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Abstract 

George Boolos (1996) posed the puzzle "The hardest logic puzzle ever" 
which had been devised by Raymond Smullyan, and gave a solution in the 
style of if-and-only-if. Later, Roberts (2001) and Rabern-Rabern (2008) 
provided another solution in the style of embedded questions as a simpler 
solution. Here, we introduce a simple formalization of the puzzle consist­
ing of questions, answerers, and answers in terms of propositional logic, 
and show its adequacy by the truth values (0, 1) semantics. Then it turns 
out that the two solutions in the different forms are logically equivalent 
under the semantics. Moreover, the hardest logic puzzle can be considered 
as a natural extension of the puzzles of knights and knaves, i.e., lying and 
truth-telling by Smullyan. 

1 Introduction 

To begin with, we quote the puzzle from Boolos [1]: 
"The puzzle: Three gods, A, B, and Care called, in some order, True, False, 

and Random. True always speaks truly, False always speaks falsely, but whether 
Random speaks truly or falsely is a completely random matter. Your task is 
to determine the identities of A, B, C by asking three yes-no questions; each 
question must be put to exactly one god. The gods understand English, but 
will answer all questions in their own language, in which the words for "yes" 
and "no" are "da" and "ja," in some order. You do not know which word means 
which. · · · · · · · · ·" 

His solution in the style of if-and-only-if consists of the following steps. 

1. Ask god A: 

does da means yes iff, you are True iff B is Random? 

2. Ask B or C1 : 

does da mean yes iff Rome is in Italy? 
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1 Ifthe answer is "da" then ask C, otherwise (i.e., "ja") B. 
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3. Does da mean yes iff A is Random? 

On the other hand, Roberts [4] and Rabern-Rabern [3] provided another 
solution in the style of embedded questions as follows. 

1. Ask god A: 

if I asked you if god B was Random, would you say da? 

2. Ask B or C1 : 

if I asked you if you always told the truth, would you say da? 

3. If I asked you if god A was Random, would you say da? 

Before formalizing the questions of the puzzle above, we call one of the most 
elementary puzzle of Knights and Knaves from the book Logical Labyrinths [2]. 
This puzzle is known as a good example for the study of logic or sociology of 
lying and truth-telling. There were the island of knights and knaves such that 
knights always tell the truth, and knaves always lie. Each inhabitant of the 
island is either a knight or a knave. 

• Problem 1.3. [2]: 

The island has two inhabitants, A and B. Now, A made the following 
statement: 

"Both of us are knaves." 

What is A and what is B? 

From the book, we review the simple solution to this puzzle. Let A, B 
be propositional variables which mean that A is a knight and B is a Knight, 
respectively. Then ,A means that A is not a knight (i.e., knave) from the 
definition of knights and knaves. Suppose A asserts a proposition which is 
expressed by a formula X. Then the definition of knights leads to the following 
fact. 

• The inhabitant A is a knight if and only if X is true. 

The fact can be formalized by the formula of bi-implication: 

A+-+ X 

The formalization of the well-formed relation between inhabitants and assertions 
can be justified by the truth table of bi-implication, following the case analysis 
on A of either a knight or a knave. 

I A I X II A +-+ X I 
t t t 
t f f 

f t f 

f f t 
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Now recall problem 1.3, and then we obtain the formula A +-+ ,A I\ ,B 
from the statement of A. The solution of the puzzle is given by solving the 
satisfiability problem (SAT) of the formula as follows: 

I A I B I ,A I ,B I ,A I\ ,B I A +-+ ,A I\ ,B I 
t t f f f f 
t f f t f f 

® © t f f It I 
f f t t t f 

In other words, the puzzle and its solution form the relation of logical conse­
quence: 

A +-+ ,A I\ ,B F ,A I\ B 

2 Formalization 

This methodology for solving the puzzles of lying and truth-telling can be nat­
urally extended to that for the hardest logic puzzle ever, so that the binary 
relation between inhabitants and assertions should be replaced with a ternary 
form of questions, answerers, and answers. Firstly, let X be a propositional vari­
able for a question, which means either true or false, respectively represented by 
1 or 0. Secondly, let A, B be propositional variables for answerers A, B, which 
mean either2 True or False, respectively represented by 1 or 0. Lastly, let Y be 
a propositional variable for an answer. Here, an answer means either yes or no, 
respectively represented by 1 or 0. Instead, Y may be used for an answer da-ja, 
whose meaning is also either 1 or 0, but not fixed yet. 

