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Abstract 

We consider an equilibrium problem on a complete geodesic space having a 
curvature bounded above by one. We deal with a resolvent operator defined 
by the author, and apply the proximal point algorithm with this operator to 
approximate a solution to the problem. 

1 Introduction 

An equilibrium problem is to find a point x 0 in a subset K of a metric space X such 
that f ( x 0 , y) 2 0 for every y E K, where f: K x K -+ lR is a given bifunction. We know 
that the class of equilibrium problems includes those of some important nonlinear 
problems such as convex minimization problems, fixed point problems, variational 
inequality problems, minimax problems, and others; see [l]. 

To analyze this problem, the notion of resolvent operators plays a crucial role. 
The following result shows well-definedness and several important properties of the 
resolvent operators in the setting of Hilbert spaces. 

Theorem 1.1 (Combettes-Hirstoaga [3]). Let H be a Hilbert space and K a 
non empty closed convex subset of H. Let f: K x K -+ lR and Sf the set of the 
solutions to the equilibrium problem for f. Suppose the following conditions: 

• f(y,y) = 0 for ally EK; 
• f(y, z) + f(z, y) :SO for ally, z EK; 
• f(y, ·): K-+ lR is lower semicontinuous and convex for every y EK; 
• f(·, z): K-+ lR is upper hemicontinuous for every z EK. 
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Then the resolvent operator Ji defined by 

J1(x) = { z EK I :rtU(z,y) + (z - x,y- z)) ~ 0} 

has the following properties: 

(i) The domain of Ji is H; 
(ii) Ji is single-valued and firmly nonexpansive; 

(iii) Fix Ji= {z EK I J1z = z} coincides with 81; 
(iv) 81 is closed and convex. 

This result was generalized to the setting of Hadamard spaces by [6], and recently, 
the author [5] proposed a new definition and properties of the resolvent operators in 
the setting of CAT(l) spaces; see Theorem 3.1. 

In this work, we apply the proximal point algorithm with this new resolvent operator 
to approximate a solution to the equilibrium problem, and obtain a .6.-convergence 
theorem of the generated sequence to its solution to the problem defined on a complete 
CAT(l) space. 

2 Preliminaries 
Let X be a metric space. For x, y E X with l = d(x, y), a geodesic joining x and y 
is a mapping c: [0,l]---+ X such that c(0) = x, c(l) = y, and d(c(s),c(t)) = ls-tl for 
any s, t E [0, l]. If a geodesic joining x and y exists for every x, y E X, then we call 
X a geodesic space. Further, if such a geodesic is unique for each x, y E X, then X 
is called a uniquely geodesic space. 

For a uniquely geodesic space X, we may define the convex combination between 
two points in a natural way. Namely, for x, y EX and t E [0, 1], define tx E8 (l -t)y = 
c((l - t)d(x, y)). Then it follows that 

d(tx E8 (1 - t)y, x) = (1 - t)d(x, y) and d(tx E8 (1 - t)y, y) = td(x, y). 

A CAT(l) space is usually defined as a geodesic space such that every triangle is 
thinner than its comparison triangle on a model space which is the two-dimensional 
unit sphere § 2 . One can find the formal definition and its equivalent conditions in [2] 
for instance. One of them is as follows: A uniquely geodesic space X is a CAT(l) 
space if and only if 

cosd(tx E8 (1 - t)y, z) sind(x, y) 

~ cosd(x, z) sin(td(x, y)) + cosd(y, z) sin((l - t)d(x, y)) 

holds for every x, y, z E X with d(y, z) + d(z, x) + d(x, y) < 21r and t E [0, l]. This 
inequality can be understood as a generalization of the parallelogram laws and is a 
powerful tool to analyze our problems. 
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We say a CAT(l) space is admissible if d(x, y) < 1r/2 for every x, y EX. If X is 
an admissible CAT(l) space, then the closed convex hull cl co A of a subset A of X is 
defined as the intersection of all closed convex subsets of X including A. We say an 
admissible CAT(l) space X has the convex hull finite property [8] if every continuous 
selfmapping on cl co E has a fixed point for every finite subset E of X. 

Let {xn} be a sequence in a metric space X. A point x 0 EX is called an asymptotic 
center of { Xn} if it satisifies that 

limsupd(xn, xo) = inf limsupd(xn, y). 
n--+oo yEX n--+oo 

Suppose X is an admissible complete CAT(l) space. We say that {xn} is spherically 
bounded if 

inf limsupd(xn, y) < ~ 
yEX n--+oo 2 

holds. We say that {xn} is ~-convergent to x 0 EX if x0 is an asymptotic center of 
every subsequence {xnJ of {xn}- It is known that an asymptotic center of a spheri­
cally bounded sequence is always unique, and every spherically bounded sequence in 
admissible complete CAT(l) space has a ~-convergent subsequence. 

