Note on ($\tilde{\rho}, \tilde{D})$-separable polynomials in skew polynomial rings

SATOSHI YAMANAKA
Department of Integrated Science and Technology
National Institute of Technology, Tsuyama College
yamanaka@tsuyama.kosen-ac.jp

Abstract

The notion of ($\tilde{\rho}, \tilde{D})$-separable polynomials in skew polynomial rings was introduced by S. Ikehata. In this paper, we shall give a new characterization of ($\tilde{\rho}, \tilde{D}$)-separable polynomials in skew polynomial rings which shows the difference between separable systems and ($\tilde{\rho}, \tilde{D})$-separable systems.

1 Introduction and Preliminaries

Let A / B be a ring extension with common identity. A / B is said to be separable if the A - A-homomorphism of $A \otimes_{B} A$ onto A defined by $z \otimes w \mapsto z w(z, w \in A)$ splits. It is well known that A / B is separable if and only if there exists $\sum_{i} z_{i} \otimes w_{i} \in\left(A \otimes_{B} A\right)^{A}$ such that $\sum_{i} z_{i} w_{i}=1$, where $\left(A \otimes_{B} A\right)^{A}=\left\{\theta \in A \otimes_{B} A \mid u \theta=\theta u(\forall u \in A)\right\}$. Then we say that $\left\{z_{i}, w_{i}\right\}$ is a separable system of A / B.

Throughout this paper, let B be an associative ring with identity element $1, \rho$ an automorphism of B, and D a ρ-derivation (that is, D is an additive endomorphism of B such that $D(\alpha \beta)=D(\alpha) \beta+\rho(\alpha) D(\beta)$ for any $\alpha, \beta \in B)$. By $B[X ; \rho, D]$ we denote the skew polynomial ring in which the multiplication is given by $\alpha X=$ $X \rho(\alpha)+D(\alpha)$ for any $\alpha \in B$. Moreover, by $B[X ; \rho, D]_{(0)}$, we denote the set of all monic polynomials f in $B[X ; \rho, D]$ such that $f B[X ; \rho, D]=B[X ; \rho, D] f$. For each polynomial $f \in B[X ; \rho, D]_{(0)}$, the residue ring $B[X ; \rho, D] / f B[X ; \rho, D]$ is a free ring extension of B.

From now on, let $B^{\rho}=\{b \in B \mid \rho(b)=b\}, f=\sum_{i=0}^{m} X^{i} a_{i} \in B[X ; \rho, D]_{(0)} \cap B^{\rho}[X]$ $\left(m \geq 1, a_{m}=1\right), A=B[X ; \rho, D] / f B[X ; \rho, D]$, and $x=X+f B[X ; \rho, D]$. Then A is a free ring extension of B with a free B-basis $\left\{1, x, x^{2}, \cdots, x^{m-1}\right\}$. Since $f \in B^{\rho}[X]$, there is a ring automorphism $\tilde{\rho}$ of A which is naturally induced by ρ, that is, $\tilde{\rho}$ is defined by

$$
\tilde{\rho}\left(\sum_{j=0}^{m-1} x^{j} c_{j}\right)=\sum_{j=0}^{m-1} x^{j} \rho\left(c_{j}\right) \quad\left(c_{j} \in B\right) .
$$

Similarly, there is a $\tilde{\rho}$-derivation \tilde{D} of A which is naturally induced by D, that is, \tilde{D} is defined by

$$
\tilde{D}\left(\sum_{j=0}^{m-1} x^{j} c_{j}\right)=\sum_{j=0}^{m-1} x^{j} D\left(c_{j}\right) \quad\left(c_{j} \in B\right) .
$$

Now we consider the following A - A-homomorphisms:

$$
\left\{\begin{array}{l}
\mu: A \otimes_{B} A \rightarrow A, \quad \mu(z \otimes w)=z w \\
\xi: A \otimes_{B} A \rightarrow A \otimes_{B} A, \quad \xi(z \otimes w)=\tilde{D}(z) \otimes \tilde{\rho}(w)+z \otimes \tilde{D}(w) \quad(z, w \in A) \\
\eta: A \otimes_{B} A \rightarrow A \otimes_{B} A, \quad \eta(z \otimes w)=\tilde{\rho}(z) \otimes \tilde{\rho}(w)-z \otimes w
\end{array}\right.
$$

