
64

§

65

Di:iMOSI, HORVATH, MOLNAR, KOVACS, DIENE

Automata theory provides a natural basis for designing cryptosystems and several

such systems have been designed.

In this paper we study a novel symmetric stream cipher of P. Domosi and G.

Horvath [3, 4] which overcomes all of the discussed disadvantages. Statistical properties

of this cipher are discussed in [5]. Now we show its immunity for some side-channel

attacks. In more details, we consider this symmetric stream cipher based on finite

automata without outputs. The transition table of this finite automaton without out

puts, called key automaton, forms a Latin square. The state and input sets of the

key-automaton coincide with the plaintext and also the ciphertext alphabet. During

the encryption the plaintext is red in sequentially character by character. After get

ting the next (initially the first) plaintext character, the system gets simultaneously

the next (initially the first) pseudorandom string which is also an input string of the

key-automaton. The corresponding ciphertext character will coincide with the state

of the key-automaton into which this pseudorandom input string takes the automaton

from the state which coincides with the corresponding plaintext character. The de

cryption becomes similarly, using a so-called inverse key-automaton instead of the key

automaton such that the input strings will be the mirror images of the corresponding

pseudorandom strings.

We start with some standard concepts and notations. All concepts not defined

here can be found in [2] and [6]. By an alphabet we mean a finite nonempty set. The

elements of an alphabet are called letters. A word over an alphabet ~ is a finite string

consisting of letters of~- A word over a binary alphabet is called a bit string. The string

consisting of zero letters is called the empty word, written by A. The length of a word w,

in symbols lwl, means the number of letters in w when each letter is counted as many

times it occurs. By definition, IAI = 0. At the same time, for any set H, IHI denotes the

cardinality of H. In addition, for every nonempty word w, denote by vJ the last letter
➔

of w. (A is not defined.) If u = x1 · · · Xk and v = Xk+l · · · x1; are words over an alphabet

~ (with x 1 , ... , Xk, Xk+l, ... , Xf E ~), then their catenation uv = x 1 · · · XkXk+l · · · Xf is

also a word over ~- In this case we also say that u is a prefix of uv and v is a suffix

of uv. Catenation is an associative operation and, by definition, the empty word A is

the identity with respect to catenation: WA = AW = w for any word w. For every

word w E ~*, put w0 = A, moreover, wn = wwn-l, n ~ l. Let ~• be the set of all

words over ~, moreover, let ~+ = ~*\{A}. ~* and ~+ are the free monoid and the

free semigmup, respectively, generated by ~ under catenation. In particular, we put

~o = {A},~n = {w: lwl = n},n ~ 1, and ~(O) = ~o,~(n) = {w: lwl::; n},n ~ 1.

In addition, for every string x 1 · · · Xk with x 1 , ... , Xk E ~, the string Xk · · · x 1 is called

a mirror image of x1 · · · Xk. We will use the notation pR as the mirror image of p for

every p E ~+. Moreover, by definition, let AR = A.

66

A SIDE-CHANNEL ATTACK AGAINST AN AUTOMATA THEORY BASED STREAM CIPHER

By an automaton we mean a deterministic finite automaton without outputs. In

more details, an automaton is an algebraic structure A = (A,~, 8) consisting of the

nonempty and finite state set A, the nonempty and finite input set ~, a transition

function r5 : A x ~ -+ A . The elements of the state set are the states, and the elements

of the input set are the input signals. An element of A+ is called a state word 1

and an element of ~* is called an input word. State and input words are also called

state strings and input strings, respectively. If a state string a1 a2 · · · a8 (a1, ... , as E

A) has at least three elements, the states a 2 , a3 , ... , a8 _ 1 are also called intermediate

states. It is understood that 8 is extended to 8* : A x X* -+ A+ with 8* (a, .X) =

a, r5*(a,xq) = r5(a,x)8*(8(a,x),q),a E A,x E ~,q E ~*- In other words, 8*(a,.X) = a
and for every nonempty input word X1X2 · · · X 8 E ~+ (where X1, X2, ... , X 8 E ~) there

are a1, ... , as E A with 8(a, x1) = a1, 8(a1, x2) = a2, ... , rS(as-1, Xs) = as such that

8*(a, X1 · · · Xs) = a1 ···as.
In the sequel, we will consider the transition of an automaton in this extended form

and thus we will denote it by the same Greek letter 8. If r5(a, w) = b holds for some

a, b E A, w E ~* then we say that w takes the automaton from its state a into the state

b, and we also say that the automaton goes from the state a into the state b under the

effect of w.

