Uniform convexity on a complete geodesic space
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1 Introduction

A Banach space is a generalization of Hilbert spaces and we often assume additional
conditions for the space when we obtain results for nonlinear analysis. Uniform con-
vexity is one of such conditions and, for instance, the following convex minimization
theorem is obtained for uniformly convex Banach spaces.

Theorem 1 ([3]). Let E be a uniformly conver real Banach space and let f : E —
|—00, +00] be a proper lower semicontinuous convex function such that f(z,) — 00
for {zn} C E satisfying ||zn| — oco. Then, there exists a point xg € E such that

= inf .

f(xo) = inf f(x)
On the other hand, we know that a Hadamard space is another generalization of
Hilbert spaces. It is defined as a complete metric space having a particular convexity

structure and it also has various useful properties that Hilbert spaces have. We can
also obtain the following convex minimization theorem.

Theorem 2 ([1]). Let X be a Hadamard space and let f : X — ]—o00, +00] be a proper
lower semicontinuous convex function such that f(z,) — oo for {z,} C X satisfying
d(zp,w) = oo for some w € X. Then, there exists a point xg € X such that

f(zo) = inf f(x).

zeX
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In this work, we obtain a similar result as above under the assumptions that are
satisfied for both Banach spaces and Hadamard spaces.

2 Preliminaries

Let E be a real Banach space. Then we know that the following propositions are
equivalent:

e [ is uniformly convex;
e Ifr>0,z€ F and {z,},{y,} C E satisfy

. . 1 1
Jm lan — 2l = lim fly, = 2] = lim [[(Gzn + 5yn) =2l =,
then
lim ||z, — yn| = 0.
n—oo

Moreover, we can prove the following lemma on uniformly convex real Banach
spaces.

Proposition 1. Let E be a uniformly convex real Banach space. Then,
Itz + (1 = t)y) = 2[* <tz — 2> + (1 = t)[ly — 2|

forz,y,z € X and t € [0, 1].
Let E be a real Banach space. Then the following propositions are equivalent:

e F is reflexive;
e N2, C, is a nonempty set for any sequence {C,,} C 2¥ of nonempty bounded
closed convex subsets which is decreasing with respect to inclusion.

We know that if E is uniformly convex real Banach space, then FE is reflexive and
strictly convex. For more details about the properties of uniformly convex real Banach
spaces, see [2, 3, 4].

Let (X, d) be a metric space and x,y € X. A geodesic path from x to y is an isometry
¢ : [0,d(z,y)] = X such that ¢(0) = z, ¢(d(z,y)) = y and d(c(s),c(t)) = |s — t| for
every s,t € [0,d(z,y)]. If a geodesic exists for every z,y € X, then we call X a
geodesic space. The image of a geodesic path from x to y is called a geodesic segment
joining x and y. A geodesic segment joining x and y is not necessarily unique in
general. When it is unique, this geodesic segment with endpoints x and y is denoted
by [z,y]. For z,y € X and t € [0,1], there exists a unique point z € [z,y] such that
d(z,z) = (1 — t)d(z,y) and d(y,z) = td(z,y). We denote it by z = tx & (1 — t)y.
A geodesic triangle with vertices x,y,z € X is the union of geodesic segments [z, ],
ly, 2] and [z, z]. We denote it by A(z,y, 2).



145

For A(x,y,2) in a uniquely geodesic space X, there exist points Z,9,z € R? such
that d(z,y) = [|Z — Yllrz, d(y, 2) = |J = Z|lr2, d(z,2) = ||Z — Z[|r2, where || - |[p2 is the
Euclidean norm on R?. The triangle having such vertices Z, § and z in R? is called
a comparison triangle of A(x,y,z). Notice that it is unique up to an isometry of
R2. For a specific choice of comparison triangles, we denote it by A(Z,7,2). A point
P € [Z, 7] is called a comparison point for p € [z,y] if d(x,p) = ||Z — pl|re.

