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Abstract 

We study quasi-symmetric numerical semigroups through the map dividing by 3. We 
give quasi-symmetric numerical semigroups which are the Weierstrass semigroups of 
ramification points of triple cyclic covers of the projective line. Moreover, we find examples 
of quasi-symmetric Weierstrass numerical semigroups which cannot be attained by any 
ramification point of a triple cyclic cover of the projective line. We also construct many 
quasi-symmetric non-Weierstrass numerical semigroups 

1 Introduction 

Let N0 be the additive monoid of non-negative integers. A submonoid Hof N0 is called a 
numerical semigroup if the complement N0 \H is finite. The cardinality of N0 \H is called 
the genus of H, denoted by g(H). We set 

c(H) := min{c E No I c + No ~ H}, 

which is called the conductor of H. It is well-known that c(H) ;:;; 2g(H). H is said to be 
symmetric if c(H) = 2g(H). H is said to be quasi-symmetric if c(H) = 2g(H) - 1. A curve 
means a projective non-singular irreducible algebraic curve over an algebraically closed 
field k of characteritic 0. For a pointed curve (C, P) we set 

H(P) = {a E N0 I 3f E k(C) such that (f)oo = aP}, 

where k(C) is the field of rational functions on C. H(P) is a numerical semigroup of genus 
g(C) where g(C) is the genus of C, which is called the Weierstrass semigroup of P. Let 
d2 be the map from the set 1{ of numerical semigroups to 1{ defined by 

d2(H) = {h' E No I 2h' E H}, 

which is a numerical semigroup. Let n : C - C be a double covering of curves with a 
ramification point P. Then d2(H(P)) = H(n(P)). For any integer t ~ 3 we set 

di(H) = {h' E No I th' E H}, 

1This paper is an extended abstract and the details were published (see [51) 
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which is a numerical semigroup. Let t be an integer ~ 3. Let 1r : C - C' be a cyclic 
covering of degree t with a totally ramification point P over P'. Then d1(H(P)) = H(P'). 

In this article we are devoted to study quasi-symmetric numerical semigroups through 
its image of the map d3 . Oliveira-Stohr [6] constructed quasi-symmetric numerical semi­
groups H from any numerical semigroup H' with d3(H) = H'. We generalize their method 
in Section 2. In Section 3 we obtain many non-Weierstrass quasi-symmetric numerical 
semigroups using the proof of Theorem 5.1 in [6] where a numerical semigroup H said 
to be Weierstrass if there exists a pointed curve (C, P) with H = H(P). We give quasi­
symmetric numerical semigroups gained by the Weierstrass semigroups of ramification 
points of triple cyclic covers of curves. Moreover, we show that some Weierstrass quasi­
numerical semigroups cannot be gained by the above way. 

2 Description of a quasi-symmetric numerical semigroup 
through d3 

Remark 2.1 ([21) Let H be a quasi-symmetric numerical semigroup. 

(1) If g(H) is even, then d2(H) is a symmetric numerical semigroup of genus gU:,). 

(2) If g(H) is odd, then d2(H) is a quasi-symmetric numerical semigroup of genus g(H; + 1 . 

Remark 2.2 ([31) If H is a symmetric numerical semigroup, then we have 

H = 2d2(H) u {2g(H) - 1 - 2t It E Z\d2(H)}. 

Theorem 2.3 ([51) Let H be a quasi-symmetric numerical semigroup with g(H) = 1 mod 

3. Then d3(H) is also a quasi-symmetric numerical semigroup of genus g(H; + 2 , that is 

to say, g(H) = 3g(d3(H)) - 2. 

To describe a numerical semigroup we use the following notation: For any non­
negative integers a1, a2, · · · , an we denote by 

the additive monoid generated by a1, a2, · · · , an. 

Example. Let H = (4, 11, 13). Then we have N0 \H = {1, 2, 3, 5, 6, 7, 9, 10, 14, 18}, which 
implies that g(H) = 10 and c(H) = 19 = 2g(H) - 1, Hence, His quasi-symmetric and 

d3(H) = (4, 5, 7), whose genus is 4 = g(H; + 2 . 