The transition matrix of an automaton is a matrix with rows corresponding to each

input and columns corresponding to each state; at the entry of any row indicated by

an input x E ~ sign and any column indicated by a state a EA the state r5(a, x) is put.

We say that an automaton A= (A,~, 8) is a permutation automaton if all lines of the

transition matrix form a permutation of the state set. The automaton B = (B, ~', 8')
is called the inverse automaton of the permutation automaton A = (A,~, 8) if A =

B,~ =~',moreover, for any a,b E A,x E ~,8(a,x) = b if and only if r5'(b,x) =a.
In this case, we shall use the notation A- 1 = (A,~,8-1) for B = (B,~',8'). (We note

that, in general, the transition matrix of a permutation automaton is not an inverse

matrix of the transition matrix of its inverse automaton even if their tranistion matrices

are quadrtic.)

A Latin square of order n is an n x n matrix (with n rows and n columns) in which

the elements of an n-state set are entered so that each element occurs exactly once in

each fixed (row, column) pair. In this paper we will consider a special type of automata

having the transition matrix of the form Latin square. Evidently, these automata are

permutation automata. By this property, we would like to avoid statistical attacks.

1The empty word is not considered as a state word.

67

DOMOSI, HORVATH, MOLNAR, KOVACS, DIENE

§ 2. A finite automaton based stream cipher

The working of the considered system mainly differs from the most of the stream

ciphers : it does not generate the ciphertexts in such a way that the plaintext bit stream

is combined with a cipher bit stream by an exclusive-or operation (XOR).

The proposed cipher does not have this property.

Consider an automaton A = (A, E, 5) with A = E, where for every a, b E A and

x, y E E, 5(a, x) -/=- 5(b, x) and 5(a, x) -/=- 5(a, y). Thus, A is a permutation automaton,

i.e., each line of the transition table forms a permutation of the state set. This is an

essential property to the unambigouty of the ciphertext for any plaintext.

For the security, we also assume that all columns of the transition table also forms

a permutation of the state set.

Let A- 1 = (A, E, 5-1) be the automaton for which 5-1 (b, x) = a with a, b EA, x E

E if and only if 5(a, x) = b.

In the furthers A will be called the key-automaton and A- 1 will be called the

inverse key automaton.

Next we give a short formal description of encryption and decrypton. There are

detailed examples for these encryption and descryption procedures in [3].

§ 2.1. Encryption

Let p1, ... , Pk be a plaintext and let r 1, ... , rk E E+ be random strings generated by

the pseudorandom number generator starting by a seed r0 . We note that lrol, ... , lrkl =
n holds for a fixed positive integer n.

The ciphertext will be c1 ···Ck with c1 = 8(p1, r1), ... Ck= 5(pk, rk)-

§ 2.2. Decryption

Let c1 , ... , Ck be a ciphertext and let r 1, ... , rk E E+ be the same random strings

generated by the pseudorandom number generator starting by a seed r0 .

The decrypted plaintext will be P1 ···Pk withp1 = 5-1 (c1, (r1)R), .. -Pk = 5-1 (ck, (rk)R).

§ 3. Key automaton generation

We shall adopt the method elaborated in [3]. Our solution is an algorithm, which

generates appropriate size Latin squares from 2 strings of length n for some positive

integer n. We propose n = 256 to the technical realization. Each string contains the

permutation of the numbers from O to n - l, but the second string must start with 0.

The steps of the algorithm are the following

(a) The first line of the matrix is the first vector itself.

68

A SIDE-CHANNEL ATTACK AGAINST AN AUTOMATA THEORY BASED STREAM CIPHER

(b) We receive the second line of the matrix if we shift the elements of the first

vector to the right by the second element of the second vector. This is a circular shift

- or so called rotate - operation.

(c) We receive the third line of the matrix if we shift the elements of the first vector

to the right by the third element of the second vector

(d) We receive then - 1-th line of the matrix if we shift the elements of the first

vector to the right by then - 1-th element of the second vector.

Now we have an n x n type matrix, which forms a Latin square.

We note that transmitting or storing this like Latin squares we need only (2n-1)

dimensional vectors. The first n components of these vectors determine the first line

of the Latin square and the other n-1 components determine the length of the cyclic

permutations of the first line determining the other lines. It is clear that all elements

of the matrix can be computed easily by these two vectors.

