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Abstract: We prove that the growth of a twisted polynomial algebra is either uniformly 

exponential or polynomially bounded. 

1 Introduction 

1.1 Growth in groups 

Let T = { x1 , x11 , ... , Xr, x;:-1 } be a generating set of group G. For g E G, write g = y1 ... Yk, 

where each Yi E T. The length of g (with respect to T) is the minimal k for which such an 

expression of g is possible. The length function >.a,r : G ➔ Z20 maps each g E G to its 

length. The growth function of G (with respect to T) is ,a,r(n) = {g E G I >.a,r(g) :S: n}. 

If T is understood, we write >.a and ,a. The asymptotic nature (polynomially bounded, 

exponential, neither) of ,a is independent of the chosen generating set T, and so we speak 

of groups of polynomially bounded, exponential, and intermediate growth respectively. 

Growth in groups was introduced independently by Schwarz in 1955 and Milnor in 1968 

[8, 9]. In 1968, Wolf proved that a virtually nilpotent group has polynomial growth, and 

that a virtually polycyclic group which is not virtually nilpotent has exponential growth [11]. 

In 1981, Gromov proved that a finitely generated group of polynomial growth is virtually 

nilpotent [6], thereby characterizing polynomially bounded groups as precisely the finitely 

generated virtually nilpotent groups. 

In 1968, Milnor asked whether there exist groups of intermediate growth. The question 

was answered affirmatively by Grigorchuk in 1983 [5]. In 1981, Gromov defined a group 

G to have uniform exponential growth if infr (limn ,a,r(n)1ln) > 1, where the infimum is 

over all finite generating sets T of G. In the same year, Gromov asked: does a group 

of exponential growth necessarily have uniform exponential growth [7]? The question was 
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answered negatively by Wilson in 2004 [10]. However, the question has a positive answer for 

several classes of groups. In 2002, Alperin proved that a virtually polycyclic group has either 

polynomial or uniform exponential growth [1]. In 2005, Eskin, Moses, and Oh proved a linear 

group over a field of characteristic zero has polynomial or uniform exponential growth [4]. 

In 2008, Breuillard and Gelander proved that a linear group over any field has polynomial 

or uniform exponential growth [2]. 

1.2 Growth in algebras 

Write A= K[T] to denote that A is generated (as an algebra) by the set T over the field K. 

The growth function of A with respect to T is r'A,r(n) = dimK CE~=O KTi). Growth type 

is independent of the generating set, so, as with groups, we define polynomial, exponential, 

and intermediate growth for algebras. Also as with groups, a commutative algebra has 

polynomial growth, and the free algebra on at least two letters has exponential growth. 

We say an algebra A has uniform exponential growth if 

where the infimum is over all finite generating sets T of A. Examples of algebras of uniform 

exponential growth include Golod-Shafarevich algebras, group algebras of Golod-Shafarevich 

groups, and any algebra graded by N with exponential growth [3]. An example of an algebra 

of nonuniform exponential growth is the group algebra (over any field) of Wilson's group of 

nonuniform exponential growth. 

Results on algebras of uniform exponential growth apply to groups as follows: if G is a 

group and KG is its group algebra over field K, then G has uniform exponential growth if 

KG does. It is not known to the author whether the converse is true; that question motivates 

the present study. 

2 Preliminary results 

For the remainder, we will use the following notation: X is a finite, nonempty alphabet; S 

is the free abelian semigroup generated by X; CJ is an endomorphism of S; K is a field; and 

R = K"[X,t] is the twisted polynomial algebra generated by {X,CJ} over K. Specifically, 

R = spanK{ wtnlw E S, t 2 0}, with multiplication tx = x"t for each x E X. Another view 
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is that R is the K-span of the (nonabelian) semigroup (S, t) generated by SU {t}, where 

tx = xut for each x EX. 

The main result is that such an algebra must have either polynomially bounded or uniform 

exponential growth: intermediate and nonuniform exponential growth are excluded. The 

idea behind the proof of this theorem is to find an element x E X which experiences rapid 

growth ( in degree) under applications of O". If this is the case, then { x, t} freely generate 

a free subsemigroup of (S, t), and so any set of the form { teo xt<i x ... xten I Ei E {O, 1}} is 

linearly independent over K. These words have length at most 2n + 1 in the generating set 

XU {t}, and there are at least 2n+l of them, which demonstrates exponential growth. 

There are complications in the details. To prove uniform exponential growth, we cannot 

begin with a generating set of our choosing. Rather, we must begin with an arbitrary finite 

generating set of the algebra. The element x we seek may not appear as an element of our 

generating set, but instead as a summand of an element. The presence of other summands 

makes it difficult to determine the dimension of the span of a set of products of generating set 

elements. The solution is to separate the elements of X which undergo exponential growth 

(in degree) under applications of u from those elements of X which do not. 

For w E S we denote by deg( w) the degree of w expressed as a word in X, and for y E X 

we take degy(w) to be the exponent of yin the same expression. We say that x EX is active 

if there is some k > 0 such that degx ( X tJh ) > 1. We focus on active elements of X when 

searching for free generators of a free subsemigroup of (S, t). 

Proposition 2.1. Let x E X. If x is active, or if there is some active y E X and some 

k > 0 such that degy ( X tJh ) > 0, then the sequence { deg (xun) }nEI\I is exponential. Otherwise, 

the sequence is polynomially bounded. 

The following lemma implies that, if x EX is active, then any word of which x is a factor 

experiences exponential growth under applications of u. 

Lemma 2.2. Let { an} and {bn} be two nonnegative sequences. Suppose { an} is exponential, 

and {bn} is either exponential or polynomially bounded. Then there is some k such that, for 

each n, Cn ;=:: 2cn-1 where Cn = akn + bkn· 

One more lemma assists the proof of the main result. It is used in the case of polynomially 

bounded growth. Here, I · 11 denotes the L1 norm. 

Lemma 2.3. If the square matrix Arxr with entries from <C has all eigenvalues of magnitude 

at most 1, then for each v E <Cr, the sequence {IAnvl1}nEI\I is polynomially bounded. 
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3 Main Result 

Theorem 3.1. Let K be a field and X be a finite, nonempty alphabet. Let S be the free 

abelian semigroup generated by X, and a be an endomorphism of S. If every eigenvalue of 

a has magnitude O or l, then the twisted polynomial algebra R = Ku[X, t] has polynomially 

bounded growth. Otherwise, R has uniformly exponential growth. 
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