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Abstract
We consider an equilibrium problem on a complete geodesic space having a
curvature bounded above by one. We deal with a resolvent operator defined
by the author, and apply the proximal point algorithm with this operator to
approximate a solution to the problem.

1 Introduction

An equilibrium problem is to find a point zg in a subset K of a metric space X such
that f(xg,y) > 0forevery y € K, where f: K x K — Ris a given bifunction. We know
that the class of equilibrium problems includes those of some important nonlinear
problems such as convex minimization problems, fixed point problems, variational
inequality problems, minimax problems, and others; see [1].

To analyze this problem, the notion of resolvent operators plays a crucial role.
The following result shows well-definedness and several important properties of the
resolvent operators in the setting of Hilbert spaces.

Theorem 1.1 (Combettes—Hirstoaga [3]). Let H be a Hilbert space and K a
nonempty closed convex subset of H. Let f: K x K — R and Sy the set of the
solutions to the equilibrium problem for f. Suppose the following conditions:

fly,y) =0 for ally € K;

fly,2) + f(z,y) <0 for ally,z € K;

fly,-): K = R is lower semicontinuous and conver for every y € K;
f(

[ ]
[ ]
[ ]
e f(-,2z): K — R is upper hemicontinuous for every z € K.



Then the resolvent operator Jy defined by

inf (f(2,9) + (= — 2,y — 2)) > o}

yeK

Ji(z) = {z eK

has the following properties:

(i) The domain of Jy is H;

(ii) Jy is single-valued and firmly nonexpansive;
(ii) FixJy = {z € K | Jfz = z} coincides with S¢;
(iv) Sy is closed and convez.

This result was generalized to the setting of Hadamard spaces by [6], and recently,
the author [5] proposed a new definition and properties of the resolvent operators in
the setting of CAT(1) spaces; see Theorem 3.1.

In this work, we apply the proximal point algorithm with this new resolvent operator
to approximate a solution to the equilibrium problem, and obtain a A-convergence
theorem of the generated sequence to its solution to the problem defined on a complete
CAT(1) space.

2 Preliminaries

Let X be a metric space. For z,y € X with [ = d(x,y), a geodesic joining x and y
is a mapping c¢: [0,1] = X such that ¢(0) =z, ¢(l) =y, and d(c(s), c(t)) = |s — t| for
any s,t € [0,1]. If a geodesic joining x and y exists for every =,y € X, then we call
X a geodesic space. Further, if such a geodesic is unique for each z,y € X, then X
is called a uniquely geodesic space.

For a uniquely geodesic space X, we may define the convex combination between
two points in a natural way. Namely, for z,y € X and ¢ € [0, 1], define tz @ (1 —t)y =
c((1 —t)d(z,y)). Then it follows that

d(te @ (1 —t)y,x) = (1 —t)d(z,y) and d(tz D (1 — t)y,y) = td(z,y).

A CAT(1) space is usually defined as a geodesic space such that every triangle is
thinner than its comparison triangle on a model space which is the two-dimensional
unit sphere S%. One can find the formal definition and its equivalent conditions in [2]
for instance. One of them is as follows: A uniquely geodesic space X is a CAT(1)
space if and only if

cosd(tx & (1 —t)y, z) sind(zx,y)
> cosd(x, z) sin(td(x,y)) + cosd(y, z) sin((1 — t)d(x, y))
holds for every x,y,z € X with d(y, z) + d(z,z) + d(z,y) < 2w and ¢t € [0,1]. This

inequality can be understood as a generalization of the parallelogram laws and is a
powerful tool to analyze our problems.
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We say a CAT(1) space is admissible if d(x,y) < 7/2 for every x,y € X. If X is
an admissible CAT(1) space, then the closed convex hull clco A of a subset A of X is
defined as the intersection of all closed convex subsets of X including A. We say an
admissible CAT(1) space X has the convex hull finite property [8] if every continuous
selfmapping on clco E has a fixed point for every finite subset E of X.

Let {z,} be a sequence in a metric space X. A point zy € X is called an asymptotic
center of {x,} if it satisifies that

limsup d(xy,, o) = inf limsupd(z,,y).
n—00 y€EX n—oo

Suppose X is an admissible complete CAT(1) space. We say that {z,} is spherically
bounded if
inf limsupd(z,,y) <

y€EX n—oo

o

holds. We say that {x,} is A-convergent to xg € X if xo is an asymptotic center of
every subsequence {x,,} of {z,}. It is known that an asymptotic center of a spheri-
cally bounded sequence is always unique, and every spherically bounded sequence in
admissible complete CAT(1) space has a A-convergent subsequence.

