G*(w) 
does not depend on w. It is called the degree deg( G) of G. 

Proposition 2.3. For any choice of a regular value x E § 2 of G, 

deg(G) = c:(t, u), 
(t,u)EG-1 ({x}) 

where c:(t, u) is the sign of the determinant of the tangent map T(t,u)G in any two 
oriented bases. 
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With the notations of the previous subsection, the linking number admits an 
equivalent definition, as follows. 

Proposition 2.4. For any disjoint knots J and K of JR3 , 

lk(J, K) = deg(G). 

In particular, Propositions 2.3 and 2.4 yield the following proposition, which 
may be the most known definition of linking number for knots in JR3 . 

Proposition 2.5. Let J and K be two disjoint knots of JR3 , and let fix a diagram 
of the link J LJ K. Let ni (i E {1, ... , 4}) denote the number of crossings between 
one strand of J and one strand of K as in the i-th picture below. 

X X X X 
J K J K K J K J 

The linking number is 

The above property is the reason why such an invariant is considered as a 
'diagram count". Indeed, the formula allows us to interpret lk(J, K) as a signed 
count of elements of J(§1) x K(§1) with some constraint on the direction of the 
Gauss map. Here, the constraint on the direction is very easy to visualize, but it is 
interesting to allow more flexible (and less visualizable) choices on the constraints 
than the direction of the vector. This greater flexibility will serve two main goals: 
dealing with other manifolds than the Euclidean spaces ]Rn ( where the notion 
of 'direction" makes sense), and, most importantly, obtaining some formulas for 
invariants using more appropriated constraints. 

2.3 Definition in terms of propagators 

Now, Mis a general closed n-manifold, with the rational homology of an n-sphere. 
Fix a point oo of M, and define M 0 as the manifold M \ { oo }. We identify a 
punctured neighborhood of oo in M with the complement B':xo of the unit ball in 
]Rn so that M 0 reads as B':xoUB(M), where B(M) replaces the unit ball. Such a M 0 

is called an asymptotic homology ]Rn. The typical example is ( M, M 0 ) = (§n, ]Rn). 

Definition 2.6. A parallelization T of M 0 is a trivialization T: M 0 x ]Rn ----+ T M 0 

that coincides on B':xo with the canonical trivialization of ]Rn. For such a paral
lelization and x E M 0 , Tx denotes the isomorphism T(x, ·):]Rn----+ TxM 0 • 
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Let cg(M 0 ) denote the (non-compact) manifold M 0 x M 0 \ diag = {(x, y) E 

M 0 X M 0 I X # y}. 

Proposition 2. 7. There exists a compact smooth manifold with boundary and 
edges C2 (M0

) such that 

• The interior of C2 (M0 ) identifies canonically with cg(M0 ). 

• Any parallelization T yields a smooth map GT: 8C2 (M0 ) -t sn-1 . 

We refer to [5, Section 2.2] for more details on this construction. However, one 
can get a rough idea of the construction from the following (partial) remarks. 

• The co dimension 1 boundary of the compactified configuration space C2 ( M 0 ) 

consists of three kinds of configurations : those where the two points x and 
y coincide, but where we remember the local direction from x to y ( which is 
an element u of the unitary tangent bundle UxM 0 ) ; those where one of the 
points x and y is at oo, but where we remembered in which direction the 
point at the infinity "escaped" (this is an element of U00 M, i.e. of sn-1); and 
those where x and y both escaped to infinity, that we won't detail here. 

• The Gauss map GT maps a configuration (x, x) with direction u E UxM 

to 11;:=~i:\II E sn-1 . It maps a configuration with x at the infinity in the 
direction Ux (and y E M 0 ) to -ux, and it maps a configuration with y at the 
infinity in the direction Uy (and x E M 0 ) to +uy. Here, we do not give the 
details when (x,y) = (oo,oo) (See [5, Proposition 2.3].) 

Now, we give two possible definitions of propagators. 

Definition 2.8. A propagating form of (M0 , T) is a closed (n - 1)-form f3 on 
C2(M0 ) such that f31ac2(w) is GT *(w) for some (n - 1)-form won sn-l with total 
volume 1 such that (-Idsn-1)*(w) = (-lrw. 

A propagating chain of (M0 , T) is a rational (n + 1)-chain B of C2 (M0 ) such 
that BB reads ½GT-1 ({-x,+x}) for some x E sn- 1 . 

