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Problems on Low-dimensional Topology, 2021 

Edited by T. Ohtsuki1 

This is a list of open problems on low-dimensional topology with expositions of 
their history, background, significance, or importance. This list was made by editing 
manuscripts written by contributors of open problems to the online conference "In
telligence of Low-dimensional Topology" whose live streaming is distributed from 
Research Institute for Mathematical Sciences, Kyoto University in May 19-21, 2021. 
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1 Invariants of high-dimensional long knots from counting 
diagrams 

(David Leturcq) 

Let n be a positive integer. When n ?: 3 is odd, Bott [1], and then Cattaneo 
and Rossi [2] defined an invariant (Zk)kEN\{O,l} for long knots, which are embeddings 
]Rn '-+ ]Rn+2 with a constrained behaviour outside the unit ball. 

Let us briefly explain their original definition: look at connected oriented graphs 
r = (V(r), E(r)) with two kinds of vertices and two kinds of edges, such that any 
vertex is as in Figure 1. 
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Figure 1: The five possible behaviors near a vertex of a BCR diagram 

Filled circles are called internal vertices, white circles are called external vertices, 
plain edges are called internal edges, and dashed edges are called external edges. We 
denote their respective sets as v;(r), ¼(r), Ei(r) and Ee(r). Such graphs have an 
even number of vertices. The degree of r is the integer deg(r) = ½Card(V(r)). Let 
us denote n( e) the integer n - l if e is an internal edge, and n + l if e is an external 
edge. 

Given a diagram rand a long embedding 7/J, we can set 

Cr('I/J) = { c: V(r) '-+ JRn+2 I CIV(r) = 7/J o ci for some map ci: v;(r) '-+ lRn}. 

Elements of this space are called configurations and are the data of pairwise distinct 
points of JRn+2 for any vertex of r, such that the points associated to internal vertices 
lie in 7/J(lRn). On such a space, for any edge e, we define 

Pe: Cr('I/J) -----+ §n(e) 

C f------t { 

c(w)-c(v) 'f . 1 d f 
llc(w)-c(v)II 1 e IS an externa e ge rom v to w, 

ci(w)-ci(v) 'f • • 1 d f 
llci(w)-ci(v)II 1 e 1s an mterna e ge rom v to w. 

The Bott-Cattaneo-Rossi invariant Zk ( 7/J) is defined as 

Zk('l/J) = L Card(tut(r)) 1 I\ p/(wn(e)), 
rEQk Cr('l/J) eEE(r) 

where Wn(e) is the SO(n(e) + I)-invariant form on §n(e) with total volume one, where 
Yk is the set of connected diagrams with degree k such that any trivalent vertex is 
adjacent to one univalent vertex, and where Aut(r) denotes the automorphism group 
of the oriented graph r that map an internal/external edge/vertex to an edge/vertex 
of same nature. 
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The result of Bott, Cattaneo, and Rossi is that such a formula is well-defined (the 
integrals are convergent), and that Zk is an isotopy invariant. In [12], Watanabe 
proved that these invariants are related to Alexander polynomials for long ribbon 
knots, using the finite type theory defined by Habiro, Kanenobu and Shima in 
[3]. Because it is obtained from finite type invariant theory methods, this formula 
contains some indeterminacies. 

In [5, 6], we defined some more flexible generalization of these invariants, and we 
use this flexible setting to compute the invariants Zk in terms of linking numbers of 
some surface whose boundary is the knot. Furthermore, this extends the definition 
to other manifolds, and also to even dimensions and dimension one. 

When n cj. 3 mod 4 (and for some class of knots when n = 3 mod 4), this 
formula yields 

n 

(1) 

for any long knot 7/J: Rn'----+ JRn+2 , where fld,,;,(t) is the d-th Alexander polynomial 
as defined by Levine in [7]. 

Question 1.1 (D. Leturcq). Does the above formula extend to all long knots 7/J: Rn '----+ 
]Rn+2 when n = 3 mod 4 ? 