Let X be a uniquely geodesic space. If for any p,q € A(x,y,z), and for their
comparison points p, § € A(Z, 7, Z), the CAT(0) inequality

d(p,q) < ||p — qllre

holds, then we call X a CAT(0) space. If X is complete, then X is said to be a
Hadamard space. A subset C' of X is said to be convex if tx & (1 —t)y € C for every
x,y € C and t € [0,1]. For a subset S of X, a closed convex hull of S is defined as
the intersection of all closed convex sets including .S, and we denote it by clco S.

Let X be a CAT(0) space. From the CAT(0) inequality, it is easy to see that

d(tz © (1 —t)y, 2)* < td(x,2)* + (1 — t)d(y, 2)* — t(1 — t)d(z,y)?

for every z,y,z € X and t € [0, 1].
The following proposition shows that a CAT(0) space has a similar property to the
uniform convexity.

Proposition 2. Let X be a CAT(0) space, let {x,},{yn} C X, let z € X and let
r €]0,00[. If

. . . 1 1
nh—>r20 d(ibn, z) = nh—>Holo d(ym z) = nh—>nolo d(ixn D éym z)=r,
then

nh~>nolo d(xy, yn) = 0.

Proof. For {z,},{y,} C X, z € X and r € ]0, 0|, we suppose that

. . . 1
Jn dlea,2) =l dlon,2) =l dlGen qun,2) =
Then,
1 o 1 9 1 o 1 2
- - < = i i
d(2xn @ 2ynvz) > Qd(:rnvz) + 2d(ynaz) 4d($nayn) 5
1 1
d(xn,yn)2 < 2d(z, 2)2 + 2d(yn, z)2 — 4d(§xn &) Eyn, z)2.
Letting n — oo, we have
nh~>nolo d(xru yn) =0.

This is the desired result. O

For more details about the properties of Hadamard spaces, see [1].
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3 Uniform convexity of a complete geodesic space
Let X be a uniquely geodesic space. If

d(tez @ (1 —t)y, 2)? < td(x, 2)* + (1 — t)d(y, 2)*

for x,y,z € X and t € [0, 1], then X is said to satisfy the condition (D).

Let X be a uniquely geodesic space. X is said to be sequentially uniformly convex
if X satisfies the condition (D) and, for r > 0, z € X and {z,},{y,} C X, it holds
that

lim d(z,,yn) =0

n—o0
whenever
lim d(z,,z) = lim d(y,,z) = lim d(lxn D 1yn,z) =r.
n—o0 n—o0 n—oo 2 2
Uniformly convex real Banach spaces and Hadamard spaces are sequentially uni-

formly convex complete uniquely geodesic spaces.

Theorem 3 (Strict convexity). Let X be a sequentially uniformly conver uniquely
geodesic space. Forr >0 and x,y,z € X with x # vy, if

d(SC, Z) = d(y7 Z) =T,
then
1 1
d(§x ® Ey,z) <.
Proof. For r > 0 and z,y,z € X with x # y, we suppose that d(z,z) = d(y,z) = r.
Ifr < d(%x &) %y, z), then, since

1 1
2<d(zr 0 zy,2)? <
rsd(5z 0 5y,2)° <
we have d(%x @ %y, z) = r. From sequential uniform convexity, we have d(z,y) = 0.
This is a contradiction. Therefore, we have that
1 1

d(ix & iy,z) <.

This is the desired result. U

1
d(xa 2)2 + Ed(yv 2)2 = 7"2,

[NR

Let X be a metric space and let T : X — X be a mapping. We denote the set of
fized points of T by F(T), that is, F(T) ={x € X : Tx = z}. I F(T) # @ and

d(Tz,u) < d(z,u)

for z € X and u € F(T), then we say that T is quasi-nonexpansive.



Theorem 4. Let X be a sequentially uniformly convexr uniquely geodesic space and
let T: X — X be a quasi-nonexpansive mapping. Then F(T') is closed and convex.