Let X be an admissible CAT(1) space and T': X — X. The set of fixed points of
T is denoted by Fix T, that is,

FixT={z€T|z=Tz}.
A mapping T': X — X is said to be spherically nonspreading of sum type if it satisfies

cosd(z, Ty) + cosd(Tx,y) < 2cosd(Tx, Ty)

for every z,y € X. We remark that the spherical nonspreadingness of mappings was
originally defined in [7], and later, another type of spherical nonspreadingness was
proposed in [4]. To distinguish them, in [4], the former one is said to be spherically
nonspreading of product type, and latter is that of sum type.

We know that if a spherically nonspreading mapping 7' of sum type has a fixed
point, then it is quasinonexpansive in the sense that Fix T # () and d(Tx, 2) < d(z, 2)
for every x € X and z € FixT.

Let C be a nonempty closed convex subset of an admissible complete CAT(1) space
X. For x € X, there exists a unique point p, € C which is nearest to z, that is, it
satisfies d(x,p,) = inf,cc d(x, z). Using this fact, we define a mapping Po: X — C
by Pcx = p, for each x € X and we call it a metric projection onto C'. We know that
Pc¢ is a quasinonexpansive mapping such that Fix Po = C.

Let X be a CAT(1) space and g: X — R. We say ¢ is convex if

gtz ® (1 —t)y) <tg(x) + (1 —t)g(y)

for any 2,y € X and ¢ € ]0,1[. A function g is said to be lower semicontinuous if
g(xo) < liminf, - g(z,) whenever a sequence {x,} converges to xyo. We also say g
is upper hemicontinuous if limsup, , o g(tz @ (1 —t)y) < g(y) for every z,y € X.



Theorem 2.1. Let X be an admissible complete CAT(1) space and {r,} a
spherically bounded sequence in X. Then, a unique asymptotic center belongs to

Mien clco{Tr, Trg1, Thga, .-}

Proof. Let C, = clco{xy, Tpt1,Thta,.-. + for arbitrarily fixed ¥ € N, and xo € X

an asymptotic center of {z,}. Then, since the metric projection Pg, : X — Cj is

quasinonexpansive and x; € Cj, = Fix P¢, for j € {k,k+1,k+2,...}, we have
d(PCkxO’xj) < d(a?o,l'j)

forall j € {k,k+1,k+2,...}. Tt follows that

lim sup d(Pe, xo, ) < limsupd(zo, z,,).

n—oo n—oo

From the uniqueness of the asymptotic center of {z,}, we get xog = Pg,x9 € Ck.
Since k € N is arbitrary, we obtain zg € [,y Ck, the desired result. O

Using this theorem, we get the following result:

Theorem 2.2. Let X be an admissble CAT(1) space and g: X — R a lower sem-
incontinuous convex function. Then, for a spherically bounded sequence {x,} C X
with its aymptotic center xg € X,

g(xo) < limsup g(z,).

n—oo

Proof. For k € N, let
Cy = {x eX ‘ g(x) < supg(:rn)}.
n>k

Then, from the convexity and lower semicontinuity of g, we have C} is closed and
convex. Since {Zk, Tk+1,Tk12, .-} C Ck, by Theorem 2.1 we have

xg € cleo{xy, Tpy1, Thaa, ...} C Ch

and thus g(zo) < sup,,>; g(z,). Since k € N is arbitrary, we obtain

g(xg) < ]inf sup g(x,,) = limsup g(z,,),

ENp>E n— 00

which is the desired result. U

3 Proximal point algorithm for equilibrium problems

Let X be an admissible complete CAT(1) space. For a bifunction f: K x K — R
defined on a nonempty closed convex subset K of X, we consider an equilibrium

A
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problem. This problem is to find a point zy € K such that f(zp,y) > 0 for every
y € K. The set of its solutions is denoted by Equil f;

Equil f = {zGK

yigjf(f(zvy) > 0}.

To deal with this problem, we often assume the following conditions for f.

(E1) f(y,y) =0 for every y € K

(E2) f(y,2)+ f(z,y) <0 for every y,z € K

(E3) f(y,:): K — R is lower semincontinuous and convex for every y € K;
(E4) f(-,2z): K — R is upper hemicontinuous for every z € K.