We can also try to look to more general diagrams than those of Yk- For simplicity, 
let us now assume n is odd. For a diagram r with its vertices as in Figure 1, a 
vertex-orientation is the data of a cyclic order on the three half-edges adjacent to 
each trivalent vertex. We represent such an orientation by the counter-clockwise 
order in the plane. We define the Q-vector space A spanned by the equivalence 
classes of vertex-oriented diagrams without loops with vertices as in Figure 1, up to 
the relations of Figure 2, and the relations [r'] = (-1 )a+b[r], where [r] only differ 
by the vertex-orientation of a vertices, the orientation of b internal edges, and the 
orientation of any external edges. The diagrams in Figure 1 are vertex-oriented, and 
the orientation of the internal edges common to all diagrams of a given relation are 
not depicted. 

For integers ( k, b) we let Yk,b be the set of connected diagrams with degree k and 
first Betti number b (which is equivalent to Card(E(r)) = 2k + b - 1). This set is 
non-empty if and only if OS b S k. 

The space A naturally splits in A = ffi Ak,b, where Ak,b is the subspace spanned 
O<::b<::k 

by the diagrams of Yk,b· 

Question 1.2 (D. Leturcq). Can we compute the dimension of Ak,b ? At least, can 
we determine exactly when this subspace is non zero ? 

Let JC denote the space of long knots 7/J: Rn '----+ JRn+2 . Instead of looking to 
Cr ( 7/J) for some specific 7/J, we can define a fiber space Cr --+ JC whose fib er above 7/J 
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is Cr ( 'ljJ). The maps Pe above extends to this infinite-dimensional space, and we set 

where [r] denotes the class of r in A. This formula still converges, and it defines an 
element of o(b-l)(n-l)(JC· A ). , k,b 

Note that when b = 0, the space Ak,b is isomorphic to Q, and the cochain Ok,l 

identifies with zk. The invariance of zk corresponds to the fact that ok,1 is a 
cocycle. Following a question of T. Watanabe during our stay in Matsue in 2019, 
we conjecture the following. 

Conjecture 1.3 (D. Leturcq). When n 2:: 1 is odd, Ok,b is a cocycle on JC. 

The proof of this conjecture would rely on usual arguments on annulation of faces of 
configuration spaces, and the principal faces are ruled out by the relations defining A. 
For lower values of (k, b), all the other faces vanish. However, for bigger diagrams, 
we may need to add some relations in the definition of A, or to use appropriate 
propagators rather than pull-backs of volume forms on the spheres. 

In order to determine when this cocycle is non-trivial, it would be necessary to 
know when Ak,b is non zero in general. The space A resembles a lot the space AJ of 
"Jacobi diagrams" used for the Kontsevich integral or the perturbative expansion of 
Chern-Simons theory. Applying a linear form w to these diagram-valued invariants 
yields a numerical invariant and we can recover by this method all the Vassiliev 
invariants. 

Moreover, one can associate a representation p of a semi-simple Lie algebra with 
a linear form wP: A--+ Q to obtain explicit examples. This recovers already known 
invariants, as the Jones polynomial. It is natural to ask if the high-dimensional 
analogue Ok,b satisfies similar properties. 

Question 1.4 (D. Leturcq). Do we know what cocycles are obtained after applying 
linear forms on A to ok,b ? 

Is there any natural algebraic structure that can yield some (non-trivial) lin
ear maps w: A --+ Q ? If yes, can we identify the obtained cocycle w o Ok,b E 
H(b-l)(n-l)(JC; Q) ? 

Question 1.5 (D. Leturcq). Can we compute the cocycles Ok,b using appropriate 
propagators, in order to get a formula similar to Formula (1) ? 

When b = l, Sakai and Watanabe [10] studied such diagrams in order to define 
cocycles on the space of long embeddings JRj '-----+ ]Rn, when n - j :;:, 2. The relations 
between diagrams depend on the parity of the dimensions j and n. 

Problem 1.6 (D. Leturcq). Define an analogue of A when n is even, and j -=/- n- 2. 
Extend Conjecture 1. 3, Questions 1.4 and 1. 5 to long embeddings ]Rj '-----+ ]Rn. 
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2 The representations of stated skein algebras on surfaces 

(Julien Korinman) 2 

For a marked surface :E = (:E, A) and a complex number A 1/ 2 E (C*, the (Kauffman
bracket) stated skein algebra SA(:E) was introduced by Bonahon-Wong and Le and is 
a generalisation of Przytycki-Turaev's skein algebra. A reduced version SAed(:E) was 
also introduced by Costantino-Le. Skein algebras appear in Topological Quantum 
Field Theories through their finite dimensional representations. Such a representa
tion exists if and only if the parameter A is a root of unity. We state here a list of 
open questions/problems towards the resolution of the following: 

Problem 2.1 (J. Korinman). Classify all finite dimensional weight representations 
of stated skein algebras and their reduced versions when A is a root of unity of odd 
order. 