Proof. First, we show that F/(T) is closed. Let {z,} C F(T) be a sequence such that
Ty, — xg. Since T is quasi-nonexpansive, we have

d(xo, Txzo) < d(zg, zpn) + d(zn, Tzo)
< 2d(xp, ).
Therefore, since x,, — xg, we have d(zg,Tz¢) = 0 and thus zg € F(T). Hence, F(T)
is closed.

Next, we show that F/(T) is convex. Let z,y € F(T), « € [0,1] and z = axz®(1—a)y.
Since T' is quasi-nonexpansive, we have

d(z,Tz)
d(y,Tz)

(

T,z
(y,z

< d(z, 2),
<dl(y,z).
Moreover, since

d(z,y) <d(z,Tz) +d(y, Tz) < d(z,z) +d(y, z) = d(z,y),
we have d(z,Tz) = d(z, z) and d(y, Tz) = d(y, z). we suppose that z # Tz. Then,

d(x,Tz) =d(z,z) = s,
Ay, Tz) =d(y,z) =t.
From Theorem 3, we have

1 1

d(§Z © §TZ,.'L’) < S,
1 1
S iT
d(22®2 z,y) <t

and thus
1 1 1 1
This is a contradiction. Therefore, 2 = Tz and z € F(T). Hence, we have F(T) is

convex. O

Let X be a metric space. For a point x € X and a nonempty subset C' C X, the
distance between them is defined by d(z,C) = infycc d(z, y).

Theorem 5 (The nearest point theorem). Let X be a sequentially uniformly convex
complete uniquely geodesic space and let C' be a nonempty closed convex subset of X.
Then, for x € X, there exists a unique point yo € C' such that d(z,yo) = d(z,C).

147
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Proof. For x € X,let d = d(x,C). Then, for n € N, we can take a sequence {y,} C C
such that

1
d<d(z,y,) <d+ —.
n

Then, we have d(z,y,) — d. We suppose that {y,} is not a Cauchy sequence. That
is, we suppose that there exists ¢ > 0 such that for any i € N, there exists m;,n; > i
such that d(ym,,yn,) > €. In this way, we take two sequences {ym,}, {yn,} C {yn}
Then,

1—>00 71— 00
and we have
1 1

(z, iymi 2] iym)2

1
d(r7ymi)2 + gal(:zmyni)2 — d>.

d* <

U

<

DO | =

Hence, from sequential uniform convexity of X, we have
lim d(Ym,,yn,) = 0.
11— 00

This is a contradiction and thus {y,} is a Cauchy sequence. Since X is complete and
C is closed, there exists yy € C such that y,, — yo. Therefore, we have

d(x,yo) = li_>m d(x,yn) = d=d(z,C).

Next, we show the uniqueness of yo. We suppose that yg, zg € C satisfying yo # 2o
and d(z,y9) = d(x, z0) = d(x,C). Then, from Theorem 3, we have

1 1
d(x, Eyo ) 52’0) < d(.%',C)

This is a contradiction. Therefore, for x € X, there exists a unique point yy € C' such
that d(z,yo) = d(z,C). O

Let X be a sequentially uniformly convex complete uniquely geodesic space and let
C be a nonempty closed convex subset of X. Then for x € X, there exists a unique
point y, € C such that

d(z,y,) = d(z,C).
We call such a mapping defined by Pcx = y,, the metric projection of X onto C.

Theorem 6 (Reflexivity). Let X be a sequentially uniformly convex complete uniquely
geodesic space and let {C,} C 2% be a sequence of nonempty bounded closed convex
subsets which is decreasing with respect to inclusion. That is, C1 D Cy D --- D Cp, D
.. Then, (., Cy is nonempty.