We say that f is a separable polynomial in $B[X ; \rho, D]$ if A is a separable extension of B. By the definition, f is separable in $B[X ; \rho, D]$ if and only if there exists an A - A-homomorphism $\nu: A \rightarrow A \otimes_{B} A$ such that $\mu \nu=1_{A}$ (the identity map of $A)$. Moreover, f is called a $(\tilde{\rho}, \tilde{D})$-separable polynomial in $B[X ; \rho, D]$ if there exists an A - A-homomorphism $\nu: A \rightarrow A \otimes_{B} A$ such that $\mu \nu=1_{A}, \xi \nu=\nu \tilde{D}$, and $\eta \nu=\nu\left(\tilde{\rho}-1_{A}\right)$. The notion of $(\tilde{\rho}, \tilde{D})$-separable polynomials was introduced by S . Ikehata in [3]. Obviously, a ($\tilde{\rho}, \tilde{D}$)-separable polynomial is separable. We put here $B[X ; \rho]=B[X ; \rho, 0]$ and $B[X ; D]=B\left[X ; 1_{B}, D\right]$. If $D=0$ then a $(\tilde{\rho}, \tilde{0})$-separable polynomial in $B[X ; \rho]$ is called $\tilde{\rho}$-separable. Similarly, if $\rho=1_{B}$ then a $\left(\tilde{1_{B}}, \tilde{D}\right)$ separable polynomial in $B[X ; D]$ is called \tilde{D}-separable.

In [3], S. Ikehata studied ($\tilde{\rho}, \tilde{D})$-separable polynomials in $B[X ; \rho, D]$. Moreover, in [11], X. Lou gave a characterization of $\tilde{\rho}$-separable polynomials in $B[X ; \rho]$ by making use of the trace map. In this paper, we shall study $(\tilde{\rho}, \tilde{D})$-separable polynomials in $B[X ; \rho, D]$ in the case $\rho D=D \rho$. In section 2 , we shall show a equivalent condition for $(\tilde{\rho}, \tilde{D})$-separable polynomials in $B[X ; \rho, D]$. In section 3, we shall give a new characterization of $(\tilde{\rho}, \tilde{D})$-separable polynomial in $B[X ; \rho, D]$. It shows the difference between separable systems and ($\tilde{\rho}, \tilde{D})$-separable systems.

2 Equivalent condition for ($\tilde{\rho}, \tilde{D})$-separability

From this section, assume that $\rho D=D \rho$, and let $B^{\rho}=\{b \in B \mid \rho(b)=b\}, B^{\rho, D}=$ $\{b \in B \mid \rho(b)=b, D(b)=0\}, C\left(B^{\rho, D}\right)$ the center of $B^{\rho, D}, m$ a positive integer, and f a monic polynomial in $B[X ; \rho, D] \cap B^{\rho}[X]$ of the form $f=\sum_{i=0}^{m} X^{i} a_{i}\left(a_{m}=1\right)$. As was shown in [10, Lemma 1.6 and Corollary 1.7], $f \in C\left(B^{\rho, D}\right)[X]$ and

$$
a_{i} \rho^{m}(\alpha)=\sum_{j=i}^{m}\binom{j}{i} \rho^{i} D^{j-i}(\alpha) a_{j} \quad(\forall \alpha \in B, 0 \leq i \leq m-1) .
$$

We shall use the following conventions:

- $A=B[X ; \rho, D] / f B[X ; \rho, D]$
- $x=X+f B[X ; \rho, D]$
- $\tilde{\rho}$ is an automorphism of A defined by

$$
\tilde{\rho}\left(\sum_{i=0}^{m-1} x^{i} c_{i}\right)=\sum_{i=0}^{m-1} x^{i} \rho\left(c_{i}\right) \quad\left(c_{i} \in B\right)
$$

- \tilde{D} is a $\tilde{\rho}$-derivation of A define by

$$
\tilde{D}\left(\sum_{i=0}^{m-1} x^{i} c_{i}\right)=\sum_{i=0}^{m-1} x^{i} D\left(c_{i}\right) \quad\left(c_{i} \in B\right) .
$$