Let X be an admissible CAT(l) space and T: X---+ X. The set of fixed points of 
T is denoted by FixT, that is, 

Fix T = { z E T I z = Tz}. 

A mapping T: X ---+ X is said to be spherically nonspreading of sum type if it satisfies 

cosd(x,Ty) +cosd(Tx,y) :S 2cosd(Tx,Ty) 

for every x, y EX. We remark that the spherical nonspreadingness of mappings was 
originally defined in [7], and later, another type of spherical nonspreadingness was 
proposed in [4]. To distinguish them, in [4], the former one is said to be spherically 
nonspreading of product type, and latter is that of sum type. 

We know that if a spherically nonspreading mapping T of sum type has a fixed 
point, then it is quasinonexpansive in the sense that Fix T i=- 0 and d(Tx, z) :S d( x, z) 
for every x E X and z E Fix T. 

Let C be a nonempty closed convex subset of an admissible complete CAT(l) space 
X. For x E X, there exists a unique point Px E C which is nearest to x, that is, it 
satisfies d(x,px) = infzEcd(x,z). Using this fact, we define a mapping Pc: X---+ C 
by Pcx = Px for each x EX and we call it a metric projection onto C. We know that 
Pc is a quasinonexpansive mapping such that Fix Pc = C. 

Let X be a CAT(l) space and g: X---+ ffi.. We say g is convex if 

g(tx E8 (1 - t)y) :S tg(x) + (1 - t)g(y) 

for any x, y E X and t E ]O, l[. A function g is said to be lower semicontinuous if 
g(xo) :S liminfn--+oo g(xn) whenever a sequence {xn} converges to xa. We also say g 
is upper hemicontinuous if limsupt--++o g(tx E8 (1 - t)y) :S g(y) for every x, y EX. 
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Theorem 2.1. Let X be an admissible complete CAT(l) space and {xn} a 
spherically bounded sequence in X. Then, a unique asymptotic cent er belongs to 

nkEN clco{xk, Xk+l, Xk+2, ... }. 

Proof. Let Ck= clco{xk,xk+1,xk+2, ... } for arbitrarily fixed k EN, and xo EX 
an asymptotic center of {xn}- Then, since the metric projection Pck: X ---+ Ck is 
quasinonexpansive and Xj E Ck = FixPck for j E {k, k + 1, k + 2, ... }, we have 

d(Pckxo, Xj)::; d(xo, Xj) 

for all j E {k, k + 1, k + 2, ... }. It follows that 

n--+oo n--+oo 

From the uniqueness of the asymptotic center of {xn}, we get xo = Pckxo 
Since k EN is arbitrary, we obtain Xo E nkEN ck, the desired result. 

Using this theorem, we get the following result: 

Theorem 2.2. Let X be an admissble CAT(l) space and g: X ---+ ffi. a lower sem­
incontinuous convex function. Then, for a spherically bounded sequence {xn} C X 
with its aymptotic center xo E X, 

g(xo)::; limsupg(xn)-
n--+oo 

Proof. Fork EN, let 

Then, from the convexity and lower semicontinuity of g, we have Ck is closed and 
convex. Since {xk,Xk+i,xk+2, ... } C Ck, by Theorem 2.1 we have 

and thus g(x0) ::; supn2:k g(xn)- Since k E N is arbitrary, we obtain 

g(xo)::; inf supg(xn) = limsupg(xn), 
kEN n2:k n--+oo 

which is the desired result. 

3 Proximal point algorithm for equilibrium problems 

□ 

Let X be an admissible complete CAT(l) space. For a bifunction f: K x K---+ ffi. 
defined on a nonempty closed convex subset K of X, we consider an equilibrium 
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problem. This problem is to find a point z0 E K such that f(zo, y) 2'. 0 for every 
y EK. The set of its solutions is denoted by Equil f; 

Equilf = { z EK I j~f f(z,y) 2'. 0}. 

To deal with this problem, we often assume the following conditions for f. 

(El) f(y, y) = 0 for every y EK; 
(E2) f(y, z) + f(z, y) '.SO for every y, z EK; 
(E3) f(y, •): K---+ lR is lower semincontinuous and convex for every y EK; 
(E4) f(·, z): K---+ lR is upper hemicontinuous for every z EK. 