n=1
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Proof. Since C,, is nonempty bounded closed convex subset for n € N, for z € X,
we can take a sequence {z,} C X by z, = Pc,z. Then {d(z,z,)} is bounded and
increasing real sequence and hence {d(z,x,)} has a limit ¢ € [0, 00[. That is, we have

lim d(z,x,)=c.
n— 00
First, we show that {x,} converges to some point zy € X. If ¢ = 0, since
d(x, Pc,x) — 0, we have x,, — z¢ as o = . Hence, we suppose that ¢ > 0. Suppose
that {x,} is not a Cauchy sequence. That is, there exists € > 0 such that for any
i € N, there exists m;, n; > i such that d(z,,, ,,) > ¢. Without loss of generality, we

can suppose that m; > n;. In this way, we take two sequences {Ym, }, {yn,} C {yn}.
Then,

lim d(z, ;) = lim d(z,z,,) =c
1—>00 71— 00

and we have

1 1
d(:]j, §$mi ® ixnz)2 <

and thus

1
limsupd(z, =z, © x,,;) < c.

Since T, , Tn, € Cy,, we have

1 1
d(z,zn,;) = d(z, Pc, x) < d(z, 5 %m @ 59:”1)

and hence we have

1
¢ <liminfd(x, =xm, © =xp,)
1—00 2 ’ 2 ‘
Therefore, we have
. 1 1
llg(r)lo d(z, 3%m; & ixm) =c.

From sequential uniform convexity of X, we have lim; o d(Zm,,2y,) = 0. This is a
contradiction. Therefore, {z,} is a Cauchy sequence and thus there exists o € X
such that x,, — xg.

Next, we show that zo € (),—; C,. For ng € N, if n > ny, since {z,} C Cy,, we
have that zo € C,,. Therefore, zo € ﬂzozl C,, and it completes the proof. O



150

4  Minimization theorem for a convex function

In this section, we prove a minimization theorem for a convex function defined on
a uniformly convex geodesic space. we obtain the following lemmas.

Lemma 1. Let X be a sequentially uniformly convex complete uniquely geodesic space
and f : X — ]—o00,+00] be a proper lower semicontinuous conver function. Then, f
1s bounded below on a bounded set.

Proof. Let S C X be a bounded set and let C' = clcoS. If inf e f(x) = —o0, then
we can define a sequence of subsets {Cy} C 2% by

Cr={2€C: f(2) < -k}

and CY% is bounded closed convex set for every k € N. Moreover, we have C; D Cy D
> Cg D ++-. From Theorem 6, (;—, C is nonempty. This is a contradiction.
Therefore,

o0 < inf f(x) < inf f(x)

and it completes the proof. O

Lemma 2. Let X be a sequentially uniformly convex complete uniquely geodesic space
and let f: X — ]—00,+00] be a proper lower semicontinuous convex function satis-
fying f(zn) — oo for {z,} C X such that d(z,,w) — oo for some w € X. Then, f is
bounded below on X.

Proof. Let M = inf,cx f(z). Since f is proper, we have M € [—o0,4o00[. Then,
there exists a sequence {z,} C X such that f(z,) — M. If {z,} is not a bounded
sequence, then there exists a subsequence {z,,} C {z,} such that d(w, z,,) — o
for w € X. From assumption of f, we have f(z,,) — oo. This is a contradiction.
Therefore, {z,} is a bounded sequence. From Lemma 1, we have {f(z,)} is bounded
below. Hence, we have M > —oo and it completes the proof. O

Theorem 7 (Minimization theorem). Let X be a sequentially uniformly convex com-
plete uniquely geodesic space and f : X — ]—00, +00] be a proper lower semicontinu-
ous convez function and f(z,) — oo for {z,} C X such that d(z,,w) — oo for some
w € X. Then, there exists a point vy € X such that
= inf .
f(wo) = inf f(z)

Proof. Let M = inf,cx f(x). From Lemma 2, we have M € R. Then, we can define
a sequence of subsets {C,,} C 2% by

Cn:{zeX:Mﬁf(Z)gM—"%}



and (), is a nonempty bounded closed convex set for any n € N. Moreover, {C,}
satisfies that C; D Cy D --- D C,, D ---. Then, from Theorem 6, we have (2, C,, #
@. Therefore, f(zg) = M for zo € (,—, Cy, and hence

f(xg) = inf f(x).

zeX

This is the desired result. O
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