- $A^{\tilde{\rho}, \tilde{D}}=\{z \in A \mid \tilde{\rho}(z)=z, \tilde{D}(z)=0\}$.
- $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ is the center of $A^{\tilde{\rho}, \tilde{D}}$.
- $V_{m-1}=\left\{z \in A \mid \rho^{m-1}(\alpha) z=z \alpha(\forall \alpha \in B)\right\}$.
- $T(A, B)=A \otimes_{B} A$.
- $T(A, B)^{A}=\{\theta \in T(A, B) \mid u \theta=\theta u(\forall u \in A)\}$.
- $T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right)=C\left(A^{\tilde{\rho}, \tilde{D}}\right) \otimes_{C\left(B^{\rho, D}\right)} C\left(A^{\tilde{\rho}, \tilde{D}}\right)$.
- $T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right)^{C\left(A^{\tilde{\rho}, \tilde{D}}\right)}=\left\{\theta \in T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right) \mid u \theta=\theta u(\forall u \in\right.$ $\left.C\left(A^{\tilde{\rho}, \tilde{D}}\right)\right\}$.
- $\pi_{i}: A \rightarrow B$ is the map defined by

$$
\pi_{i}\left(\sum_{j=0}^{m-1} x^{j} c_{j}\right)=c_{i} \quad\left(c_{i} \in B, 0 \leq i \leq m-1\right)
$$

- $\tau: A \rightarrow B$ is the map defined by

$$
\tau(z)=\sum_{i=0}^{m-1} \pi_{i}\left(x^{i} z\right) \quad(z \in A)
$$

Clearly, $\pi_{i}(0 \leq i \leq m-1)$ and τ are $B^{\rho, D}$ - B-homomorphisms. Moreover, we define polynomials $Y_{i} \in B[X ; \rho, D](0 \leq i \leq m-1)$ as follows:

$$
\begin{aligned}
Y_{0} & =X^{m-1}+X^{m-2} a_{m-1}+\cdots+X a_{2}+a_{1} \\
Y_{1} & =X^{m-2}+X^{m-3} a_{m-1}+\cdots+X a_{3}+a_{2} \\
& \cdots \\
Y_{i} & =X^{m-i-1}+X^{m-i-2} a_{m-1}+\cdots+X a_{i+2}+a_{i+1}\left(=\sum_{k=i}^{m-1} X^{k-i} a_{k+1}\right), \\
& \ldots \\
& \cdots \\
Y_{m-2} & =X+a_{m-1} \\
Y_{m-1} & =1
\end{aligned}
$$

The polynomials Y_{i} were introduced by Y. Miyashita to characterize separable polynomials in $B[X ; \rho, D]$ (cf. [5]). We set $y_{i}=Y_{i}+f B[X ; \rho, D] \in A(0 \leq i \leq m-1)$.

Remark 1. (1) Since $f \in C\left(B^{\rho, D}\right)$, we see that $\tau\left(x^{k}\right)$ is in $C\left(B^{\rho, D}\right)$ for any non-negative integer k. Moreover, $Y_{i}(0 \leq i \leq m-1)$ is in $C\left(B^{\rho, D}\right)[X]$ and y_{i} $(0 \leq i \leq m-1)$ is in $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$.
(2) It is easy to see that

$$
\begin{aligned}
C\left(A^{\tilde{\rho}, \tilde{D}}\right) & =\left(C\left(B^{\rho, D}\right)[X]+f B[X ; \rho, D]\right) / f B[X ; \rho, D] \\
& \cong C\left(B^{\rho, D}\right)[X] / f C\left(B^{\rho, D}\right)[X] .
\end{aligned}
$$

In particular, a free B-basis $\left\{1, x, x^{2}, \cdots, x^{m-1}\right\}$ of A can be regarded as a free $C\left(B^{\rho, D}\right)$-basis of $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$, and the restriction map $\left.\tau\right|_{C\left(A^{\tilde{\rho}, \tilde{D})}\right.}$ is a trace map from $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ to $C\left(B^{\rho, D}\right)$.
(3) As was shown in [10, Lemma 2.1], it is already known that

$$
T(A, B)^{A}=\left\{\sum_{i=0}^{m-1} y_{i} v \otimes x^{i} \mid v \in V_{m-1}\right\}
$$

In particular, every separable system of A / B is of the form $\left\{y_{i} v, x^{i}\right\}$ for some $v \in V_{m-1}$. Similarly, we can see that

$$
T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right)^{C\left(B^{\rho, D}\right)}=\left\{\sum_{i=0}^{m-1} y_{i} v \otimes x^{i} \mid v \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)\right\}
$$

(4) Note that $\sum_{i=0}^{m-1} Y_{i} X^{i}=\sum_{i=0}^{m-1} X^{i} Y_{i}=f^{\prime}$, where f^{\prime} is the derivative of f.