To state the theorem we need the following lemma: 

Lemma 2.4 ([51) Let H be a quasi-symmetric numerical semigroup with g(H) $. 1 mod 3. 
Then we have 

H = 3d3(H) U {2g(H) - 2 - 3t I t E Z\d3(H)} U {h EH I h = g(H) + 2 mod 3}. 
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Theorem 2.5 ([51) Let H be a quasi-symmetric numerical semigroup of genus g with 

g $. 1 mod 3 and g ~ 3c(d;(H)) + 1. Then His one of the following: 

(1) H = 3d3(H) u {2g - 2 - 3r I r E Z\d3(H)} u ((g + 2) + 3N0). 

(2) There exists a non-empty set 

{t1, ... 'tu} ~ { 2, 3, ... 'r c(d3(i) + 1 J}­
such that 

H = 3d3(H) U {2g - 2 - 3r I r E Z\d3(H)} U {g + 2 - 3t I t E {t1, · · · , tu}} 

U((g + 2) + 3No)\{g - 4 + 3t I t E {t1, · · · , tu}}. 

The converse of Theorem 2.5 holds in the following case: 

Remark 2.6 ([61) Let H' be a numerical semigroup with H' * N0 • Let g ~ 2c(H') with 
g $. 1 mod 3. We set 

H = 3H' U {2g - 2 - 3r I r E Z\H'} U ((g + 2) + 3N0). 

Then H is a quasi-symmetric numerical semigroup of genus g with d3(H) = H'. 

Example. Let H' = (2, 3). Then c(H') = 2 and m(H') = 2. Take g = 5 = 2 mod 3. We set 

H = 3(2, 3) U {10 - 2 - 3r I r E Z\(2, 3)} U ((5 + 2) + 3N0) 

= (6, 9) u {5, 11, 14, · · ·} u {7, 10, 13, · · ·} = (5, 6, 7, 9). 

Then g(H) = 5 and c(H) = 13 - 5 + 1 = 9 = 2g(H) - 1. Hence, H is a quasi-symmetric 
numerical semigroup with d3(H) = H'. 

The converse of Theorem 2.5 also holds in the cases which are different from the one 
in Remark 2.6. 

Theorem 2.7 Let H' be a numerical semigroup with H' * N0• Let g ~ 2c(H') + m(Hi + 1 

with g $. 1 mod 3 where m(H') is the minimum of positive integers in H'. Let t E Z with 

2 :s: t :s; m(H') + 1 . We set 
- - 2 

H = 3H' u {2g - 2 - 3r I r E Z\H'} u {g + 2 - 3t} u ((g + 2) + 3N0)\{g - 4 + 3t}. 

Then H is a quasi-symmetric numerical semigroup of genus g with d3(H) = H'. 

Example. Let H' = (3, 4, 5). Then c(H') = 3 and m(H') = 3. Take g = 8 = 2 mod 3 and 
t = 2. We set 

H = 3(3, 4, 5) U {16 - 2 - 3r I r E Z\(3, 4, 5)} U {10 - 3 X 2} U ((8 + 2) + 3N0)\{8 - 4 + 6} 

= (9, 12, 15) u {8, 11, 17,20,· · ·} u {4, 13, 16, · · ·} = (4,9, 11). 

Then g(H) = 8 and c(H) = 18 - 4 + 1 = 15 = 2g(H) - 1. Hence, H is a quasi-symmetric 
numerical semigroup with d3(H) = H'. 
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3 Three types of quasi-symmetric semigroups 

Remark 3.1 Let H' be a non-Weierstrass numerical semigroup. Take g ~ 15g(H') + 11. 
Let H be a numerical semigroup of genus g with d3(H) = H'. Then H is also a non­
Weierstrass numerical semigroup. (See the proof of Theorem 5. 1 in [61). 

Using the following theorem, which follows from Remark 3.1, we can give a lot of 
non-Weierstrass quasi-symmetric numerical semigroups. 

