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APPROXIMATION OF MINIMIZERS OF CONVEX FUNCTIONS 
IN HADAMARD SPACES 

FUMIAKI KOHSAKA 

ABSTRACT. We introduce existence and convergence theorems on two modified 
proximal point algorithms for convex functions in Hadamard spaces. 

1. INTRODUCTION 

Let (X, d) be an Hadamard space and f a proper lower semicontinuous convex 
function of X into (-oo, oo]. Then we study the problem of finding a point u EX 
such that 

J(u) = inf J(X). 
We denote by argminx for argminyEX f(y) the set of all solutions to this problem. 

A well-known method for approximating a solution to this problem is the so
called proximal point algorithm first introduced by Martinet [10] in the case when 
X is a real Hilbert space. The proximal point algorithm generates a sequence { xn} 
by x1 EX and 

Xn+l = argmin {f(y) + ~ d(y, Xn) 2 } (n = 1, 2, ... ), 
yEX 2An 

where {An} is a sequence of positive real numbers. 
We know the following results on the proximal point algorithm: 

• If X is a real Hilbert space and infn An > 0, then {xn} is bounded if and 
only if argminx f is nonempty. In this case, the sequence {xn} is weakly 
convergent to an element of argminx J; see Rockafellar [12]; 

• if X is a real Hilbert space, L~=l An = oo, and argminx f is nonempty, 
then { Xn} is weakly convergent to an element of argmin x f; see Brezis and 
Lions [3]; 

• if L~=l An = oo and argminx f is nonempty, then {xn} is Li-convergent 
to an element of argminx J; sec Bacak [l]. 

Bacak [l] generalized the weak convergence theorem for { xn} by Brezis and Lions [3] 
to the case where X is an Hadamard space. However, the equivalence condition 
that { Xn} is bounded if and only if argmin x f is nonempty was not proved in 
the Hadamard space setting. This equivalence condition holds true as we see in 
Corollary 4.2. 

In this paper, we introduce existence and convergence theorems for two modified 
proximal point algorithms in Hadamard spaces which was proved by Kimura and 
Kohsaka [8]. One of these algorithms is a generalization of the proximal point 
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algorithm. These algorithms were studied by Kamimura and Takahashi [7] for 
maximal monotone operators in Hilbert spaces. 

2. PRELIMINARIES 

Throughout this paper, we denote by ~ and N the sets of real numbers and 
positive integers, respectively. We also denote by ~ 2 the two dimensional Euclidean 
space with norm I · IIR2. 

A metric space (X, d) is said to be uniquely geodesic if for each x, y E X, there 
exists a unique mapping c: [O, Z] --+ X such that c(O) = x, c(l) = y, and 

d(c(s),c(t)) = ls-tl 

for alls, t E [O, Z], where l = d(x, y). In this case, we define the convex combination 
of x and y by 

ax E9 (1- a)y = c((l - a)Z) 
for all a E [O, l]. A metric space (X, d) is called a CAT(O) space if it is uniquely 
geodesic and 

d(ax E9 (1 - a)y, f3x E9 (1 - /3)z) :<::: lax+ (1 - a)y - (/3x + (1 - /3)z) IIR2 

whenever a, /3 E [O, 1], x, y, z EX, x, y, z E ~ 2 , 

d(x, y) = Ix - fllJR2, d(y, z) = Iv - zl]R2, and d(z, x) = lz - xl]R2 • 

A complete CAT(O) space is called an Hadamard space. See [2,4] on geodesic spaces 
for more details. 

Let { Xn} be a sequence in a metric space (X, d). The asymptotic center A( { Xn}) 
of { Xn} is defined by 

A({xn}) = {z EX: limsupd(z,xn) = inf limsupd(y,xn)}. 
n➔oo yEX n➔oo 

The sequence { Xn} is said to be ~-convergent to p E X if 

A({xnJ) = {p} 

for each subsequence {xnJ of {xn}- In this case, the sequence {xn} is bounded 
and every subsequence of { Xn} is ~-convergent to p. If X is a real Hilbert space, 
then { Xn} is ~-convergent to p if and only if { Xn} is weakly convergent to p. If 
X is an Hadamard space and {xn} is a bounded sequence in X, then A({xn}) is 
a singleton and there exists a subsequence of { Xn} which is ~-convergent to some 
point in X; see [2, 5, 9] for more details. 