For the equilibruim problems on CAT(1) spaces, the resolvent operator Rf: X — K
plays an important role, which was proposed by the author. Its definition and some
useful properties are as follows:

Theorem 3.1 (Kimura [5]). Let X be an admissible complete CAT(1) space having
the convexr hull finite property, K a nonempty closed convexr subset of X. Suppose
that f: K x K — R satisfies the conditions (E1)—(E4). For each x € X, define a
subset Ryx of K by

fo—{zeK

iél}f((f(z,y) —logcosd(x,y) +logcosd(x, z)) > 0} .
y

Then, the following hold:

(i) Ryz consists of one point for every x € X, and therefore Ry: X — K is defined
as a single-valued mapping;
(ii) Ry satisfies the following inequality for any x1,x2 € X:

cosd(zy, Rfxs) = cosd(xe, Ryxy)
cosd(xz1, Rfx1)  cosd(xa, Rfxs)

<2cosd(Rsx1, Ryxs),
and thus Ry is spherically nonspreading of sum type.

(iii) Fix Ry = Equil f and it is closed and conve.

In the proof of Theorem 3.1, the following properties are also obtained.

Theorem 3.2. Let X, K, f, and Ry are the same as the previous theorem. Then,
the following hold:

(i) Forx € X and w € K with w # Ryx,

d(w, Ryx) cosd(x,w)
0< f(R _— d(w,Rfxr) — —————— | ;
< f(Byz,w)+ sind(w, Ryx) (COS (w, Byz) cosd(z,Rsx) )’

(ii) for x € K and z € Equil f,

cosd(z, Ryx)cosd(z, Ryx) > cosd(z, z).
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For the sake of completeness, we give the proof.

Proof. (i) Since tw @ (1 —t)Ryx € K for t € |0, 1], we have

0 < f(Ryx,twe (1 —t)Ryx)
—logcosd(x,tw & (1 —t)Ryx) + log cosd(x, Ryx)
< tf(Rpx,w) + (1= t)f(Rpx, Ryx)
— log(cos d(x,w) sin(td(w, R¢x)) + cos d(z, Ryx) sin((1 — t)d(w, Ryx)))
+ logsind(w, Ryx) + log cosd(z, Ryx)
— 1/ (Rya,w) + L(1),

where

L(t) = —log(cos d(z,w) sin(td(w, Ryz)) + cosd(z, Ryzx) sin((1 — t)d(w, Ryx)))
+ log(cosd(z, Ryx)sind(w, Ryx)).

Notice that L(t) — 0 as t — +0. By ’'Hospital’s rule, we have

L) _dL(t)
< — —_—
0< f(fovw) + tl—lg-l() n f(foaw) + tl—lg-lo dt
Since
dL(t)
dt

d(w, Ryx)(— cosd(x,w) cos(td(w, Ryx)) + cosd(x, Ryx) cos((1 — t)d(w, Ryx)))
cosd(z,w)sin(td(w, Ryx)) + cosd(x, Ryx) sin((1 — t)d(w, Ryx))
. d(w, Ryz)(—cosd(z,w) + cosd(z, Ryz) cosd(w, Ryx))
cosd(z, Ryx)sind(w, Ryx)

d(w, Ryx) cosd(x,w)
= ‘d _— —
sind(w, Ryx) (CO5 (w, Byz) cosd(x, Ryx)

as t — 40, we have

d(w, Ryx) cosd(x,w)
0<f(R _— d(w,Rfxr) — ——————
< f(Byz,w) + sind(w, Ryx) (COS (w, Ryx) cosd(xz,Ryx) )’

which is the desired inequality.
(ii) It is obvious if z = Ryz. Otherwise, from (i) we have

cosd(z, z)

sind(z, Ryx)
cosd(z, Ryx)

cosd(z,Ryx) — a0z Ry )

> *f(fov Z)

On the other hand, since z € Equil f, using (E2) we have

—[(Ryz,z) > f(2,Rpz) > 0.
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Hence we have J
cosd(z, ) >0,

COSd(Z,Rf.I') — W =

which implies the desired inequality. O

If f satisfies (E1)—(E4) as in the theorem above, then Af also satisfies the same
conditions for A € |0, c0[. Thus we can define the resolvent for Af.

Using the properties of the resolvent operator of bifunction, we obtain the following
A-convergence theorem of the proximal point algorithm for equilibrium problems on
admissible complete CAT(1) spaces.

Theorem 3.3. Let X be an admissible complete CAT(1) space having the convex hull
finite property, and K a monempty closed convexr subset of X. Let f: K x K — R
satisfy the conditions (E1)—(E4) mentioned above, and suppose that Equil f # (. Let
{A\n} be a positive real sequence such that inf,eny Ay, > 0. For n € N, an operator
Ry, 5: X — K is defined by

R,\”fx = {Z c K

ig}f{()\nf(z, y) —log cosd(x,y) + logcosd(z, z)) > 0}
y

forx € X. Let {z,} C X be a sequence generated by x1 € X and

Tp41 = R)\nfxn
forn € N. Then {x,} is A-convergent to zy € Equil f.