Theorem 3.2 Let H' be a non-Weierstrass numerical semigroup. Take g ~ 15g(H') + 11 

. rm(H') + 11 with g $. 1 mod 3. We set T(H') = 2 . Then there are at least T(H') non-

Weierstrass quasi-symmetric numerical semigroups H of genus g with d3(H) = H'. In 
fact, H 1, H 2, • • - , Hr(H'l are such numerical semigroups where 

H1 = 3H' u {2g - 2 - 3r I r E Z\H'} u ((g + 2) + 3N0) 

and for any integer t with 2 ~ t ~ T(H') we set 

H1 = 3H' U {2g - 2 - 3r I r E Z\H'} U {g + 2 - 3t} U ((g + 2) + 3N0)\{g - 4 + 3t}. 

Example. Let H' = (13, 14, 15, 16, 17, 18,20,22,23), which is a non-Weierstrass nun­
merical semigroup of genus 16 ([1]). Let g = 15 x 16 + 11 = 251. Then there are seven 
non-Weierstrass quasi-symmetric numerical semigroups H1, H2, - - - , H7 of genus 251 with 
d3(H;) = H'. 

A numerical semigroup H is said to be triple cyclic covering type , which is abbrevi­
ated to TC if there exists a triple cyclic cover of curves with a ramification point whose 
Weierstrass semigroup is H. 

Theorem 3.3 If H is a quasi-symmetric numerical semigroup of genus g with g = 1 mod 3, 
then it is not TC. 

Proof. Since g = 1 mod 3, we obtain g(H) = 3g(d3(H)) - 2 from Theorem 2.3. As­
sume that H were TC. Then it would follow from Riemann-Hurwitz formula that g(H) ~ 
3g(d3(H)) - 1. This is a contradiction. 

Example. Let n be a positive integer with n = 1 mod 3. We set Hn = (5, Sn + 3, Sn + 
4, 5(n + 1) + 1). Then we have g(Hn) = Sn+ 2 = 1 mod 3 and c(Hn) = 5(2n + 1) + 2 = 
2g(Hn) - 1. Hence, Hn is a quasi-symmetric numerical semigroup, which is not TC. But, 
Hn is Weierstrass, because the minimum positive integer in Hn is 5 (See [4]). 

Theorem 3.4 ([51) Let H be a quasi-symmetric Weierstrass numerical semigroup of genus 
g. Take a pointed curve (C, P) such that H(P) = H. Let Q be a point of C with Q * P such 
that Kc ~ (2g - 3)P + Q, where Kc is a canonical divisor on C. Let d be an integer with 
d ~ g. Consider a triple cyclic cover 

C = Spec(Oc Ell Oc(-dP) Ell Oc(-2dP - Q)) - C 
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which has a ramification point P over P. Then 

H(P) = 3H + (3d - 1, 2(3d - 1) + 3(g - 1)), 

which is quasi-symmetric. Hence this quasi-symmetric numerical semigroup is TC. 

Example. Let fl = (5, 9, 12, 13). Then fl is a TC numerical semigroup which is quasi­
symmetric. Indeed, in Theorem 3.4 we set H = (3, 4, 5) and d = 2. Then we get 

H(P) = 3(3, 4, 5) + (5, 10 + 3) = (5, 9, 12, 13). 

References 

[1] R.O. Buchweitz, On Zariski's criterion for equisingularity and non-smoothable mono­
mial curves, Preprint 113, University of Hannover (1980). 

[2] J. Komeda, Quasi-symmetric numerical semigroups and double covers of curves, 
RIMS Kokyuroku 1964 (2015) 55-60. 

[3] J. Komeda, On quasi-symmetric numerical semigroups, Research Reports of Kana­
gawa Institute of Technology B-35 (2011) 17-21. 

[4] J. Komeda, On the existence of Weierstrass points whose first non-gaps are five, 
Manuscripta Math. 76 (1992) 193-211. 

[5] J. Komeda, A classification of the quasi-symmetric numerical semigroups through 
their division by 3, In preparation. 

[6] G. Oliveira and K.-O. Stohr, Gorenstein curves with quasi-symmetric Weierstrass 
semigroups, Geometriae Dedicata, 67 (1997), 45-63. 