The following is a equivalent condition for $(\tilde{\rho}, \tilde{D})$-separability in $B[X ; \rho, D]$.
Lemma 2.1. The following are equivalent.
(1) f is $(\tilde{\rho}, \tilde{D})$-separable in $B[X ; \rho, D]$.
(2) There exists $v \in V_{m-1} \cap A^{\tilde{\rho}, \tilde{D}}$ such that $\sum_{i=0}^{m-1} y_{i} v x^{i}=1$.
(3) f^{\prime} is invertible in $B[X ; \rho, D]$ modulo $f B[X ; \rho, D]$, where f^{\prime} is the derivative of f.
(4) f is separable in $C\left(B^{\rho, D}\right)[X]$ (i.e. a commutative ring $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ is separable over $\left.C\left(B^{\rho, D}\right)\right)$.
(5) There exists $v \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ such that $\sum_{i=0}^{m-1} y_{i} v x^{i}=1$ and $\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i} u\right)=u$ for any $u \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$.

Proof. We have already known that (1), (2), (3), and (4) are equivalent by [3, Theorem 2.1]. We shall show that (4) is equal to (5).
$(4) \Longrightarrow(5)$ Assume that f is separable in $C\left(B^{\rho, D}\right)[X]$, that is, a commutative ring $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ is (finitely generated projective and) separable over $C\left(B^{\rho, D}\right)$. Note that τ is a trace map from $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ to $C\left(B^{\rho, D}\right)$ by Remark 1 (2). Let u be arbitrary element in $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$. Then, by [1, chapter III, Theorem 2.1], there exists a finite set $\left\{z_{i}, w_{i}\right\}\left(z_{i}, w_{i} \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)\right)$ such that $\sum_{i} z_{i} w_{i}=1$ and $\sum_{i} z_{i} \tau\left(w_{i} u\right)=u$. Concerning $\sum_{i} z_{i} \otimes w_{i} \in T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right)$, we have

$$
\begin{aligned}
\sum_{i} z_{i} \otimes w_{i} u & =\sum_{i} z_{i} \otimes \sum_{j} z_{j} \tau\left(w_{j} w_{i} u\right) \\
& =\sum_{j} \sum_{i} z_{i} \tau\left(w_{i} w_{j} u\right) \otimes z_{j} \\
& =\sum_{j} u w_{j} \otimes z_{j} .
\end{aligned}
$$

Thus $\sum_{i} z_{i} \otimes w_{i}=\sum_{j} w_{j} \otimes z_{j} \in T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right)^{C\left(A^{\tilde{\rho}, \tilde{D}}\right)}$. So, by Remark 1 (3), there exists $v \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ such that $\sum_{i} z_{i} \otimes w_{i}=\sum_{i=0}^{m-1} y_{i} v \otimes x^{i}$. Let μ and $\widehat{\tau}$ be additive endomorphisms from $T\left(C\left(A^{\tilde{\rho}, \tilde{D}}\right), C\left(B^{\rho, D}\right)\right)$ to $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ defined by $\mu(z \otimes w)=$ $z w$ and $\widehat{\tau}(z \otimes w)=z \tau(w)\left(z, w \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)\right)$, respectively. We obtain then

$$
\begin{aligned}
& 1=\sum_{i} z_{i} w_{i}=\mu\left(\sum_{i} z_{i} \otimes w_{i}\right)=\mu\left(\sum_{i=0}^{m-1} y_{i} v \otimes x^{i}\right)=\sum_{i=0}^{m-1} y_{i} v x^{i} \\
& u=\sum_{i} z_{i} \widehat{\tau}\left(w_{i} u\right)=\widehat{\tau}\left(\sum_{i} z_{i} \otimes w_{i} u\right)=\widehat{\tau}\left(\sum_{i=0}^{m-1} y_{i} v \otimes x^{i} u\right)=\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i} u\right) .
\end{aligned}
$$

$(5) \Longrightarrow(4)$ It is obvious by [1, chapter III, Theorem 2.1].