If we ask a question X of an answerer A and obtain an answer Y, then the 
situation is depicted by the following diagram. 

X --+ [I] --+ y 

We formalize this relation of question-answerer-answer by the ternary form with 
the logical connective of bi-implication. 

X+-+A+-+Y 

Note trivial facts that+-+ is symmetric and associative and that a tautology is the 
unit. An adequacy of the formalization can be expounded by the truth values 
(0, 1) semantics. Let Prop be the set of propositions (formulae), and {0, 1} for 
the set of truth values. We write v for the assignment v : Prop---+ {0, 1 }. Now 
the consistent relation of question-answerer-answer is stated as follows: 

v(X +-+ A +-+ Y) = l, 
2 1n the puzzle of Boolos [1], one has Random in addition, but for the formalization here 

answerers are supposed to be either True or False. According to the solutions [1, 4, 3], Random 
can be handled by a certain strategy of asking questions which can be formalized here in terms 
of propositional logic. 
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under the assignment v such that v(A := "True") = v(Y := "yes") = 1. This 
statement can be justified by the case analysis on A, as follows. 

• Case A of "True": v(X ++ Y) = 1 

X -----+ I True -----+ y 

• Case A of "False": v(X ++ Y) = 0 

X -----+ I False -----+ y 

Let us formalize the embedded question [4, 3]. Recall the first one form the 
solution: 

• Ask god A Q1 : if I asked you if god B was Random, would you say da? 

''X -+ [!J -+ Y'' -----+ [I] -----+ ? 1 

where X := "B is Random", Y := "da". 

Now suppose that A's answer ?1 is "da". Then this situation is formalized by 
the formula ( X ++ A ++ Y) ++ A ++ Y, and hence for any assignment v we have 
the following equation 

v((X ++A++ Y) ++A++ Y) = v(X), 

since A ++ A and Y ++ Y are tautologies. This implies that one can identify the 
truth value of X from ? 1 , even if we know neither the semantics of A nor that 
of "da". Moreover, this equation means that the following forms of question­
answerer-answer are equivalent to each other under the semantics. 

"X-+ [!J -+ Y" -----+ [I] -----+ Y 

{==} X -----+ I True I -----+ "yes" 

{==} "X iff A iff Y" -----+ [I] -----+ Y 

Next, in order to analyze Boolos' solution in the style of iff [1], we recall his 
solution: 

• Ask god A Ql: does da means yes iff, you are True iff Bis Random? 

"(Y iff Y1) iff, A iff X" -----+ [I] -----+ ? 

where X := "B is Random", Y := "da", Y1 := "yes". 

Here, suppose A's answer? is "da". Then we obtain the formula ((Y ++ Y1) ++ 
( A ++ X)) ++ A ++ Y, so that for any assignment v the equation holds true 



22

Thanks to the semantics v(X +-+ Y1) = 1, this form in the style of iff is equivalent 
to the definition of "True" as the embedded question is. 