Proof. Let z € Equil f. By Theorem 3.1 (ii), each Ry, s is spherically nonspreading
of sum type, and thus it is quasinonexpansive. Since z € Equil f = Fix R, by
Theorem 3.1 (iii), we have

0 < d(xn41,2) = d(Ry, fTn, 2) < d(zp, 2)

for all n € N. It follows that, for every z € Equil f, a nonnegative real sequence
{d(zn, 2)} is nonincreasing and bounded below, and hence it has a limit ¢, € [0, co].
We also have {z,} is spherically bounded since ¢, = lim, o d(x,,2) < d(x1,2) <
/2. Using Theorem 3.2 (ii), for z € Equil f we have

1 > cosd(zy, Tny1) = cosd(xy,, Rx, fTn)

cosd(xp, 2)

~ cosd(z, Ry, txn)
cosd(zy, z) C

cosd(xp41,2) Cs

as n — oo. It implies that lim,, . cosd(zy, zpy1) = 1 and lim,, o0 d(zp, 2py1) = 0.



Fix w € K arbitrarily. For n € N, we first assume that w # x,41 = R, sz, Since
inf,eny A, > 0 and d/sind is bounded on d € |0, 7 /2], there exists M € [0, 00| such
that

d(w, Ry, fxy) < M, sind(w, Ry, f2y,)

for every n € N. Using Theorem 3.1 (i) with (E2), we have

d(w, R)\nfl‘n)

<
0< f(Bx, fTn, w) + Apsind(w, Ry, yy)

(cos d(w, Ry, prn) — c0s d{zn, w) )

cosd(zn, Ry, fTn)

cos d(xy,, w)

< —f(w, Ry, sxpn) + M

cosd(w, Ry, yon) — cos d(xy, Ry, )

= _f(wa anrl) + M |cos d(w, {En+1) _ cos d(xny w)

cosd(Tpn, Tni1)|’

and thus
cos d(xy,, w)

fw, 1) < M |cosd(w, Tni1) —

cosd(Tp, Tni1) |

Notice that this inequality holds for every n € N since it is obviously true if w = x,,41.
We also have

cos d(w, Ty 11) — cos d(xy, w)

cosd(p, Tni1)
1
cosd(Zp, Tni1)

< |cosd(w, Tpi1) — cosd(zp, w)| + cosd(x,,w) ’1 —

d<w7 xn-i-l) + d(xnv w) sin d<w’ xn-{-l) B d(xnv w)

= |—9si
‘ sin 5 5
+ cosd(@n, w) |1 !
cosd(zy,w)|l — —————
cosd(Tp, Tni1)
d n b n 1
cogin W@ninozn) 1y 1 |
2 cos d(Zp, Tpt1)

as n — 00. Therefore we have

limsup f(w,z,) <0

n—oo
for all w € K. Let {z,,} be an arbitrary subsequence of {z,} with its asymptotic
center g € K. Then, zy belongs to Equil f. Indeed, by Theorem 2.1, we have

flw,z0) < limsupd(w, x,,) <0
i—»00
for every w € K. For arbitrarily fixed v € K and for ¢ € 0, 1], let wy = to® (1 —t)xqg €
K. Then, by (E1) and (E3), we have

0= f(wtth) = f(wt7tv 2] (1 - t)l‘(]) < tf(whv) + (1 - t)f(’wt,l’()) < tf(wtvv)v

13
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which implies f(tv © (1 — t)zg,v) = f(we,v) > 0. Letting t — 40, by (E4) we have

f(zo,v) > limsup f(tv & (1 —t)xg,v) > 0.
t—+0

Since v € K is arbitrary, we obtain xy € Equil f.
Let zy be an asymptotic center of {x,}. We show zy = xg. Since zy € Equil f, a

positive real sequence {d(z,,zo)} has a limit ¢,,. From the definition of the asymp-
totic center, we have

limsup d(x, ©o) = ¢z, = lIm d(x,,,z0) < limsup d(zy,,,z0) < limsup d(z,, 20).
n—00 1—00 i—00 n—00
From the uniqueness of the asymptotic center of {z,}, we get zp = z(. Since an
asymptotic center of every subsequence of {z,} is identical to zp, we obtain {x,} is
A-convergent to zg € Equil f. O
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