3 Characterization of $(\tilde{\rho}, \tilde{D})$-separability

The conventions and notations employed in the preceding section will be used in this section. First we shall state the following.

Lemma 3.1. $\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right)$ is in $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ and

$$
\rho^{1-m}(\alpha) \sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right)=\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) \alpha \quad(\forall \alpha \in B) .
$$

Proof. Since $y_{i} \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ and $\tau\left(x^{i}\right) \in C\left(B^{\rho, D}\right)$, it is obvious that $\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) \in$ $C\left(A^{\tilde{\rho}, \tilde{D}}\right)$. Let α be arbitrary element in B, and $\widehat{\tau}: A \otimes_{B} A \rightarrow A$ an $A-B$ homomorphism defined by $\widehat{\tau}(z \otimes w)=z \tau(w)(z, w \in A)$. As was shown [10],
we have already known that

$$
\alpha y_{j}=\sum_{i=j}^{m-1} y_{i}\binom{i}{j}(-1)^{i-j} \rho^{m-j-1} D^{i-j}(\alpha) \quad(0 \leq j \leq m-1) .
$$

Noting that $x^{i} \alpha=\sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} \rho^{-j} D^{i-j}(\alpha) x^{j}$, we obtain

$$
\begin{aligned}
\sum_{j=0}^{m-1} \rho^{1-m}(\alpha) y_{j} \tau\left(x^{j}\right) & =\sum_{j=0}^{m-1} \sum_{i=j}^{m-1} y_{i}\binom{i}{j}(-1)^{i-j} \rho^{-j} D^{i-j}(\alpha) \tau\left(x^{j}\right) \\
& =\sum_{i=0}^{m-1} \sum_{j=0}^{i} y_{i}\binom{i}{j}(-1)^{i-j} \rho^{-j} D^{i-j}(\alpha) \tau\left(x^{j}\right) \\
& =\widehat{\tau}\left(\sum_{i=0}^{m-1} \sum_{j=0}^{i} y_{i}\binom{i}{j}(-1)^{i-j} \rho^{-j} D^{i-j}(\alpha) \otimes x^{j}\right) \\
& =\widehat{\tau}\left(\sum_{i=0}^{m-1} y_{i} \otimes\left(\sum_{j=0}^{i}\binom{i}{j}(-1)^{i-j} \rho^{-j} D^{i-j}(\alpha) x^{j}\right)\right) \\
& =\widehat{\tau}\left(\sum_{i=0}^{m-1} y_{i} \otimes x^{i} \alpha\right) \\
& =\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) \alpha
\end{aligned}
$$

This completes the proof.

Corollary 3.2 .

$$
\tilde{\rho}^{1-m}(z) \sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right)=\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) z \quad(\forall z \in A)
$$

Proof. It is obvious by Lemma 3.1.
So we shall state the following theorem which shows a new equivalent condition for ($\tilde{\rho}, \tilde{D})$-separability. It shows the difference between separable systems and ($\tilde{\rho}, \tilde{D})$ separable systems of A / B.

Theorem 3.3. The following are equivalent.
(1) f is $(\tilde{\rho}, \tilde{D})$-separable in $B[X ; \rho, D]$.
(2) f is separable in $B[X ; \rho, D]$ with a separable system $\left\{y_{i} v, x^{i}\right\}$ of A / B such that $\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i}\right)=1$, where $v \in V_{m-1}$.

Proof. (1) $\Longrightarrow(2)$ Let f be $(\tilde{\rho}, \tilde{D})$-separable in $B[X ; \rho, D]$. So, by Lemma 2.1 (5), there exists $v \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$ such that $\sum_{i=0}^{m-1} y_{i} v x^{i}=1$ and $\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i} u\right)=u$ for any $u \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$. Clearly, $\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i}\right)=1$. To show that $\left\{y_{i} v, x^{i}\right\}$ is a separable system of A / B, it suffices to prove that $\sum_{i=0}^{m-1} y_{i} v \otimes x^{i} \in\left(A \otimes_{B} A\right)^{A}$. Let $\tilde{f}^{\prime}=f^{\prime}+f B[X ; \rho, D]$, where f^{\prime} is the derivative of f. Noting that $\sum_{i=0}^{m-1} y_{i} x^{i}=\tilde{f}^{\prime}$, we have

$$
1=\sum_{i=0}^{m-1} y_{i} v x^{i}=\tilde{f}^{\prime} v=v \tilde{f}^{\prime} .
$$