Here a weight representation means a representation which is semi-simple as a mod
ule over the center of SA(:E). The two conditions of been "weight" and that the 
order of A is odd are taken here for simplicity. For now on, we fix a root of unity 
A112 such that its square A has odd order N. 

Let Z denote the center of SA(:E) and write X(:E) := Specm (Z). The Chebyshev
Frobenius morphism ChA : S+1 (:E) ----+ Z is finite and induces a finite branched 
covering 1r : X(:E) ----+ Specm(S+1 (:E)) ~ XsL2 (:E) over the relative SL2 charac
ter variety. An indecomposable weight representation p : SA(:E) ----+ End(V) sends 
central elements to scalar operators, so induces maximal ideals lllp E X(:E) and 
mp = 1r(mp) E XsL2 (:E). mp is called the classical shadow of p which factorizes 
through the finite dimensional algebras: 

Drozd classified finite dimensional (C algebras into three families: the algebras 
with finite, tame and wild representation type. For an algebra A with wild repre
sentation type, the problem of classifying all indecomposable A-module is undecid
able (the word problem for finite presentation groups can be embedded into that 
problem), so Problem 2.1 might be undecidable as well (it is the case for the bigon) 
and we need to be less ambitious: let us try to classify all finite dimensional inde
composable representation p whose classical shadow is such that SA(:E)mp has not 
wild type representation. 

Let D denote the PI-dimension of SA(:E). The Azumaya locus of SA(:E) is 

A.C = { x E X(:E) I SA(:E)x ~ Matn(C) }. 

The fully Azumaya locus is the image FA.C := 1r(A.C) c XsL2 (:E). An important 
result is the 

2Department of Mathematics, Faculty of Science and Engineering, Waseda University,3-4-1 Ohkubo, Shinjuku
ku, Tokyo, 169-8555, Japan 

Email: julien. korinman©gmail. corn 
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Unicity representation theorem: The Azumaya locus is dense in X(~). Therefore 
the fully Azumaya locus is dense as well. All the previous discussion extends word
by-word to reduced stated skein algebras. 

Problem 2.2 (J. Korinman). Compute the fully Azumaya loci of SA(~) andSAed(~). 

This problem has been solved by Brown-Goodearl for the bigon and by Ganev
Jordan-Safranov for the marked surface ~~.o made of a genus g surface with one 
boundary component and exactly one boundary arc. It remains open for other 
marked surfaces. When m belongs to the fully Azumaya locus, a theorem of Brown
Gordon permits to determine SA(~)m explicitly, thus the classification of indecom
posable weight representations over the fully Azumaya locus is easy, once we are 
able to compute it. A second powerful tool is Brown-Gordon's Poisson orders the
ory: it implies that if m and m' belong to the same symplectic leaf of XsL2 (~), then 
SA(~)m ~ SA(~)m'· We can do better: the group (C*)A acts on XsL2 (~), thus 
on the symplectic leaves. Call equivariant symplectic leaves the (C*)A-orbits of the 
symplectic leaves. If m and m' belong to the same equivariant symplectic leaf, then 
SA(~)m ~ SA(~)m'· 

Problem 2.3 (J. Korinman). 

(1) Classify the equivariant symplectic leaves of XsL2 (~). 

(2) For each leaf F, choose a representative m E F and determine the representa
tion type of SA(~)m, If it is not wild, classify all its finite dimensional inde
composable representations. 