§ 3.1. Example

The above algorithm generates the Latin square shown in the next table from the

following two vectors: Vi = (1, 2, 0), V2 = (0, 2, 1).

1 2 0
0 1 2
2 1 0

By this method the size of the key is reduced to 2n - 1 bytes, which can be easily

handled by any present programmable device. (The first component of the second vector

is always 0 and thus we need not store it.) The key space is still huge, because we have

n!(n - 1)! possible keys where n = 256 is proposed leading to more than 2.87 x 101011

possibilities. In this way, having a huge key space, we can easily store the keys of the

block cipher, and the key change is simple as well.

Searching in a matrix is really fast operation, because we have direct access to each

element, so if the plaintext is huge, it looks more effective to calculate the transition

matrix before encryption, and then search in the matrix during the encoding process.

However, if the plaintext is short, it looks more effective to calculate just those elements

of the matrix which are used during the encryption.

§ 4. Side-channel attacks (SCA)

A side-channel attack, unlike the other attacks, not analysis the statistical or math

ematical weakness of a cryptographic algorithm, it targets the implementation instead,

69

Di:iMOSI, HORVATH, MOLNAR, KOVACS, DIENE

with noninvasive methods. A side-channel is an indirect source of physical informa

tion leaking from the device, such as, the device electromagnetic radiation (EM), power

consumption, or the runtime of the algorithm. [1]

§ 4.1. Timing attack

Timing analysis is an SCA that is used to extract critical information about the

device under attack by analysing the execution time of each operation under different

setups and input patterns. Every operation performed in a silicon-based device takes a

certain amount of time to complete. This time can vary due to the type of operation,

the input data, the technology used to build the device, and the properties of the

environment, in which the device is operating.

An adversary often applies timing analysis on cryptographic systems to extract the

secret key, where timing analysis can help the attacker determine which subsets of the

key are correct, and which subsets are not. The way an adversary measures the delay of

a signal is by applying a change in the input and recording the delay that occurs before

the output is updated.

Timing attacks are usually applied along with other side-channel attacks since more

information can be extracted when different analysis methods are employed. Power

analysis is one example that works well with timing attacks; the power trace does not

only show the pattern in which the operation performed is correlated to, but also how

long it took before the operation is completed. The order of operation is also revealed

when applying timing analysis to power signals; this order can help identify the type of

process the device is running and may even allow the adversary to reverse engineer the

device.

4.1.1. Timing attack countermeasures

One of the biggest things you can do to protect against timing attacks is to use

proper cryptographic libraries and the helper functions they provide (for example, if

you are using the bcrypt.js library, use the compare function that it provides, rather

than doing your own string comparisons). Any time you try and implement your own

crypto it is probably going to be vulnerable to timings attacks.

These kinds of attacks can be very hard to perform though - there are (normally)

very small differences in the time to compare strings, for example, which would be harder

to detect over the internet (although you can work around this with large samples).

The attacks that are easier to exploit are often where there's external interaction

from your code. For example, a password reset feature might have to send an email

(which can be slow) if the username is valid and may just return immediately if it is

not. Asynchronous external calls can help here (and are probably better for the user

anyway). Most timing attacks rely on an attacker being able to make many scripted

70

A SIDE-CHANNEL ATTACK AGAINST AN AUTOMATA THEORY BASED STREAM CIPHER

requests and analyse the response times, so anything you can do to make this harder

(for example, rate limiting or a CAPTCHA) will also provide you a degree of protection.

It does not necessarily solve them, but it would make them harder to pull off.

With all the different types of attacks and vulnerabilities out there, writing per

fectly secure code is all but impossible (which is why we believe in Application Security

Management), but by implementing best practices like secure code review and making

smart choices, you can make a positive difference in your security posture. Under

standing how different attacks work a big element of this are. Timing attacks are a

great example of a vulnerability you can mitigate in code, but that can lead to account

takeovers if not addressed. Of course, as with anything security-related, the devil is in

the details.

§ 4.2. Protection against side-channel timing attack

Most of the vulnerabilities could be prevented during the design phase, for example

with using well known mathematical methods or proven cryptographic algorithms. The

novel stream cipher described by this paper is secure against the side-channel timing

attack by design, because its running time depends only on the size of the input. With

out any correlation between the sensitive information, like the Latin square, the AES

keys, or the seed of the pseudorandom number generator, measuring the running time

of the algorithm will not provide any result for the adversary.

