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Abstract

A module M is said to be lifting if, for any submodule N of M, there exists a direct
summand X of M contained in N such that N/X is small in M/X. A module M is said
to satisfy the finite internal exchange property if, for any direct summand X of M and any
finite direct sum decomposition M = ;" ;| M;, there exists M C M; (i =1,2,...,n) such
that M = X & (D}, M/). In this paper, we solve negatively the open problem “does any
lifting module satisfy the finite internal exchange property?” by considering the square of
a certain lifting module.

1 Background

In 1953, Eckmann and Schopf proved that any module M over an arbitrary ring is essential
in an injective module. Such injective module is called the injective hull of M. The dual
concept of the injective hull is called the projective cover. In general, any module does
not necessarily have the projective cover. Thus Bass considered rings whose any (finitely
generated) right module has the projective cover, and such rings were named right perfect
(semiperfect), in 1960. Any right (or left) artinian ring is right perfect. Right perfect rings
and semiperfect rings are characterized by “lifting modules” as follows: a ring R is right
perfect if and only if any projective right R-module is lifting, a ring R is semiperfect if
and only if the right R-module R is lifting. We think that the research of the structure of
lifting modules is important in order to study perfect rings and semiperfect rings.

The fundamental problem “When is the direct sum of lifting modules lifting?” has been
unsolved yet. In general, the direct sum of lifting modules is not lifting. For instance,
abelian groups Z/2Z and Z/87Z are lifting, but (Z/2Z) ® (Z/8Z) is not lifting. Many
researchers tried to solve this problem, and several results has been obtained. Baba and
Harada proved the following:

Theorem ([2, Theorem 1]) Let My, M, ..., M, be LE-lifting modules, then @@}, M;
is lifting if and only if M; is almost M -projective for any distinct 7 and j.

Here, almost projectivity was introduced by Harada and Tozaki in [7] as follows: a
module M is called almost N-projective for a module N if, for any module X, any homo-
morphism f: M — X and any epimorphism g : N — X, one of the following holds:

(i) there exists a homomorphism h : M — N such that f = gh,
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(ii) there exist a nonzero direct summand N’ of N and a homomorphism h' : N — M
such that gy = fh'.

After that, the property “FIEP (finite internal exchange property) ” was introduced
by Hanada, Kuratomi and Oshiro in [6]. The above theorem was generalized more by
Kuratomi as follows:

Theorem ([8, Theorem 3.7]) Let My, Ma, ..., M, be lifting modules with FIEP, then
M = @}, M; is lifting with FIEP if and only if M; is generalized M /M;-projective for
any ¢ =1,2,...,n.

Here, generalized projectivity was introduced by Mohamed and Miiller in [11] as fol-
lows: a module M is called generalized N-projective for a module N if, for any module X,
any homomorphism f : M — X and any epimorphism g : N — X, there exist direct sum
decompositions M = My & My and N = Ny @ No, a homomorphism h; : My — N; and
an epimorphism hg : No — Ms such that f|y, = ghi and g|n, = fha. Now the following
problem is raised:

Problem: Does any lifting module satisfy FIEP?

This problem had not been solved since it was mentioned in [9] and [4]. In this paper,
we first give a characterization for the square of a certain lifting module to be lifting.
After that, we make an example of a lifting module which does not satisfy FIEP, using
the above characterization.

2 Preliminaries

Throughout this paper, R is a ring with identity and modules are unitary right R-modules.
Let M be a module and N a submodule of M. N is said to be essentialin M (or an essential
submodule of M) if N N X is nonzero for any nonzero submodule X of M and we denote
by N C. M in this case. N is said to be small in M (or a small submodule of M) if
N + X # M for any proper submodule X of M and we denote by N < M in this case.
A module X is said to be an essential extension of M if M is isomorphic to an essential
submodule of X. A module @ is said to be a small cover of M if M is isomorphic to
a small factor module of @, that is, there exists an epimorphism f : Q — M such that
Ker f < @. A submodule K of N is said to be a coessential submodule of N in M if
N/K < M/K and we denote K CM N in this case.

A module M is said to satisty the finite internal exchange property (or briefly, FIEP) if,
for any direct summand X of M and any finite direct sum decomposition M = ;" | M;,
there exists M/ C M; (i = 1,2,...,n) such that M = X & (@], M]). This property is
naturally considered in the study of direct sum decompositions of a module. In fact, any
vector space over a field satisfies FIEP. However not necessarily for a module over a ring.
For example, an abelian group Z? = Z x Z have a direct summand (1,0)Z and a direct
sum decomposition Z? = (2,3)Z ® (3,4)Z. Since (2,3)Z and (3,4)Z are indecomposable
and (1,0)Z ®© (2,3)Z # Z* # (1,0)Z © (3,4)Z, we see Z* does not satisfy FIEP.

