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Abstract 

For an n-dimensional faithful imprimitive irreducible representation G -+ 
GL(V) over the complex number filed C, the ring of invariants C[V]G of G 
on polynomial function on V is a polynomial ring over C if and only if G is 
conjugate to G(m,p,n) called a finite imprimitive unitary reflection groups. 
We try to generalize such finite groups to affine algebraic groups with the 
aid of cofree covers of algebraic tori related to Gorensteinness. 
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1 Introduction 

All rings are assumed to be commutative. For a ring R, an element (5 E GLn(R) 
is said to monomial, if (5 is a monomial matrix in GLn(R) and, moreover, a sub­
group G of GLn(R) is said to be monomial, if each element of G is monomial. 
Clearly the group GLn(R) acts naturally on the n-dimensional polynomial ring 
S = R[X1 , ... ,Xn] as R-algebra automorphisms. An element (5 E GLn(K) with 
rank((, - 1) ~ 1) for a field K is called a pseudo-reflection in GLn(K). Some clas­
sical results on pseudo-reflections are referred to Bourbaki [1]. In the case where 
G is finite and monomial, we have 
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Proposition 1.1 ([4]) Suppose that R is an integral domain with its quotient field 
F of arbitrary characteristic. Let G be a finite monomial subgroup of GLn(R). 
Then the subring R[X1 , ... , Xn] 0 of invariants of G in S is a polynomial ring over 
R if and only if G is generated by pseudo-reflections in GLn(K). 

We say a subgroup G of GLn(K) is imprimitive, if Kn is represented as Kn = 
EB:1 ¾ (m ~ 2) of subspaces of Kn and G acts naturally on {½, ... , Vm} as 
permutations. 

Such finite groups in Proposition 1.1 are classified as a product of G(m,p, n)'s 
defined as follows : 

Let IIn ~ Sn be the group of all n x n permutation matrices, and let A( m, p, n) 
with m, p E N such that PI m be the group of diagonal n x n matrices whose diagonal 
elements are powers of some fixed primitive mth root of 1 E K, and whose products 
are m/pth roots of 1 E K. Then as IIn normalizes A(m,p, n), define G(m,p, n) 
to be the semidirect product A(m,p, n) · IIn. If G is finite subgroup generated by 
pseudo-reflections and irreducible imprimitive in GLn(K), then G is conjugate to 
one of G(m,p, n)'s (e.g., [2, 7]). 

The purpose of this paper is to study on 

Problem 1.2 Can we generalize finite imprimitive reflection groups G(m,p, n) to 
infinite algebraic groups related with invariant rings? 

2 Preliminaries 

2.1 Some notations 

Let Q(A) denote the total quotient ring of a ring A and 

Ht1(A) := {'l} E Spec(A) I ht('l}) = 1}. 

For an integral domain A and a subring B of A such that B = Q(B) n A and 
Q(B) ~ Q(A), we denote by 

Ht1 (A, B) := {'l} E Ht1 (A) I 'l} n B E Ht1 (B)}. 

Consider an action of a group G on a ring R as automorphisms. For a prime ideal 
'l} of R, let 

Ia('lJ) = {O" E G I O"(x) - x E 'l} (x ER)} 

which is referred to as the inertia group of 'l} under this action. Let Z 1 ( G, U ( R)) 
be the group of lcocycles of G on the unit group U(R) of R. For a 1-cocycle X, 

Rx:= {x ER I O"(x) = x(O")x (O" E G)} 

which is a module over the invariant subring R0 of Gin R. 
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2.2 Pseudo-reflection groups of actions 

Here algebraic groups are affine (linear) and defined over a fixed algebraically closed 
field K of an arbitrary characteristic p. In general K-algebras Rare not necessarily 
affine, i.e., finite generated as algebras over K. 

We say an action (R, L) of an affine algebraic group Lon R is regular, when L 
acts rationally on the K-algebra Ras K-algebra automorphisms. 

For an affine algebraic group L, L 0 denotes the identity ( connected) component 
of L. 

Definition 2.1 (Pseudo-reflection groups, [6]) Suppose that Risa Krull K­
domain with ( R, L) a K -regular action of an algebraic group L. Define the subgroup 

of L which is called the pseudo-reflection group of the action ( R, L). 

Theorem 2.2 ([6]) Suppose that Risa Krull K-domain with (R,L) a regular 
action of L. If L is reductive as an algebraic group, then the pseudo-reflection 
group SJi( R, L) of the action ( R, L) is finite on R. 