Thus \tilde{f}^{\prime} is invertible in A (this is the assertion (3) of Lemma 2.1). For any $\alpha \in B$, it follows from the proof of [3, Lemma 1.2] that $\alpha f^{\prime}=f^{\prime} \rho^{m-1}(\alpha)$, and hence we obtain

$$
\begin{aligned}
\alpha & =\alpha \cdot 1 \\
& =\alpha \tilde{f}^{\prime} v=\tilde{f}^{\prime} \rho^{m-1}(\alpha) v, \\
& =1 \cdot \alpha=\tilde{f}^{\prime} v \alpha .
\end{aligned}
$$

Since \tilde{f}^{\prime} is invertible, we have $\rho^{m-1}(\alpha) v=v \alpha$. Therefore $v \in V_{m-1}$, and hence $\sum_{i=0}^{m-1} y_{i} v \otimes x^{i} \in\left(A \otimes_{B} A\right)^{A}$ by Remark 1 (3).
$(2) \Longrightarrow(1)$ Assume that f is separable in $B[X ; \rho, D]$ with a separable system $\left\{y_{i} v, x^{i}\right\}$ of A / B such that $\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i}\right)=1$, where $v \in V_{m-1}$. If $v \in A^{\tilde{\rho}, \tilde{D}}$ then f is $(\tilde{\rho}, \tilde{D})$-separable by Lemma 2.1 (2). Therefore we shall show that $v \in A^{\tilde{\rho}, \tilde{D}}$. By Corollary 3.2, we see that

$$
1=\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i}\right)=\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) v=\tilde{\rho}^{1-m}(v) \sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) .
$$

On the other hand, since $\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) \in C\left(A^{\tilde{\rho}, \tilde{D}}\right)$, we have

$$
\begin{aligned}
& 1=\tilde{\rho}(1)=\tilde{\rho}\left(\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) v\right)=\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) \tilde{\rho}(v), \\
& 0=\tilde{D}(1)=\tilde{D}\left(\sum_{i=0}^{m-1} y_{i} \tau\left(x^{i}\right) v\right)=\sum_{i=0}^{m-1} y_{i} v \tau\left(x^{i}\right) \tilde{D}(v) .
\end{aligned}
$$

This implies that $\tilde{\rho}(v)=v$ and $\tilde{D}(v)=0$, whence $v \in A^{\tilde{\rho}, \tilde{D}}$.

References

[1] F. DeMeyer, Separable algebra over commutative rings, Lecture Notes in Mathematics, Vol.181, Springer-Verlag, Berlin-Heidelberg-New York.
[2] K. Hirata and K. Sugano, On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
[3] S. Ikehata, On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22 (1980), 115-129.
[4] S. Ikehata, Azumaya algebras and skew polynomial rings, Math, J. Okayama Univ., 23 (1981), 19-32.
[5] Y. Miyashita, On a skew polynomial ring, J. Math. Soc. Japan, 31 (1979), no.2, 317-330.
[6] T. Nagahara, On separable polynomials over a commutative rings II, Math. J. Okayama Univ., 15, (1972), 149-162.
[7] T. Nagahara, On separable polynomials of degree 2 in skew polynomial rings, Math. J. Okayama Univ., 19 (1976), 65-95.
[8] K. Sugano, Separable extensions and Frobenius extensions, Osaka J. Math., 7 (1970), 29-40.
[9] S. Yamanaka and S. Ikehata, An alternative proof of Miyasita's theorem in a skew polynomial rings, Int. J. Algebra, 21 (2012), 1011-1023
[10] S. Yamanaka, An alternative proof of Miyasita's theorem in a skew polynomial rings $I I$, Gulf J. Math., 5 (2017), 9-17.
[11] X.Lou, On $\tilde{\rho}$-separability in skew polynomial rings, Port. Math., Vol.51, Frac. 2 (1994), 235-241.

Advanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College. 624-1 Numa, Tsuyama city, Okayama, 708-8509, Japan

E-mail address : yamanaka@tsuyama.kosen-ac.jp