For the equilibruim problems on CAT(l) spaces, the resolvent operator R1: X---+ K 
plays an important role, which was proposed by the author. Its definition and some 
useful properties are as follows: 

Theorem 3.1 (Kimura [5]). Let X be an admissible complete CAT(l) space having 
the convex hull finite property, K a nonempty closed convex subset of X. Suppose 
that f: K x K ---+ lR satisfies the conditions (El )-(E4). For each x E X, define a 
subset R1x of K by 

R1x = {z EK I j~f(f(z,y)-logcosd(x,y) +logcosd(x,z)) 2'. 0}. 

Then, the following hold: 

(i) R1x consists of one point for every x EX, and therefore RJ: X---+ K is defined 
as a single-valued mapping; 

(ii) RJ satisfies the following inequality for any x1, x2 EX: 

cosd(x1, R1x2) cosd(x2, R1x1) d(R R ) ----~- + ----~- < 2 COS jXl, jX2 , 
cosd(x1, R1x1) cosd(x2, R1x2) -

and thus R1 is spherically nonspreading of sum type. 
(iii) Fix Rf = Equil f and it is closed and convex. 

In the proof of Theorem 3.1, the following properties are also obtained. 

Theorem 3.2. Let X, K, f, and R1 are the same as the previous theorem. Then, 
the fallowing hold: 

(i) For x E X and w E K with w -/- R1x, 

d(w,R1x) ( cosd(x,w) ) . 
0 '.S f(R1x,w) + . d( R ) cosd(w,R1x)- d( R ) , 

sm w, JX cos x, JX 

(ii) for x EK and z E Equilf, 

cos d(x, R1x) cos d(z, R1x) 2'. cos d(x, z). 



73

For the sake of completeness, we give the proof. 

Proof. (i) Since tw EB (1 - t)R1x EK fort E ]O, 1[, we have 

0::::; f(R1x, tw EB (1 - t)R1x) 

- log cos d(x, tw EB (1 - t)R1x) + log cos d(x, Rix) 

::::; tf(R1x, w) + (1 - t)f(R1x, Rix) 

- log(cos d(x, w) sin(td( w, Rix))+ cos d(x, Rix) sin((l - t)d( w, Rix))) 

+ logsind(w, Rix)+ log cos d(x, Rix) 

= tf(R1x, w) + L(t), 

where 

L(t) = - log( cos d(x, w) sin(td( w, Rix))+ cos d(x, Rix) sin((l - t)d( w, Rix))) 

+ log( cos d(x, Rix) sin d( w, Rix)). 

Notice that L(t) ---+ 0 as t---+ +0. By !'Hospital's rule, we have 

Since 

dL(t) 

dt 

L(t) dL(t) 
0::::; f(R1x,w) + lim - = f(R1x,w) + lim --. 

t--++O t t--++O dt 

d( w, Rix)(- cos d(x, w) cos(td( w, Rix))+ cos d(x, Rix) cos((l - t)d( w, Rix))) 

cos d(x, w) sin(td( w, Rix)) + cos d(x, Rix) sin((l - t)d( w, Rix)) 

d(w, Rix)(- cos d(x, w) + cos d(x, Rix) cosd(w, Rix)) 
---+ . 

cosd(x, Rix) smd(w, Rix) 

= d(w,R1x) (cosd(w,R x)- cosd(x,w) ) 
sind(w,R1x) 1 cosd(x,R1x) 

as t ---t +0, we have 

d(w, Rix) ( cosd(x, w) ) 
0::::; f(R1x, w) + . d( R ) cosd(w, Rix) - d( R ) , 

sm w, ix cos x, ix 

which is the desired inequality. 
(ii) It is obvious if z = Rix. Otherwise, from (i) we have 

d( R) cosd(x,z) f(R )sind(z,R1x) 
cos z, 1x - d( R ) ~ - ix, z d( R ) . 

COS X, IX z, IX 

On the other hand, since z E Equil f, using (E2) we have 
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Hence we have 
cosd(x, z) 

cosd(z,R1x)- d( R ) 2:0, 
COS X, jX 

which implies the desired inequality. □ 

If f satisfies (El)-(E4) as in the theorem above, then Af also satisfies the same 
conditions for A E ]0, oo[. Thus we can define the resolvent for Af. 

Using the properties of the resolvent operator of bifunction, we obtain the following 
~-convergence theorem of the proximal point algorithm for equilibrium problems on 
admissible complete CAT(l) spaces. 