Let M = A® B be amodule and h : A — B a homomorphism. Then {a+h(a) | a € A}
is called a graph of h and denoted by (h). It is clear that M = (h) ® B, M = A+ (h) if h
is an epimorphism, and A N (k) = Ker h.

A module M is said to be lifting if, for any submodule N of M, there exists a direct
summand X of M such that X CM N. An indecomposable lifting module is called hollow.



It is well-known that a module M is hollow if and only if any proper submodule of M
is small. A module M is called uniform if any nonzero submodule of M is essential. It
is well-known that uniform modules (hollow modules, resp.) are closed under nonzero
submodules and essential extensions (nonzero factor modules and small covers, resp.).
A module M is said to be uniserial if its submodules are linearly ordered by inclusion.
Clearly, any uniserial module is hollow and uniform. However the converse is not true.
We consider

K K K K
0 K 0 K

R_ 0 0 K K I MR_(K7K7K7K)
0 0 0 K

where K is a field. Then M has only 6 submodules
M7 (07K7 K? K)’ (07 Kﬂ 07 K)’ (07 07 K? K)7 (07 07 07 K)? 0'

Hence M is hollow and uniform but not uniserial.
For undefined terminologies, the reader is referred to [1], [3], [4], [10] and [12].

3 Main results

Lemma 3.1 Let A and B be modules and put M = A@® B. For any nonzero proper direct
summand X of M, the following holds:

(1) If A and B are hollow, then so is X.
(2) If A and B are uniform, then so is X.

Proof Letp: M =ADB— Aand ¢: M = A® B — B be canonical projections.

(1) Since A and B are hollow and X is non-small, X satisfies either p(X) = A or
q(X) = B. Without loss of generality, we can take X with p(X) = A. By X # M, we see
X N B < B because B is hollow. Since X is a proper direct summand of M, we obtain
Kerplx = XNB < X. As p|x : X — A is a small epimorphism, X is a small cover of A.
Therefore X is hollow.

(2) Since A and B are uniform and X is non-essential, X satisfies either X N A =0 or
XNDB = 0. Without loss of generality, we can take X with XNA =0. Thenq|x : X — Bis
a nonzero monomorphism. Therefore X is uniform because it is isomorphic to a submodule
of a uniform module B. O

Here we give a key lemma in this paper.

Lemma 3.2 Let U be a hollow and uniform module (e.g., a uniserial module) and put
M =U% U =Ux0and Uy = 0 x U. Then for any submodule Ny of U, and any
epimorphism hy from Ny to Us, (h1) is a direct summand of M.

Proof If Ny = U; or Kerhy = 0, it is clear that M = (hy) © Uz or M = (h;) © U;.
We assume N7 # U; and Ker hy # 0, and take a submodule Na of Us which is a natural
isomorphic image of Ny and an epimorphism hg from No to U;. Now we prove M =
(h1) ® (ha).

First we show M = (h1)+(hs). Let ¢; : h; '(N;) — U; (i # j) be the inclusion mapping.
Then Tm¢; = h; *(N;) € h; 1(U;) = N; C U; (i # j). We define a homomorphism %} from
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h;Y(N;) to U; by hi(x) = hjhi(x) for 2 € by *(N;) (i # j). Then h. is onto (i = 1,2).
Since U; is hollow, we obtain that ¢; — A/ : h;l(Nj) — Uj is onto (i # j). For any element
u1 +uz of M (u; € U;), there exists an element z; of h;l(Nj) such that (1; — h)(z;) = w4
(i # j). Hence

ur +up = ((x1 — ha(x2)) + hi(x1 — ha(x2))) + ((x2 — hi(x1)) + ha(x2 — hi(x1)))
€ <h1> + <h2>

Therefore M = (h1) + (ha).
Next we show (h1) N (hg) = 0. We see

(<h1> n <h2>) N Ker hl = (<h1> n <h2>) n (<h1> n Nl) g <h2> N N1 =0.
Since (h1) = Nj is uniform and Ker hy # 0, we obtain (h;) N (hg) = 0. O
The following is one of our main results.

Theorem 3.3 Let U be a hollow and uniform module and put M = U?, Uy = U x 0 and
Uy =0 x U. Then the following conditions are equivalent:

(a) M is lifting,

(b) for any module X, any homomorphism f : Uy — X and any epimorphism g : Uy —
X, one of the following holds:

(i) there exists a homomorphism h : Uy — Us such that f = gh,

(ii) there exist a submodule N of Uy and an epimorphism h : N — Uy such that
9|N = fh7

(¢) for any module X, any homomorphism f : Uy — X and any epimorphism g : Uy —
X, one of the following holds:

(i) there exists a homomorphism h : Uy — Uy such that f = gh,

(i) there ezist a submodule K of Ker g and a monomorphism h : Uy — Us/K such
that g'h = f, where ¢’ : Us/K — X is defined by ¢'(u) = g(u) foru € Us/K.

