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1 Introduction 

We denote by lF q the field of q elements. A linear code of length n, dimension k over 
lFq is a k-dimensional subspace C of the vector space lF; of n-tuples over lFq. The 
vectors in C are called codewords. C is called an [n, k, d]q code if it has minimum 
Hamming weight d. A k x n matrix G whose rows form a basis of C is a generator 
matrix of C. We only consider non-degenerate linear codes whose generator matrices 
have no all-zero column. The weight distribution of C is the list of numbers Ai, 
which is the number of codewords of C with weight i. The weight distribution with 
(Ao, Ad, ... )= (1, o:, ... ) is expressed as 01d" · · · in this paper. A q-ary linear code C is 
w-weight ( mod q) if C has exactly w kinds of weights under modulo q for codewords. 

For an [n, k, d]q code C with a generator matrix G, C is called t-extendable (to C') 
if there exist t vectors h1, ... , ht E lF~ such that the extended matrix [ G, hI, · · · , hr] 
generates an [n+t, k, d+t]q code C'. A 1-extendable code is simply called extendable 
and the extended code C' is called an extension of C. It is well known that every 
[n, k, dh code with d odd is extendable [14]. It is also known that every [n, 1, d]q code 
is extendable and that an [n, 2, d]q code is not extendable if and only if n = s(q+ 1), 
d = sq for some s E N [15]. So, we assume that k 2 3. 

The "optimal linear codes problem" is a fundamental problem in coding theory 
to find nq(k, d), the minimum length n for which an [n, k, d]q code exists for given 
q, k, d [1, 3]. See [22] for the updated tables of nq(k, d) for some small q and k. 
Extension theorems could be applied to the optimal linear codes problem to find 
new codes from old ones or to prove the nonexistence of linear codes with certain 
parameters. The aim of this paper is to give a survey of recent progress on the 
extendability of linear codes and their applications. 

2 Extension theorems 

The most well-known extension theorem is the following for 2-weight (mod q) codes. 

*This paper is a preliminary version and the final version will be submitted to elsewhere. 
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Theorem 2.1 ([2, 4]). Every [n, k, d]q code with gcd(d, q) = 1 satisfying Ai= 0 for 
all i =J. 0, d (mod q) is extendable. 

For the case gcd(d, q) = 2, the following is known. 

Theorem 2.2 ([26]). For q = 2h with h 2 3, every [n, k, d]q code with gcd(d, q) = 2 
satisfying Ai = 0 for all i =J. 0, d (mod q) is 2-extendable. 

For an [n, k, d]q code C, let 

1 
<Po= - "Al ~ ., 

q- 1·. o q i,i> 

1 
<Pi=- L A-l i, 

q-
i;EO,d (mod q) 

where the notation qli means that q is a divisor of i. The pair of integers (<Po, <P1) 
is called the diversity of C ([17, 19]). Theorem 2.1 shows that C is extendable if 
<P1 = 0. This condition can be weakened as follows. 

Theorem 2.3 ([27]). Every [n, k, d]q code with gcd(d, q) = 1 is extendable if <P 1 < 
k-2 q . 

It often happens that an optimal [n, k, d]q code is necessarily extendable when 
d = - l (mod q). For example, [69 - e, 5, 45 - eh codes are optimal for e = 0, 1, 2 
and every [68, 5, 44h code is extendable [24]. But it is not known whether every 
[67, 5, 43h code is extendable or not. The famous Golay [11, 6, 5h code is extendable 
by the above theorem. 

As for 3-weight and 4-weight (mod q) codes, the following theorems are known. 

Theorem 2.4 ([17, 29]). Let C be an [n,k,d]q code with q 2 5, d = -2 (mod q), 
satisfying Ai = 0 for all i =J. 0, -1, - 2 ( mod q). Then C is extendable. 

Theorem 2.5 ([26]). For q = 2h with h 2 3, every [n, k, d]q code with d odd 
satisfying Ai = 0 for all i =J. 0, d (mod q/2) is extendable. 

As another application, extension theorems are often applied to prove the non
existence of codes with certain parameters by showing that they are extendable to 
a non-existing code. Actually, the motivation to prove Theorem 2.4 for q = 2h with 
h 2 3 was to prove the non-existence of [328, 4, 286]s, [474, 4, 414]s, [803, 4, 702]s and 
[858, 4, 750]s codes all of which attain the Griesmer bound [7]. See also [13] for the 
extendability of linear codes attaining the Griesmer bound. 