For any parallelized asymptotic homology :!Rn, propagating chains and forms 
as above exist. 

Example 2.9. When M 0 = :!Rn, the map G: (x, y) E Cg(IRn) f--t ll~=~II E sn-i ex
tends to C2 (:!Rn), and its restriction to 8C2 (:!Rn) coincides with the Gauss map asso
ciated with the canonical parellelization ([5, Lemma 2.2]). This provides canonical 
examples of propagators: the form G*(w) for the SO(n)-invariant (n - 1)-form w 
on sn-l with total volume 1, and the chains ½G-1( {-x, +x}) for x E sn-l_ 
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Propagators allow a more flexible definition of the linking number as follows. 
([8, Lemma 2.22]) 

Proposition 2.10. Let (M 0 , T) be a parallelized asymptotic homology ]Rn. Let /3 
(resp. B) be a propagating form (resp. chain) of (M 0 ,T). Let X and Y be two 
disjoint cycles with dim(X) + dim(Y) = n - 1. 

lk(X, Y) = r /31xxY = (X X Y, B)c2(MO)· 
lxxY 

2 .4 Last notes 

The goal of the above section was to illustrate the following idea: starting with 
an embedding (here, two disjoint knots) and a diagram (here, an edge between 
two points), we can define a configuration space (here, the product of the two 
knots). Using propagating forms, we can define a form on the configuration space 
(here, simply by restriction) and thus a configuration space integral. Equivalently, 
from propagating chains, we can define an algebraic diagram count (here, the 
intersection of the propagating chain with the product of knots). In the above 
example, these two methods yield an invariant, which is the linking number. In 
general, things are more complicated, and we have to combine more diagrams to 
get some invariants. The interested reader can refer to [6] for a detailed study of 
the general 3-dimensional invariant obtained from all these diagram counts, which 
is valued in some Hopf algebra of diagrams. In the remaining of this survey, we 
will focus on similar (but numerical) invariants for high-dimensional knots. 

3 High-dimensional invariants from diagram counts 

3.1 BCR diagrams 

In this section, a diagram is an oriented graph r without looped edge1 such that the 
set V(r) of vertices (resp. E(r) of edges) is decomposed as V(r) = ¼(f) LJ ¼(f) 
(resp. E(r) = Ei(r) LJ Ee(f)). The elements of ¼(f) are called internal vertices, 
and those of ¼(f) are called external vertices. Similarly, elements of Ei(r) are 
called internal edges, and elements of Ee (r) are called external edges. On the 
figures, internal vertices are full red dots, external vertices are empty blue dots 
(i.e. blue circles), internal edges are solid red arrows, and external edges and 
dashed blue arrows. 

Definition 3.1. A BCR diagram is a diagram as above such that 

1 A looped edge is an edge from one vertex to itself. 
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• r is connected, 

• any trivalent vertex is adjacent to one univalent vertex, 

• any vertex is as in Figure 2. 

' 1 , ',,r 3 

~ 
5 

' ' 
, , , 

Vv •v r I I I 
I I I 
I I I 

t t t 

Figure 2: The five possible behaviors near a vertex of a BCR diagram 

The definition of BCR diagrams implies that Card(E(r)) = Card(V(r)), and 
thus that their first Betti number is one. The degree of a BCR diagram is half its 
number of vertices, and is indeed an integer. 

• I 

.. I 

:r }~ 
• 

Figure 3: A BCR diagram of degree 6 

3.2 Configuration spaces 

Let M 0 be a fixed asymptotic homology JRn+2 . A long knot of M 0 is an embedding 
'lj;: IRn '------+ M 0 such that, for any x E IRn, if llxll 2: 1, then 'lj;(x) = (0,0,x) E B'/x, C 

M 0 • Fix a long knot 'lj;. For any diagram r, define the configuration space 

Cr(7P) = {c: V(r) '------+ M 0 I There exists a map ci: ½(I')'------+ 1Rn,c1v;(r) = 'lj; o ci}. 

The above configuration space does not depend on the edges of r, but only on 
the set V(r) and its partition into internal and external vertices. Edges correspond 
to maps from this configuration space to two-point configuration spaces as follows. 
Let e be an edge of r from v tow. If e is internal, set 

Pe: Cr(7P) --+ C2(1Rn) 
c f--+ (ci(v), ci(w)) 
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and, if e is external, set 

Pe: Gr( 1/J) ---+ C2(M0
) 

c c-+ ( c( v), c( w)). 