For an affine variety X, we denote by K[X] the K-algebra consisting of polyno­
mial functions on X. For an algebraic group L, we say (X, L) is a regular action if 
L acts on K[X] as a rational £-module which induces K-algebra automorphisms. 
Clearly (X, L) is an regular action if and only if so is (K[X], L). Thus we define the 
pseudo-reflection group SJt(X, L) of the action (X, L) to be the group SJt(K[X], L) 
as above. 

Corollary 2.3 Suppose that (X, L) is a regular action of a reductive algebraic 
group L on an affine normal variety X. Then the pseudo-reflection group SJi(X, L) 
of the action ( X, L) is finite on X. 

2.3 Stable actions, representations 

Let X(L) denotes the module of rational characters of L. Suppose that Lis re­
ductive. Then K[X]L is finitely generated as a K-algebra. For a finite dimensional 
vector space V, a morphism p : L ---+ GL(V) of algebraic groups is a (rational) 
representation of L and then (V, L) is regarded as a regular action of L on an affine 
space V. 

We say that (X, L) is stable if X contains a non-empty open set consisting of 
closed L-orbits in X. 
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Proposition 2.4 Suppose that the identity component L 0 of L is an algebraic 
torus. Then there is an affine variety Xst with a stable regular action such that 
a canonical dominant G-invariant morphism X ----+ Xst induces K[X]L = K[Xst]L. 
Here 

K[Xst] = K[{K[X]x I K[X]xK[Xl-x-=/ {O}} (x E X(L0))]. 

In the case where X = V is the representation space of L, ¼t is regarded as a 
rational L-submodule of V, i.e., L----+ GL(V) induces L----+ GL(¼t)-

2.4 Paralleled linear hulls 

We now suppose that L0 is an algebraic torus and L = ZL(L0 ). For a finite 
dimensional (rational) representation (V, L), a pair (W, Lw) is defined to be a par­
alleled linear hull of (V, L), if W is a L-submodule of ¼t such that L is diagonal 
on ¼t/W, w E ¼t is a non-zero vector satisfying W n (Lw)K == {O} and the 
Lw-invariant morphism 

(• + w): W 3 X f--7 X +WE ¼t 

induces the canonical isomorphism 

If a W is minimal with this property, we say (W, Lw) is minimal paralleled linear 
hull of (V, L). 

Theorem 2.5 For any (V, L) as above, there exists a minimal paralleled linear 
hull (W, Lw) and it has the following properties : 

(1) KW]Lw ----+ K[W] is no-blowing-up of codimension one and Lw acts transi­
tively on the set Ht1 (K[W], K[W]Lw). 

(2) Cl(K[V]L) ~ X(L/Dt(W, Lw)) 

Remark 2.6 We note that Theorem 2.5 can be generalized for a Krull K-domain R 
with a regular action of L, which is useful in studying on a reduced expression of 
actions. 
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3 Torie imprimitive reflection groups 

3.1 Imprimitive actions on sub-toric quotients 

Hereafter for convenience sake suppose that the base filed K is of characteristic zero. 
We will define certain irnprirnitive algebraic group with toric identitiy component 
as follows. 

Definition 3.1 (A toric imprimitive triplet (G, H, U)) A triplet (G, H, U), is 
said to be toric imprimitive, consists of 

(i) an algebraic group G whose identity component G0 is an algebraic torus. 

(ii) a maximal diagonalizable closed subgroup H of G such that G is centralize 
H, i.e., G = Zc(H) 

(iii) a finite dimensional representation U of G whose action ( G, U) is stable. 

(iv) U satisfies the following condition : U can be expressed as a direct sum 

m 

of rational H -submodules Ui satisfying 

(iv)-1 (Ui, H) is a stable action with dirnK[Ui]H = 1 and detu;(H) = l. 

(iv)-2 {U1, ... , Um} is a system of imprimitivities of U under the action of G, 
i.e., G acts on {U1, ... , Um} as a permutation group). We say that Ui 
are the G-imprimitive H-isobaric component of U. 

Definition 3.2 ((H, U)-toric transpositions) We say for a toric imprimitive 
triplet (G, H, U) an element T E G is a (H, U)-toric transposition, if Tiu E HIU 
or the following conditions are satisfied : there exists a pair I ;;; i 1 # i2 ;;; m of 
indices such that 

(1) O'(Uil) = ui2, O'(Ui2) = uil and ord(O'lu;1EllU;2) = 2, 

(2) O"(Ui) = Ui and detu;(O") = 1 for I;;; i;;; m, ii= i1, i2. 