Let (X, d) be a CAT(O) space and fa function of X into (-oo, oo]. The function 
f is said to be 

• proper if f(a) E ~ for some a EX; 
• lower semicontinuous if { x E X : f ( x) :<::: >.} is closed for each >. E ~; 

• convex if 

f(ax E9 (1- a)y) :<::: af(x) + (1- a)f(y) 

whenever x, y EX and a E (0, 1). 
We also denote by argminx for argminyEX f(y) the set 

{u EX: f(u) = inf f(X)} 

of all minimizers of f. In the case when argmin x f is a singleton {p} for some 
p E X, we sometimes identify argmin x f with p. 
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If f is a proper lower semicontinuous convex function of an Hadamard space 
(X, d) into (-oo, oo] and x EX, then there exists a unique point x EX such that 

f(x) + !d(x,x) 2 = inf {f(y) + !d(y,x)2 }. 
2 yEX 2 

The resolvent Ji of f is defined by J1(x) = x for all x E X. We know that 
F(J1) = argminx f, where F(J1) denotes the set of all fixed points of Ji. For each 
>.. > 0, the function .Xf is proper, lower semicontinuous, and convex. In this case, 
we have 

J>-.1(x) = argmin {.xf(y) + !d(y, x) 2 } = argmin {f(y) + \ d(y, x) 2 } 
yEX 2 yEX 2A 

for all x E X. See [2, 6, 11] on resolvents of convex functions for more details. 
A subset C of a CAT(O) space is said to be convex if 

ax EB (1 - a)y E C 

whenever x,y EC and a E [O, 1]. If C is a nonempty closed convex subset of an 
Hadamard space (X, d) and x E X, then there exists a unique point x E C such 
that 

d(x, x) = inf d(y, x). 
yEC 

The metric projection of X onto C is defined by Pc(x) = x for all x E X. The 
indicator function ic of C is defined by 

. {o zc(x) = 
00 

(x EC); 

(x EX\ C). 

This is a proper lower semicontinuous convex function of X into (-oo, oo] satisfying 
Jic = Pc. 

3. FUNDAMENTAL PROPERTIES OF RESOLVENTS 

In this section, we state some fundamental results on resolvents of convex func
tions in Hadamard spaces. 

Lemma 3.1 ([8, Lemma 3.1]). Let X be an Hadamard space and f a proper lower 
semicontinuous convex function of X into (-oo, oo]. If>..,µ> 0 and x, y EX, then 
the inequalities 

d(Jvx, J,,1y) 2 + d(J>-.JX, x) 2 + 2>..(f (J>-.JX) - f (Jµ,JY)) :S d(Jµ,JY, x) 2 

and 

(>.. + µ)d(J>-.jX, J,,1Y) 2 + µd(Jvx, x) 2 + .Xd(Jµ,JY, y) 2 

:S .Xd(J>-.JX, y) 2 + µd(Jµ,JY, x) 2 

hold. 

Corollary 3.2 ([8, Corollary 3.2]). Let X be an Hadamard space and f a proper 
lower semicontinuous convex function of X into (-oo, oo]. Then 

2d(J>-.JX, J>-.JY) 2 + d(J>-.1x, x) 2 + d(J>-.JY, y) 2 :S d(Jvx, y) 2 + d(J>-.JY, x) 2 

and 
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for all >. > 0 and x, y E X. 

Using Lemma 3.1, we can prove the following lemma. 

Lemma 3.3 ([8, Lemma 3.3]). Let X be an Hadamard space, f a proper lower 
semicontinuous convex function of X into ( -oo, oo], { An} a sequence of positive 
real numbers, and p an element of X. Then the following hold. 

(i) Ifinfn>.n > 0 and A({zn}) = {p} for some sequence {zn} in X satisfying 
d(J>.,.JZn, Zn)--+ 0, then p is an element of argminx f; 

(ii) iflimn>.n = oo and A({J>.,.JZn}) = {p} for some bounded sequence {zn} 
in X, then p is an element of argmin x f; 

We need the following minimization theorem. 

Theorem 3.4 ([8, Theorem 4.1]). Let X be an Hadamard space, f a proper lower 
semicontinuous convex function of X into (-oo, oo], {zn} a bounded sequence in 
X, {,Bn} a sequence of positive real numbers such that z:=:;:o=l f3n = oo, and g the 
real function defined by 

g(y) = li:,U_;~P z:::~~l f3z t f3kd(y, Zk) 2 

for all y E X. Then g is a continuous and convex function on X such that 
argmin x g is a singleton. 

4. Two MODIFIED PROXIMAL POINT ALGORITHMS 

The following is one of our two main results in this paper. 