Theorem 3.3. Let X be an admissible complete CAT(l) space having the convex hull 
finite property, and K a nonempty closed convex subset of X. Let f: K x K ---+ lR 
satisfy the conditions (El)-(E4) mentioned above, and suppose that Equil f-=/- 0. Let 
{An} be a positive real sequence such that inf nEN An > 0. For n E N, an operator 
R>-.nf: X ---+ K is defined by 

R>-.nfX = { z EK I j~f(Anf(z, y) - log cos d(x, y) + logcosd(x, z)) 2: 0} 

for x EX. Let {xn} C X be a sequence generated by x1 EX and 

for n EN. Then {xn} is LJ.-convergent to zo E Equilf. 

Proof. Let z E Equilf. By Theorem 3.1 (ii), each R>-.nf is spherically nonspreading 
of sum type, and thus it is quasinonexpansive. Since z E Equil f = Fix R>-.nf by 
Theorem 3.1 (iii), we have 

for all n E N. It follows that, for every z E Equil f, a nonnegative real sequence 
{ d(xn, z)} is nonincreasing and bounded below, and hence it has a limit Cz E [0, oo[. 
We also have { Xn} is spherically bounded since Cz = limn--+oo d( Xn, z) ::; d( X1, z) < 
1r /2. Using Theorem 3.2 (ii), for z E Equil f we have 

12: cosd(xn,Xn+1) = cosd(xn,R>-.nfXn) 

> cos d(xn, z) 
- cosd(z,R>-.nfXn) 

= cosd(xn,z) ---+ Cz = 1 
cosd(xn+l, z) Cz 

as n---+ 00. It implies that limn--+oo cos d(xn, Xn+i) = 1 and limn--+oo d(xn, Xn+1) = 0. 
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Fix w EK arbitrarily. For n EN, we first assume that w -=J Xn+l = R>..nfXn- Since 
infnENAn > 0 and d/sind is bounded on d E ]O,n/2[, there exists ME [O,oo[ such 
that 

d( w, R>..nfXn) ~ M An sin d( w, R>..nfXn) 

for every n EN. Using Theorem 3.1 (i) with (E2), we have 

and thus 

I 
cosd(xn,w) I 

f(w, Xn+1) ~ M cosd(w, Xn+1) - d( ) • 
COS Xn,Xn+l 

Notice that this inequality holds for every n E N since it is obviously true if w = Xn+l · 
We also have 

I 
cos d(xn, w) I 

cosd(w,xn+1) - d( ) 
COS Xn, Xn+l 

~lcosd(w,xn+1)-cosd(xn,w)l+cosd(xn,w)ll- d( 1 )I 
COS Xn, Xn+l 

I 
. d(w, Xn+i) + d(xn, w) . d(w, Xn+1) - d(xn, w) I = -2sm 2 sm 2 

+cosd(xn,w)ll- d( 1 )I 
COS Xn, Xn+l 

< 2sin d(xn+l,xn) + 11- 1 1 ➔ 0 
- 2 cos d(xn, Xn+1) 

as n--+ oo. Therefore we have 

lim sup J( w, Xn) ~ 0 
n---+oo 

for all w E K. Let {xnJ be an arbitrary subsequence of {xn} with its asymptotic 
center xo EK. Then, xo belongs to Equilf. Indeed, by Theorem 2.1, we have 

f(w,xo) ~ limsupd(w,xnJ ~ 0 
i-+OC) 

for every w EK. For arbitrarily fixed v EK and fort E ]O, 1[, let Wt = tvEB (1-t)x0 E 
K. Then, by (El) and (E3), we have 

0 = f ( Wt, Wt) = f ( Wt, tv EB (1 - t)xo) ~ tf ( Wt, v) + (1 - t)f ( Wt, xo) ~ tf ( Wt, v ), 
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which implies f(tv EB (1 - t)xo, v) = f(wt, v) 2: 0. Letting t---+ +0, by (E4) we have 

f(xo, v) 2: limsup f(tv EB (1 - t)xo, v) 2: 0. 
t--++O 

Since v E K is arbitrary, we obtain x 0 E Equil f. 
Let z0 be an asymptotic center of {xn}- We show z0 = x 0 . Since x 0 E Equilf, a 

positive real sequence { d( Xn, x0)} has a limit Cx0 • From the definition of the asymp­
totic center, we have 

lim sup d(xn, xo) = Cx0 = .lim d(xn;, xo) :S: lim sup d(xn;, zo) :S: lim sup d(xn, zo)-
n--+oo i➔OC> i--+CXJ n--+oo 

From the uniqueness of the asymptotic center of {xn}, we get z0 = x 0 . Since an 
asymptotic center of every subsequence of {xn} is identical to z0 , we obtain {xn} is 
b.-convergent to zo E Equil f. □ 
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