X ~ I True I ~ "yes" 

Finally, we quote yet another puzzle from the film Labyrinth [5]. There are 
two doors with two guards, to say, A and B, either True or False. Your task 
is to determine whether which door leads to the castle by asking A or B one 
question. What kind of questions makes you reach the castle? In the film, Sarah 
asked A: Would he (B) tell me that this door leads to the castle? That is, 

where X := "This door leads to the castle", Y := "yes". Now, suppose A's 
answer? is "no", i.e., ,Y. Then we obtain the formula (X +-+ B +-+ Y) +-+A+-+ 
,Y, and hence for any assignment v the equation holds 

v((X +-+ B +-+ Y) +-+A+-+ ,Y) = v(X), 

where B +-+ ,A. Note also that A +-+ ,A and Y +-+ ,y are equivalent to the 
contradiction ..l where v(..l) = 0 for any v, and of course, ..l +-+ ..l is a tautology. 
Moreover, this methodology is still available for the setting of da-ja instead of 
yes-no. 

3 Concluding remarks 

We introduced a simple formalization of puzzles of questions-answerers-answer 

by using bi-implications X +-+ A +-+ Y, and the formalization can be justified 
under the truth values semantics. This method makes it possible to apply al­
gebraic properties of the connective rather than making truth-tables. It turns 
out that Boolos' solution in the style of if-and-only-if [1] and the solution in the 
style of embedded question [4, 3] are logically equivalent under this semantics. 
The hardest logic puzzle ever can be regarded as a generalization of Smullyan's 
Knights-Knaves puzzles [2]. We show that this method is also applicable el­
egantly to the puzzle in the film Labyrinth [5]. Moreover, this method can 
formalize naturally n-times nesting of embedded question: 

We make remarks on the definition of Random. According to [1], whether 
Random speaks truly or not should be thought of as depending on the flip of a 
coin hidden in his brain: if the coin comes down heads, he speaks truly; if tails, 
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falsely. Random will answer da or ja when asked any yes-no question, so that 
the definition can be depicted in the following. 

X --+ []J --+ { "da" { yy:; 1~: i : ~ 
"ja" 

no for X = 1 

if R = T, 

if R = F. 

That is, to put it simply, the diagram becomes the following one. 

X --+ []J --+ "' " { "da" 
Ja 

if heads, 
if tails. 

Here, we established a very good question (embedded question), so that one can 
verify whether X is 1 or O independent of the values of "da" and R. However, 
if the question X contains R as an answerer (i.e., embedded questions for R), 
when and how often does R flip a coin? If Random flips a coin everywhere for 
each question, for instance, in the diagram below: 

"X ➔ [ID ➔ Y" --+ []J --+ ?, 

then one cannot enjoy the good property of the embedded questions. Fortu­
nately, the solutions [1, 4, 3] of the puzzle can be provided without answering 
the question of when-and-how-often, by using an elegant strategy of asking three 
questions (Qi, Q2, Q3) based on the case analysis such that A= RV A-=/ R. 

Finally, following our formalization we summarize the solution [4, 3] which 
consists of the questions Qi, Q2, Q3 in this order, depending on the answer ?1: 

1. Q1 (Ask god A: if I asked you if god B was Random, would you say da?) 

"B = R ➔ C!) ➔ da" --+ [I] --+ ?1 

2. Q2(Z := C) if ?1 = da (Q2(Z := B) otherwise (i.e. ?1 = ja)) 

"Z=T ➔ [I) ➔ <la" --+[I]--+ ?2 

3. Q3(Z := C) (otherwise Q3(Z := B)) 

"A= R ➔ [I) ➔ da" --+ [I] --+ ?3 

As a solution we have 3! patterns consisting of R, T, or F for (A, B, C), and 23 

patterns (?1, ?2, ?3) for an answer to (Qi, Q2, Q3). Every candidate for (A, B, C) 
and (Q1, Q2, Q3), and the correlation are compacted in the simple table. 

II A B C I Q1 Q2(C) Q3(C) II ? I 
1-1 R T F da ja da 1 
2-1 R F T da da da 2 
3 T R F da ja ja 3 
4 F R T da da ja 4 
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1-2 R T F ja da da 5 
2-2 R F T ja ja da 6 
5 T F R ja ja ja 7 
6 F T R ja da ja 8 
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