We denote by 0j the number of points in PG(j, q), i.e., 0j := (qH1 -1)/(q-1) = 
qJ + qJ-l + • • • + q + l. We set 00 = 1 and 0j = 0 for j < 0 for convenience. For 
ternary linear codes (q = 3), the following is known. 

Theorem 2.6 ([19], [23], [27]). Let C be an [n, k, dh code with gcd(3, d) = 1. Then 
C is extendable if one of the following conditions holds: 

(a) <Po= 0k-3, (b) <P1 < 3k-2, (c) <Po+ <P1 < 0k-2 + 3k-2, 
(d) <Po+ <P1 > ek-2 + 3k-2 + 2. 3k-3 , (e) 2<Po + <P1 :::; 20k-2· 

Moreover, C is 2-extendable if (<Po, <P1) E {(0k_2, 0), (0k_3, 2.3k-2), (0k_ 2+3k-2, 3k-2 )} 

when d = l (mod 3). 
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The condition (c) of Theorem 2.6 and the case (<I> 0 ,<f>i) = (0k_2 +3k-2 ,3k-2) can 
be generalized as follows. 

Theorem 2. 7 ([16]). Every [n, k, d]P code with gcd(d,p) = 1, p prime, is extendable 
if <l>o + <l>1 < 0k-2 + pk-2, 

Theorem 2.8 ([26]). Let C be an [n, k, d]q code with gcd(3, d) = 1. Then C is 
extendable if (<I>a, <I> 1) = (0k-l - 2qk-2 , qk-2). 

Let C be an [n, k, d]q code with d =f=. 0 (mod q). The weight spectrum modulo q 
(q-WS) is defined as the q-tuple (w0 ,w1 , ... ,wq_1 ) with 

Wo = <I>a, 1 L . Wj = -- Ai for J = 1, 2, ... , q - 1 
q-1 .. 

i=J (mod q) 

to investigate the extendability of q-ary linear codes for q 2 4 ([10]). Note that 
<I> 1 = I:#o,d' Wj, where d' is an integer with d = d' (mod q), 1 :S: d' :S: q - 1. For 
quaternary linear codes (q = 4), the following results are known. 

Theorem 2.9 ([12, 16, 18, 25]). Let C be an [n, k, d] 4 code with k 2 3, d odd. Then 
C is extendable if one of the following conditions holds: 

(a) Wo = ek-4, (b) <I>1 = W2, (c) W2 = 0, 
(d) Wo + W2 < 0k-2 + 4k-2, (e) Wo + W2 > 0k-2 + 2 · 4k-2 - 4. 

Theorem 2.10 ([12]). Let C be an [n, k, d]4 code with 0k-4 < w0 :S: 0k_3, k 2 4, 
d =f=. 0 (mod 4). Then, w0 = 0k_3 and C is extendable. Moreover, C is 2-extendable 
when d is even. 

Theorem 2.11 ([28]). Let C be an [n, k, d] 4 code with <I> 1 = 0, k 2 3, d = 2 (mod 4). 
Then C is 2-extendable if w0 < 0k_2 + 2 · 4k-3 or w0 > 0k_2 + 2 · 4k-2 - 4. 

Theorem 2.12 ([12]). Let C be an [n,k,d] 4 code with <I> 1 = 4k-1, k 2 3, d = 2 
(mod 4). Then C is 2-extendable if w0 < 0k_3 + 2 • 4k-4 or w0 > 0k_3 + 2 • 4k-3 - 4. 

Theorem 2.13 ([12]). Let C be an [n, k, d] 4 code with k 2 3, d = 2 (mod 4). Then 
C is 2-extendable if one of the following conditions holds: 

(a) w1 = 0 and w3 > 0, (b) w1 > 0 and w3 = 0. 

Theorem 2.14 ([12]). Let C be an [n,k,d] 4 code with diversity (<I>o,<I>1), k 2 4, d 
odd. If C is not extendable, then <I>0 2 0k_3 + 2. 

Theorem 2.15 ([12, 10]). Let C be an [n, k, d] 4 code with k 2 3, d = 1 (mod 4). 
Then C is 3-extendable if one of the following conditions holds: 

(a) Wo = ek-4, (b) Wo = ek-3 and W2 = 3. 4k-2 , (c) Wj = 0 for j = 2 or 3, 
( d) ( Wo, W1, W2) = ( 0k-3, 6 · 4k-3, 4k-2). 