Proof Let p; : M = Uy ® Us — U; be the canonical projection (i = 1,2).

(a) = (b): Let f : Uy — X be a nonzero homomorphism and g : Us — X an
epimorphism. We define a homomorphism ¢ : M — X by ¢(u1 + uz) = f(u1) — g(usg) for
u; € U; (i = 1,2). Since M is lifting, there exists a direct summand A of M such that
A CM Kerg. Then M = Ker ¢ + Uy = A + Uy because g is onto. So p1(A4) = Uy.

If ANU3 = 0, we can define a homomorphism h : Uy = p1(A) — Us by h(p1(a)) = p2(a)
for a € A, and h satisfies f = gh. Therefore (i) holds.

Otherwise we see ANU; = 0 since U is uniform. Hence we can define an epimorphism
h : p2(A) — pi(A) = Ur by h(pa(a)) = pi(a) for a € A, and h satisfies g[,,4) = fh-
Therefore (ii) holds.

(b) = (a): Let X be a submodule of M. We may assume that X is a proper non-small
submodule of M. Since U; and Us; are hollow with U; = U,, we only consider the case
p1(X)=U;. Then M = X + Us. Let 7 : M — M/X be the natural epimorphism. Since
7|y, is onto, one of the following (i) or (ii) holds:



(i) there exists a homomorphism h : Uy — Uy such that 7|y, = 7|y, h,

(i) there exist a submodule N of U and an epimorphism h : N — U such that 7|y =
7'['|U1 h.

In either case, we see (—h) is a direct summand of M by Lemma 3.2, and (—h) C X.
Put M = (—h) ® T using a direct summand 7" of M. Since 7" is hollow by Lemma 3.1, we
obtain TN X < T. By [4, 3.2 (6)], (—h) CM X. Therefore M is lifting.

(b) = (c): It is enough to show (b)(ii) = (c)(ii). For any homomorphism f: U; — X
and any epimorphism g : Uy — X, we assume that there exist a submodule N of Us
and an epimorphism h : N — U; such that g|y = fh. Then Kerh C Kerg, hence we
can define an epimorphism ¢’ : Us/ Kerh — X by ¢'(u) = g(u) for w € Us/Kerh. Let
h: N/Kerh — U be the natural isomorphism and ¢ : N/ Ker h — U,/ Ker h the inclusion
mapping, and put h/ = th~'. Clearly, 1/ is a monomorphism and ¢'h’ = f.

(c) = (b): We show (c)(ii) = (b)(ii). For any homomorphism f : U; — X and any
epimorphism ¢ : Uy — X, we assume that there exist a submodule K of Kerg and a
monomorphism & : Uy — Us/K such that f = ¢’'h, where ¢’ : Uy/K — X is defined by
g (@) = g(u) for w € Us/Kerh. We express Imh = N/K. Let ¢ : N/K — Uy be the
inverse map of h and 7 : N — N/K the natural epimorphism, and put i/ = @m. Then A/
is onto and g|ny = fI'. O

Lifting modules do not necessarily satisfy FIEP. We can make an example of a lifting
module without FIEP, using Theorem 3.3.

Example 3.4 Let Z,) and Zg) be the localizations of Z al two distinct prime numbers p

Ly Q

0 7z ) and its right ideal
(2)

and q respectively. We consider a semiperfect ring R = (

L= (0 Z(q)) and put Up = R/L. Then U is uniserial whose the endomorphism ring
(9)
is mot local (see, [5]). According to [1, Proposition 12.10], U* does not satisfy FIEP. We

show U? is lifting. For any nonzero homomorphism f : U — U/X where X is a submodule

of U, we can take
f(<(1) 8))—(”5 8>+X (x € Zy)

If x € Zg), we can define a homomorphism h : U — U with h((é 8)) = (I O), and

00
h satisfies Th = f, where 7 is the natural epimorphism from U to U/X. If x & Z(,, we
can express v = p" L where m € NU{0}, n € N and s,t € Z\ (pZ U qZ). Put N =

ﬁgf

0 0 0 0
and h satisfies fh = w|n, where w is the natural epimorphism from U to U/X. Therefore
U? is lifting by Theorem 3.3.

<p O)R, We can define an epimorphismh:N%Uwithh((po O)) — <q T 0)7
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