This problem was solved for the bigon by Brown-Gordon and for the algebra SAed(ID1 ) 

by the author and remains open for every other marked surfaces. The computation of 
the symplectic leaves of XsL2 (~~,0 ) was done by Ganev-Jordan-Safranov who found 
that one leaf is open dense. The computation of the symplectic leaves of XsL2 (~9 , 0) 
for a closed genus g 2: 2 surface is simple: the smooth locus made of the classes 
of irreducible representations r : n1 (~9 , v) --+ S12 is symplectic, the locus made of 
the classes of diagonal representations which are not scalars is symplectic and each 
singleton {r0 }, for r0 : n1 (~9 , v) --+ ±].2 scalar, is a symplectic leaf. Note that when 
a symplectic leaf is dense, then it is included in the fully Azumaya locus, therefore 
(Ganev-Jordan-Safranov) the smooth locus of XsL2 (~9 , 0) and the open dense leaf 
of XsL2 (~~,o) both are included in the fully Azumaya loci ( which is equal to the 
Azumaya loci in these cases). An important remaining question is the 

Question 2.4 (J. Korinman). For a closed genus g 2: 2 surface, is the locus of 
diagonal ( non scalar) representations included in the Azumaya locus ? 

Note that if the class of one such diagonal representation is in the Azumaya locus, 
then all of them are. In addition to these very general theorems, there exist three 
concrete families of representations for stated skein algebras which are: 

(1) The Witten-Reshetikhin-Turaev representations pWRT coming from modular 
TQFTs at odd roots of unity. They are representations of skein algebras of 
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unmarked surfaces and are irreducible. For closed surfaces, they have classical 
shadow the class of a central representation and their dimension is strictly 
smaller than the PI-dimension N 39- 3 . We can deduce from their existence that 
the scalar representations do not belong to the Azumaya locus of SA(~9 , 0). 

(2) The Blanchet-Costantino-Geer-Patureau-Mirand representations pECGP com
ing from non semi-simple TQFTs at odd roots of unity. They are representa
tions of skein algebras of unmarked surfaces and have their dimension equal 
to the PI-dimension of the skein algebra. For closed surfaces, their classical 
shadows are the class of diagonal and scalar representations. 

(3) The Banahan- Wong or quantum Teichmiiller representations pEw defined us
ing the quantum trace. They are representations of the reduced stated skein 
algebras of arbitrary marked surfaces and their dimension coincide with the 
PI-dimension of the corresponding reduced stated skein algebra, except maybe 
for closed surfaces and for scalar classical shadows in which case it is only 
known that their dimension is :S N 39- 3 . For non-closed surfaces, the set of 
their classical shadows is dense in XsL2 (~) and it is equal to XsL2 (~) for closed 
surfaces. 

The quantum Teichmiiller representations are defined using quantum traces start
ing from irreducible representations of quantum tori and there might be several such 
representations inducing the same character over the center of SA(~) without been 
isomorphic. 

Question 2.5 (J. Korinman). 

(1) Are the representations pECGP with non scalar classical shadow irreducible ? 

Indecomposable ? Projective ? 

(2) Are the representation pEw with non scalar classical shadow irreducible ? In
decomposable ? Projective ? Are they isomorphic to the representations pECGP 

which has the same shadow ? 

(3) Given pEW, p'Ew two quantum Teichmiiller representations which induce the 
same character over the center of SA(~), are they isomorphic ? 

(4) For pWRT,PEw,PECGP representations of the skein algebra of a genus g 2: 2 
closed surface all having the same classical shadow which is a scalar representa
tion, are these three representations related ? Are pBw and pBCGP isomorphic 
? Is pWRT a sub-representation of one of them ? What is the dimension of 
PEW? 

The third item of Question 2.5 was proved to be true when ~ = ]D)n is a genus 0 
surface with n + 1 boundary components and two boundary arcs in one component. 
The author deduced from this fact families of projective representation of the braid 
groups related to the ADO and Kashaev invariants. If, as expected, it is true in 
general, then one would obtain families of finite dimensional projective representa
tions of the mapping class groups and the Torelli groups. Concerning the first and 



161

second item, note that if one finds a representation pEW or pECGP with diagonal 
classical shadow which is irreducible, then we would have proved that all diagonal 
representations are in the Azumaya locus (so we would have solved Question 2.4) 
and that two representations pEW and pECGP with the same diagonal shadow are 
isomorphic. 