3.3 Configuration space integrals 

Assume n is odd. Fix 

• an integer k 2': 2, 

• a parallelization T of M 0 as in Definition 2.6, 

• a family F = ( ai, /3i)i <i<2k such that for any i, ai is a propagating form of Rn 
with its canonical parallelization, and /3i is a propagating form of ( M 0 , T), 

• a degree k BCR diagram r, 

• a bijection a between E(r) and {1, ... , 2k}, (Such a a is called a numbering 
of r.). 

Define for any edge the form 

if e is internal, 

if e is external, 

and set wp(f, a)= I\ wp(f, a, e). The latter is a form on Cr(1/J). 
eEE(r) 

The definition of BCR diagrams implies that deg(wF(r, a)) dim(Cr(1/J)). 
The integral fcr(,t,) wF(r, a) converges.2 Set 

3.4 BCR invariants 

Let gk denote the set of degree k BCR diagrams r together with a numbering 
a, up to isomorphisms that preserve the nature of edges and vertices and the 
numberings. Set 

F 1 ~ zk (1/J) = (2k)! ~ _ (r, a)F,,f;· 
(r,a)Eih 

2Details on orientation of Cr('I/J) can be found in [10, Section 2.4]. 
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Theorem 3.2. The real number Z{ ( 'ljJ) depend neither on the choice of the family 
of propagators F, nor of the choice of the parallelization T. It is invariant under 
ambient diffeomorphism : if <I> is a diffeomorphism of M 0 that fixes B':x, pointwise, 
then Z{(<I> o 'I/J) = Z{('I/J). 

We call Zk(W) = Z{('I/J) the degree k generalized BCR invariant of 'I/J. 

The above result is [10, Theorem 2.10] for n 2: 3, and follows from [7, Corollary 
2.15] for n = 1. The above definition of (generalized) BCR invariant directly 
generalizes the original definitions of Bott [1] fork= 2, and of Cattaneo and Rossi 
[2], which are the case where M 0 is ffi.n+2 with its canonical parallelization and 
where propagators are given by the forms of Example 2.9. 

3.5 BCR invariants from diagram counts 

Fix the same setting as in the previous sections, but replace F with a family 
F = (Ai, Bi)i'.Sci'.Sc2k, where for any i, Ai is a propagating chain of ffi.n with its 
canonical parallelization and Bi is a propagating chain of (M 0 , T). 

Now, for any edge e, set 

D (r ) = {Pe - 1(Aa(e)) if e is internal, 
F , a,e 1 . . 

Pe - (Ba(e)) if e 1s external, 

which defines a chain of Cr('I/J). 
For a generic3 choice of F, the chains (DF(r, a, e))eEE(r) are transverse. The 

diagram count of (r, a) for Fis their algebraic intersection number lp(r, a). 
The following theorem is derived from the previous one by duality, as explained 

in [10, Section 4]. 

Theorem 3.3. For a generic choice of propagating chains F, the diagram counts 
lp(r, a) are well-defined for any degree k numbered BCR diagram (r, a), and the 
generalized BCR invariant of Theorem 3.2 is 

3.6 Computation of BCR invariants 

One of the strength of the previous construction is that we can compute BCR 
invariants using any set of propagators. In [8, Section 6], we describe a specific 
construction of propagating chains associated with some long knots. 

3 See [10, Section 4] for details. 
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Definition 3.4. A long knot 'ljJ of M 0 is rectifiable if we can choose a parallelization 
T of M 0 such that for any x, u E Rn, T,t,(x)(0, 0, u) = Tx'I/J(u). 

[8, Theorem 2.33] gives the following formula for BCR invariants of rectifiable 
knots, in terms of Alexander polynomials 4 . 

Theorem 3.5. Let 'ljJ be a rectifiable long knot, then 

oo n 

L Zk('lfJ)hk = L(-l)dLn(~d,,;,,(eh)), 
k=2 d=l 

where !).d,,t, denotes the d-th Alexander polynomial of 1-dimensional knots. 