Theorem 4.1 ([8, Theorem 4.2]). Let X be an Hadamard space, f a proper lower 
semicontinuous convex function, and {xn} a sequence in X defined by x1 EX and 

Xn+l = O'.nXn E9 (1- O'.n)J>.nfXn (n = 1, 2, ... ), 

where {an} is a sequence in [O, 1) and {>.n} is a sequence of positive real numbers 
satisfying 

00 

n=l 
Then the fallowing hold. 

(i) The sequence { J>.,.JXn} is bounded if and only if argminx f is nonempty; 
(ii) ifsupnan < 1 and argminxf is nonempty, then {xn} and {J>.,.JXn} are 

~-convergent to an element x 00 of argminx f. 

Corollary 4.2 ([8, Corollary 4.3]). Let X be an Hadamard space, f a proper lower 
semicontinuous convex function, and { Xn} a sequence in X defined by x 1 E X and 

Xn+l = J>.nfXn (n = 1, 2, ... ), 

where Pn} is a sequence of positive real numbers satisfying 
00 

LAn = 00. 

n=l 
Then the fallowing hold. 

(i) The sequence {xn} is bounded if and only if argminx f is nonempty; 
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(ii) if argmin x f is nonempty, then { Xn} is fl-convergent to an element of 
argminx f. 

Remark 4.3. The result (ii) was obtained by Bacak [1, Theorem 1.4]. 

Corollary 4.4 ([8, Corollary 4.5]). Let X be a real Hilbert space, f a proper lower 
semicontinuous convex function, and {xn} a sequence in X defined by x1 EX and 

Xn+l = anXn + (1 - an)h.nJXn (n = 1, 2, ... ), 

where {an} is a sequence in [0, 1) and P.n} is a sequence of positive real numbers 
satisfying 

00 

n=l 
Then the fallowing hold. 

(i) The sequence { J,xnfXn} is bounded if and only if argminx f is nonempty; 
(ii) ifsupnan < 1 and argminxf is nonempty, then {xn} and {J>-nfXn} are 

weakly convergent to an element x 00 of argminx f. 

Remark 4.5. The result (ii) for the special case when limn An = oo was obtained 
by Kamimura and Takahashi [7, Theorem 3]. 

The following is the other of our two main results in this paper. 

Theorem 4.6 ([8, Theorem 5.1]). Let X be an Hadamard space, f a proper lower 
semicontinuous convex function, v an element of X, and {Yn} a sequence in X 
defined by Y1 E X and 

Yn+l = anV EB (1 - an)J>-nfYn (n = 1, 2, ... ), 

where {an} is a sequence in [0, 1] and {An} is a sequence of positive real numbers 
satisfying limn An = oo. Then the following hold. 

(i) The sequence { J,xnJYn} is bounded if and only if argminx f is nonempty; 
(ii) if limn an= 0, L~=l an= oo, and argminx f is nonempty, then {yn} and 

{J>-nfYn} are convergent to Pv, where P denotes the metric projection of 
X onto argmin x f. 

Corollary 4. 7 ([8, Corollary 5.2]). Let X be a real Hilbert space, f a proper lower 
semicontinuous convex function, v an element of X, and {Yn} a sequence in X 
defined by Y1 E X and 

Yn+l = anv + (1 - an)J>-nJYn (n = 1, 2, ... ), 

where {an} is a sequence in [0, 1] and {An} is a sequence of positive real numbers 
satisfying limn An = oo. Then the following hold. 

(i) The sequence { J.xnJYn} is bounded if and only if argminx f is nonempty; 
(ii) if limn an = 0, L~=l an = oo, and argminx f is nonempty, then {yn} 

and { J >-n JYn} are strongly convergent to Pv, where P denotes the metric 
projection of X onto argminx f. 

Remark 4.8. The result (ii) is also a corollary of a strong convergence theorem 
for maximal monotone operators in Hilbert spaces obtained by Kamimura and 
Takahashi [7, Theorem 1]. 

We can also obtain the following convergence theorem to the case when { an} 
and {An} satisfy conditions which are different from those in Theorem 4.6. 
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Theorem 4.9 ([8, Theorem 5.4]). Let X be an Hadamard space, f a prnper lower 
semicontinuous convex function, v an element of X, and {Yn} a sequence in X 
defined by y1 E X and 

Yn+l = O:nV ffi (1 - O:n)J>.nJYn (n = 1, 2, ... ), 

where { o:n} is a sequence in (0, 1] and P.n} is a sequence of positive real numbers 
satisfying 

00 

lim O:n = 0, ~ O:n = oo, and innf>.n > 0. 
n--+CX) L.....t 

n=l 

Then {Yn} and { J.>-n!Yn} are convergent to Pv, where P denotes the metric prn
jection of X onto argmin x f. 
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