3 On the additivity of geometric invariants under 1-connected 
sum of handlebody-knots 

(Torno Murao)3 

A handlebody-knot is a handle body embedded in the 3-sphere S 3 • A handlebody
knot is trivial if its exterior is a handlebody. Let B 1 and B2 be 3-balls in S 3 such that 
B1 U B2 = S 3 and B 1 n B2 = 8B1 = 8B2 . Let Hi be a genus gi handlebody-knot in 
Bi for i = 1, 2. If H1 n H2 is a disk, then H1 U H2 is a genus g1 + g2 handle body-knot 
in S 3 . We call it the 1-connected sum of H1 and H2 and denote it by H1# 1H2 (see 
Figure 3). The handlebody-knot H1 # 1H2 depends only on the handle body-knots 
H1 and H2 . A diagram of a handlebody-knot is a diagram of a spatial trivalent 
graph whose regular neighborhood is the handlebody-knot, where a spatial trivalent 
graph is a finite trivalent graph embedded in S3• In this definition, a trivalent graph 
may be a circle. 

Figure 3: 1-connected sum of handlebody-knots 

We introduce some geometric invariants ofhandlebody-knots. Let H be a handlebody
knot. The crossing number c(H) of H is the minimal number of crossings in all 
diagrams of H. The unknotting number u(H) of H is the minimal number of 
crossing changes which convert H into the trivial handlebody-knot [4]. The tun-
nel number t(H) of H is the minimal number of mutually disjoint arcs a 1 , ... , an 
properly embedded in E(H) such that E(H U a 1 U • • • U an) is homeomorphic to 
a handlebody, where E(·) denotes its exterior. The cutting number cut(H) of H 
is the minimal number of mutually disjoint meridian disks ~ 1 , ... , ~n of H such 
that E(H - LJI=i N(~i)) is homeomorphic to a handlebody, where N(•) denotes its 
regular neighborhood [8]. 

Remark. It is known that the additivity of tunnel number under 1-connected sum of 

3Waseda University 
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handlebody-knots holds. That is, for any handlebody-knots H1 and H2, it follows 
t(H1 #1H2) = t(H1) + t(Hz). 
Remark. It is known that the additivity of unknotting number under I-connected 
sum of handlebody-knots does not hold. In particular, for any positive integer n, 
there exist handlebody-knots H1 and H2 such that u(H1 # 1H2) = u(H1 ) +u(H2 )-n. 

Question 3.1 (T. Murao ). Does the equality c(H1 # 1H2 ) = c(H1) + c(H2 ) hold for 
any handlebody-knots H 1 and H2 ? 

Question 3.2 (T. Murao). Does the equality cut(H1# 1H2) = cut(H1) + cut(H2) 
hold for any handlebody-knots H 1 and H 2 ? 

4 Quantum character variety of knots 

(Jun Murakmai) 

Question 4.1 (J. Murakmai). Does the quantum character variety always split into 
abelian factor(s) and non-abelian factor(s) ? 

The quantum character varieties of the trefoil knot, the figure eight knot and White
head link are all split into two factors. One corresponds to the abelian factor and 
another one corresponds to the non-abelian factor of the character variety of the 
classical case. 

Question 4.2 (J. Murakmai). Is there some knot who has more than two factors 
of the quantum character variety? 

In classical case, knots with such property are given by Ohtsuki-Riley-Sakuma [9]. 
In classical case, such example is obtained by finding a epimorphism between 2-
bridge link groups. Here the fundamental group is extended to the bottom tangle 
of free arcs, and it is a problem that the epimorphism between link groups can be 
extended to this free arcs case, or not. 

Question 4.3 (J. Murakmai). Can we construct the quantum A-polynomial of a 
knot from the quantum character variety? 

Explain the longitude and its parallels in terms of the generators of the skein algebra 
of the punctured disk, and eliminate the traces corresponding to the products of 
meridians, then we may get the relation between longitude and meridian. After 
obtaining such relation, substitute M + M-1 and L + L-1 for the meridian and 
longitude, where M and L are the generators of the quantum torus, then it must be 
a multiple of quantum A-polynomial and the recurrence polynomial of the colored 
Jones polynomial. But the polynomial obtained from the quantum character variety 
may has some extra factors. 

Question 4.4 (J. Murakmai). What is the geometry of the quantum character va
riety? 
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For some knots, geometric description of the character variety is explained, for 
example, in [11]. In the case of the figure eight knot, the character variety is given by 
a commutative algebra, but the boundary of the knot complement has a structure 
of torus, and this structure is generalized to quantum torus in skein theory. So 
the quantum character variety may have some good structure concerning with this 
quantum torus. 
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