The above formula extends a result of Watanabe [13] for the particular class 
of ribbon long knots, and lifts some indeterminacies that remained in the relation 
between Alexander polynomials and BCR invariants. In [8, Section 5], we prove 
that all long knots are rectifiable up to connected sum with a finite number of 
copies of themselves when n = 1 mod 4. This implies that the above formula 
extends to all long knots when n = 1 mod 4. For n = 1, the result extends as 
follows, where asymptotic rational homology IR3 are punctured rational homology 
3-spheres. 

Corollary 3.6. When n = 1, for any null-homologous long knot 'ljJ of a asymptotic 
rational homology IR3 , 

00 

L Zk('lfJ)hk = -Ln(!).(eh)), 
k=2 

where /).,;,, denotes the Alexander polynomial of 1-dimensional knots. 

4 Insights 

Many open questions naturally arise from the above construction. The case of 
even-dimensional knots will be soon covered by [9]: the invariants are well-defined, 
when we restrict to parallelizable asymptotic homology JRn+2 , and only use par
allelizations such that T,t,(x)(0, 0, u) = Tx'I/J(u) for any x, u E ]Rn_ The formula 
in terms of Alexander polynomials of Theorem 3.5 still holds, up to some signs. 
In this last section, we give some ideas on a possible extension of the previous 
construction to more general diagrams, which are still a work in progress. 

Let r be a diagram with vertices as in Figure 2. We do not assume anymore 
that r is connected, nor that trivalent vertices always have one univalent neighbor. 

4These Alexander polynomials are defined using Alexander invariants from Levine [11]. For 
n = 1, ~1,,;,, is the usual Alexander polynomial of 1-dimensional knots. 
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Let c, be a bijection E(r) ➔ {1, ... , Card(E(r))}. Let F = (ai, JJi)i:::;i:::;Card(E(r)) 

be a family of propagating forms as in Section 3.3. If the first Betti number of r 
is greater than one, then the differential form wp(r, c,) have degree greater than 
the dimension of Cr('l/J). More precisely, 

Thus, the configuration space integral is a cochain I(r, c,) of degree (n -
l)(b1 (r) - 1) on the space /C of long embeddings !Rn c.....+ M 0 • Let Qk,b denote the 
set of numbered diagrams (r, c,) with deg(r) = k and b1 (r) = b, up to numbered 
diagram isomorphisms. Define the cochain 

zk,b = L I(r, c,)[r], 
(r,rr)E9k,b 

which takes its values inside the vector space Dk,b spanned by degree k diagrams 
with first Betti number b. Given a quotient 1r: Dk,b ➔ Ak,b of Dk,b, we can form 
the cochain 7f O zk,b· 

Note that Zk,l is a 0-cochain, and there exists a quotient 1fk,l: Dk,l ➔ Ak,l 

such that Ak,l is 1-dimensional, and such that 1fk,l o Zk,l identifies with Zk. Since 
the last expression is a knot invariant, the 0-cochain 1r o Zk,l is a 0-cocycle. Thus, 
it is natural to ask the following questions. 

Questions 4.1. For any (k, b ), does there exist a non-trivial quotient 1fk,b: Dk,b ➔ 

Ak,b such that 1rk,b o Zk,b is an (n - l)(b - 1)-cocycle on the space /C ? (Such a 
quotient could be defined from linear relations between similar diagrams.) 

Does these cocycles yield any non-trivial class in H(n-l)(b-l) (/C) ? 
Does the obtained class in cohomology depend on the choice of propagating 

forms? 
Can we describe the obtained cocycles in terms of simpler objects on the space 

of knots? 

Following a study of Sakai and Watanabe [12], we can also extend the study 
of such invariants to long embeddings !Rj c.....+ !Rn without the "codimension 2" 
hypothesis. In their article, they proved the existence of relations on diagrams 
with b1 (r) = 1 that yield a quotient 1r: 'Dk,1 ➔ Ak,l such that zk = 1r o Zk,l is 
indeed a (n - j - 2)k-coycle of the space of long embeddings )RJ c.....+ !Rn, when one 
of the three following properties holds: 

• n is odd, 

• n is even, j is odd, and k :::; 4 

• n is even, n 2". 12, j = 3. 
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Moreover, they proved that some of the obtained cocycles were non-trivial. Fol
lowing a question of Watanabe after the ILDT talk that preceded this proceeding, 
we can look for interesting formulas for this cocycle Zk that could be derived from 
a method similar to the one that allowed us to compute the BCR invariants in 
Theorem 3.5. 
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