Theorem 2.16 ([10]). Let C be an [n, k, d] 4 code with w0 + w 2 = 0k_2, k 2 3, 
d = 1 (mod 4). Then C is 3-extendable if either w1 - w0 < 4k-2 + 4 - 0k_3 or 
W1 - Wo > 10 · 4k-3 - 0k-3· 
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Recently, Kanda [8, 9] found a new type of extension theorems for ternary and 
quaternary linear codes to prove the non-existence of [512, 6, 340h, [383, 5, 286] 4 and 
[447, 5, 334] 4 codes. 

Theorem 2.17 ([8]). Let C be an [n, k, dh code with gcd(d, 3) = 1 satisfying that 
A;= 0 for all i "¥=- 0, -1, -2 (mod 9). Then C is extendable. 

Theorem 2.18 ([9]). Let C be an [n, k, d] 4 code with k 2 3, d = -2 (mod 16) 
satisfying Ai= 0 for all i "¥=- 0, -2 (mod 16). Then C is extendable. 

For this type of extension theorems for quaternary linear codes, we give some 
new results from [11]. 

Theorem 2.19. Let C be an [n, k, d] 4 code with k 2 3, d "¥=- 0 (mod 16) satisfying 
A; = 0 for all i "¥=- 0, 1 + 4s, 2 + 4t, 3 + 4(s + t + 1) (mod 16) with s, t E {0, 1, 2, 3}. 
Then, C is extendable if one of the following conditions holds: 

(a) d = 1 + 4s (mod 16), 

(b) d = 2 + 4t (mod 16) and (w0 , w1 ) i- (0k_ 4 , 9 • 4k-3 ), (0k_4 + 3 • 4k-3 , 2 • 4k-3), 

(c) d = 3 + 4(s + t + 1) (mod 16) and w0 i- 0k_3 + 4k-3 _ 

Theorem 2.20. Let C be an [n, k, d] 4 code with k 2 3, d "¥=- 0 (mod 16) satisfying 
Ai= 0 for all i "¥=- 0, 1 + 4s, 2 + 4t, 3 + 4(s + t + 3) (mod 16) with s, t E {0, 1, 2, 3}. 
Then, C is extendable if one of the following conditions holds: 

(a) d = 1 + 4s (mod 16) and (w0 , wi) i- (0k_ 2 + 4k-3 , 11 • 4k-3), 

(b) d = 2 + 4t (mod 16) and (w0 , w1 ) i- (0k_ 4 + 3 · 4k-3 , 2 • 4k-3 ), 

(c) d = 3 + 4(s + t + 3) (mod 16) and (w0 , w1 ) i- (0k_ 2 + 4k-3 , 3 • 4k-3). 

Theorem 2.21. Let C be an [n, k, d] 4 code with k 2 3, d "¥=- 0 (mod 16) satisfying 
A;= 0 for all i "¥=- 0, 1+4s, 2+4t, 3+4(s-t) (mod 16) with s, t E {0, 1, 2, 3}. Then, 
C is extendable if one of the following conditions holds: 

(a) d = 1 + 4s (mod 16) and w0 i- 0k_4 + 2 • 4k-3 , 

(b) d = 2 + 4t (mod 16) and (w0 , w1 ) i- (0k_ 4 , 3 • 4k-3 ), (0k_4 + 3 • 4k-3 , 6 • 4k-3), 

(c) d=3+4(s-t) (mod16). 

Theorem 2.22. Let C be an [n, k, d] 4 code with k 2 3, d "¥=- 0 (mod 16) satisfying 
Ai= 0 for all i "¥=- 0, 1 + 4s, 2 + 4t, 3 + 4(s - t + 2) (mod 16) with s, t E {0, 1, 2, 3}. 
Then, C is extendable if one of the following conditions holds: 

(a) d= 1+4s (mod 16) and (w0 ,w1 ) i- (0k_3 +5.4k-3 ,9.4k-3 ), 

(b) d = 2 + 4t (mod 16) and (w0 , w1) i- (0k_3 + 2 • 4k-3 , 6 • 4k-3 ), 

(c) d = 3 + 4(s - t + 2) (mod 16) and (w0 , w1 ) i- (0k_3 + 5 • 4k-3 , 4k-3 ). 
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Setting (n, m) = (3, 3) in Theorem 2.19 and (n, m) = (0, 3) in Theorem 2.22, we 
get the following corollaries. 