To prove this theory, we tried to change keys and seed and measured the runtime

of the cipher. The tests contain 100 runs with every change. First, we changed the seed

of the pseudorandom number generator, but he runtime is closely the same all the time.

Pseudorandom seed
550

500

450

400

350

300

- Seed: 123456 - Seed: 111111
- Seed:000000 - Seed:999999

Figure 1. Pseudorandom generator seed

71

Di:iMOSI, HORVATH, MOLNAR, KOVACS, DIENE

Changing the AES key of the OTP brought the same result, so we could not find

any correlation between the runtime and the key.

OTP key
550

500

450

400

350

300

- Original key - [O] key

Figure 2. AES key of the OTP

Tests performed on the implementation have shown that the novel stream cipher,

described by this paper, is secure against the side-channel timing attack.

§ 5. Performance

We applied key automata with 256 states and 256 inputs having the properties

discussed before. The plaintext alphabet and also the set of the final states of the key

automaton was the same consisting of 16 elements.

Testing software simulations of the proposed stream cipher were implemented using

a computer program written in c++. The implementation was tested on a conventional

laptop with Intel Core i7-1065G7 processor, which has 4 cores and 8 threads clocked at

1.3 - 3.9 GHz with 8 MByte of Intel Smart Cache, under Windows 10 operation system.

If the implemented system reaches the speed of 0.37 MByte/s as encryption and 0.36

MByte/s as decryption (in relation to the length of the plaintext). Because some stream

ciphers reach the speed of more than 20 MByte/s as encryption or decryption on a

standard PC (see, for example, [7]), the proposed stream cipher is relatively slow at

least for the implemented software case.

Recall that the considered size of the key automaton takes 64 kByte which can be

stored on 511 Byte in compressed form. (See Chapter 3.) Moreover, we note that the

length of the encryption/ decryption software is less than 1 MByte. Thus the system

is appropriate to micro-size realization (microcontrollers, smart cards etc.). Choosing

suitable hardware devices (microcontrollers, smart cards, true random number gener

ators, etc.) in the technical realization, one can considerably improve the processing

72

A SIDE-CHANNEL ATTACK AGAINST AN AUTOMATA THEORY BASED STREAM CIPHER

speed.

§ 5.1. Conclusion

In this paper we studied a novel stream cipher based on finite automata without

outputs. It was also shown that the system is secure against some attacks whenever

some appropriate parameters are considered. A software implementation of the applied

version is relatively slow and it is not time optimized yet.

There are a few major issues with the discussed stream cipher.

- There is no rigorous security analysis. Only some standard attack methods are

considered. In fact, often these attacks are discussed by the means of an example

instance of the cipher and not in general.

- The discussed stream cipher is not really efficient, at least for the software case.

In comparison with other promising designs and even with the state of the art ciphers

(see, e.g., [7]) the performance is poor. A rigorous machine-independent investigation

should be necessary to explore the reasons of this drawback. In addition, it would be

great to find minimization algorithms to reduce the size of the key automaton.

References

[1] S. Bhunia and M. Tehranipoor. 2018. Hardware Security: A Hands-on Learning Approach
(1st. ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[2] J. Buchmann, Johannes. Introduction to Cryptography. Springer, 2002. DOI: 10.1007 /978-
3-642-11186-0.

[3] P. Domosi, G. Horvath: A novel cryptosystem based on abstract automata and Latin cubes
Studia Sci. Mathematicarum Hung. 52:(2), 2015, 221-232.

[4] Domosi, P. and Horvath, G., Symmetric Key Sttream Cipher Cryptographic Method and
Device, European Patent Register, EP3639464Bl, Espacenet, 2021.

[5] P. Domosi, J. Gall, G. Horvath, N. Tihanyi: Statistical Analysis ofDHl Cryptosystem.Acta
Cybernet., Szeged, 23 (2017), 371-378.

[6] J. Hopcroft, R. Motwani, J. Ullnan: Introduction to Automata Theory, Languages, and
Computation. 3rd edition. Pearson Education, Addison Wesley, Boston, San Francisco, New
York, etc,., 2008.

[7] Kashmar, A., Ismail, E. S., Blostream: A High Speed Stream Cipher. J. Eng. Sci. Techn.,
Vol. 12, No 4 (2017), 1111-1128.