Definition 3.3 (Torie imprimitive reflection groups) We say that s toric im­
primitive triplet (G, H, U) defines a (H, U)-toric imprimitive reflection group, if 
Glu is generated by (H, U)-toric transpositions. 
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Example 3.4 Consider the dual space uv = EB:=1 KXi of U on which H = Kx 
acts by H 3 er= t = diag[t, r1, t, r 1] on {X1 , ... , X4 }. Put U1 = KX1 ffi KX2 , 

U2 = KX3 ffi KX4. Let 

where En denotes the unit matrix of degree n. Define G = (H, T). Then ( G, H, U) 
and (H, H, U) are respectively (H, U)-toric imprimitive reflection groups 

3.2 Cofree Covers 

Definition 3.5 A finite dimensional representation L ----+ GL(V) of a reductive 
group G is said to be coregular {resp. cofree), if K[V]L is a polynomial ring over 
K (resp. if K[V] is a free K[V]L-module). 

The following fact is well known. 

Proposition 3.6 ([8]) For a representation (V, L) of a reductive L, if (V, L) is 
cofree, then it is coregular. 

Hereafter suppose that p = 0 or (p, I G / G0 I) = 1. 
We introduce cofree covers of representations as follows : 
For an n-dimensional faithful rational representation cp : G ----+ G L(W) such that 

(W, G) is a stable action; as 91-CW, G) is a finite group, there is an n-dimensional 
natural representation lj5: G----+ GL(U) satisfying 

K[W]Vl(W,G) = K[U]. 

Definition 3. 7 ( Cofree cover) A co free cover (W, G) of (W, G) is defined as fol­
lows : we ea choose a closed subgroup G of GL(U) in such a way that 

{1} (U, G) is stable. 

{2} the following diagram is commutative 

{3} c0 is an algebraic torus with G = G0G 
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(4) 9l(U, G) = {1} 

(5) (W, G) is cofree (see bellows). 

We say that (W, G) is a minimal cofree cover of (W, G) if G is minimal in cofree 
covers of (W, G). 

3.3 Representations having cofree covers 

Example 3.8 Consider the dual space wv = EB~=l K Xi of W on which G = Kx 

acts by G 3 CJ"= t = diag[t, r1, t, t-1, t, t-1] on {X1, ... ,X6}. Let G = (Kx)3 be 

the closed subgroup {diag[t1,t11,t2,t21,t3,t31]l(t1,t2,t3) E G} on {X1, ... ,X5} in 
G L(Wv). Then (W, G) is a minimal cofree cover of (W, G). 

Example 3.9 Consider the dual space vv = EB;=1 KXi of V on which L = Kx 
acts by L 3 CJ" = t = diag[t, t-1, t-1, t-1 J on { X1, ... , X4}. Then (V, L) is coregular 
but is not cofree. A minimal paralleled linear hull (W, Lw) is expressed as wv = 
EB;=2 K Xi and Lw = { 1}. Then (W, Lw) is itself a minimal co free cover of (W, Lw). 

3.4 On Problem 1.2 

A partial answer to this problem is : 

Theorem 3.10 Let L be a linearly reductive algebraic group with a maximal di­
agonalizable closed subgroup D containing L0 such that ZL(D) = L. Let p : L --+ 
GL(V) be an [-dimensional rational representation of L. Let (W, w) be a minimal 
paralleled linear hull of (V, L) with G = Lw, H = Dw. Then the following conditions 
are equivalent : 

(1) (W, G) has a minimal cofree cover. 

(2) Glu is generated by (H, U)-toric transpositions. 

Remark 3.11 In this theorem, the existence of cofree covers is only related to min­
imal paralleled linear hulls. This situation can similarly be examined as Example 
3.9. 

To show this, we need a special case ( cf. [5]) where L = D as follows : 

Theorem 3.12 Under the circumstances as in Theorem 3.10, we suppose that L 
is diagonalizable. Then the following conditions are equivalent : 

(1) K[V]L is a Gorenstein ring. 
(2) (W, G) has a minimal cofree cover. 
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The next well known result plays an important role in the proof of this : 

Theorem 3.13 (G. Kempf, R. P. Stanley and V. Danilov [[3, 9]) Suppose 
that 

r.p: H--+ GL(W) 

is a finite dimensional representation of a diagonalizable algebraic group H whose 
action is stable. Then the canonical module wK[W]H of the graded algebra K[W]H 
is isomorphic to the graded module 

K[W]detw IH(- dim W) 

of invariants relative to detw IH in K[W] of H shifted by the number -dim W. 

Regarding Problem 1.2, there seems to be a different answer from the one here 
based on subtoric quotients of representations. Further studies will be conducted. 
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