Corollary 2.23. Let C be an [n, k, d] 4 code with k ~ 3, d "t 0 (mod 16) satisfying 
A= 0 for all i "t 0, -l, -2, -3 (mod 16). Then, C is extendable if either 

(a) d = -3 (mod 16), 

(b) d = -2 (mod 16) and (w0 , w1 ) #- (0k_4 , 9 • 4k-3 ), (0k_4 + 3 • 4k-3 , 2 • 4k-3), or 

(c) d = -l (mod 16) and w0 #- 0k_3 + 4k-3 _ 

Corollary 2.24. Let C be an [n, k, d] 4 code with k ~ 3, d "t 0 (mod 16) satisfying 
A = 0 for all i "t l, 0, -1, -2 (mod 16). Then, C is extendable if either 

(a) d = -l (mod 16) and (w0 , w1) #- (0k_3 + 5 · 4k-3 , 4k-3 ), 

(b) d = -2 (mod 16) and (w0 , w1) #- (0k_3 + 2 • 4k-3 , 6 • 4k-3), or 

(c) d = l (mod 16) and (w0 , w1) #- (0k_3 + 5 • 4k-3 , 9 • 4k-3 ). 

Example 2.1. Let C1 be the [18, 3, 13] 4 code with generator matrix 

[ 
1 o o 1 1 1 1 1 1 1 1 1 1 1 1 o o o l 

G1 = 0 1 0 1 1 1 2 2 2 3 3 3 0 0 0 1 1 1 . 
001230230130123123 

Then, C1 has weight distribution 011327 1427159 with 4-WS (0, 9, 9, 3). C1 is extend
able by Corollary 2.23. Actually, we get a [19, 3, 14]4 code C~ with weight distribution 
01 1436 1524 163 by adding the column (1, 2, 1? to G1 . C~ is 2-extendable by Theorem 
2.13. Hence, C1 is 3-extendable. 

Example 2.2. Let C2 be the [20, 3, 14] 4 code with generator matrix 

[ 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 o o o o o o l 

G2 = 1 1 1 2 2 2 3 3 3 3 0 0 0 0 1 1 0 0 1 1 . 
23023001230123001133 

Then, C2 has weight distribution 0114241512 1615 1712 with 4-WS (5,4,8,4), which 
is extendable by Corollary 2.24. Actually, we get a [22, 3, 16] 4 code with weight 
distribution 011639 1824 by adding the columns (1, 1, 1? and (1, 2, 1? to G2 . 

Kanda [9] proved the nonexistence of a [383, 5, 286] 4 code. As another application 
of Corollary 2.23, we can prove the following, which is a new result. 

Theorem 2.25. There exists no [382, 5, 285] 4 code. 
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3 Geometric method 

For an integer k :2:: 3, let E = PG(k - 1, q) be the projective geometry of dimension 
k - 1 over IF\. A j-fiat is a projective subspace of dimension j in E. The 0-flats, 1-
flats, 2-flats, 3-flats, ( k-3)-flats and ( k- 2)-flats in E are called points, lines, planes, 
solids, secundum and hyperplanes, respectively. We refer to [5] and [6] for geometric 
terminologies. For j < 0, a j-flat is the empty set as the usual convention. In this 
section, we give the geometric method to investigate linear codes over IF q through 
projective geometry. 

Let C be an [n, k, d]q code with a generator matrix G and let gi be the i-th row 
of G (1 ::; i ::; k). For P = P(p1 , ... ,Pk) E E, the weight of P with respect to G, 
denoted by wa(P), is defined as 

which is the weight of a codeword. A hyperplane H of E is defined by a non-zero 
vector h = (h1, ... , hk) E IF! as H = {P(Pi, ... ,Pk) EE I h1P1 + · · · + hkPk = 0}, 
where h is called the de.fining vector of H. Let 

Fd ={PEE I wa(P) = d}. 

The following lemma is well-known, see [20, 21]. 

Lemma 3.1. An [n, k, d]q code C is extendable if and only if there exists a hyperplane 
H of E such that Fd n H = 0. Moreover, the extended matrix of G by adding the 
defining vector of H as a column generates an extension of C. 

Now, let C be an [n,k,d]q code with q-WS (w0 ,w1 , ... ,wq_1 ) and assumed"'# 0 
(mod q). Let 

Mi {PEE I wa(P) = i (mod q)}, 
M E\Md, 

Then we have wi = IMil for 0 ::; i ::; q - 1. Note that Fd n M0 = 0 and Fd c Md, 
As a corollary of Lemma 3.1, we get the following. 

Corollary 3.2. C is extendable if M contains a hyperplane of E. 

Most of extension theorems can be proved applying Corollary 3.2. For example, if 
an [n, k, d]q code C satisfies the condition of Theorem 2.1, one can take a hyperplane 
H contained in M as H = M 0 . But finding such a hyperplane is not so easy in 
general. 
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