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§1 Continuum limit 

The problem we address here is the convergence of solutions for discrete 
Schrodinger equations to those for continuous Schrodinger equations. Let 
us begin with a simple case. Consider a discrete Schrodinger equation 

(1) 

where 
2 d 1 

-b,.disc,h = h2 L (1- 2(Sh,j + Sii,j)) 
J=l 

(2) 

is a discrete Laplacian on the square lattice with mesh size h, i.e. 

and Vh be a real-valued potential, i.e. 

(Vhu)(n) = Vh(n)uh(n). 

Solving (1), we get a function {uh(n)}nEZd on zf We interpolate it, i.e. 
construct a function {uh(x)}nEZd on Rd such that 

uh(hn) = uh(n), Vn E zd. 

Letting h -+ 0, we expect that 

where u( x) satisfies a continuous Schrodinger equation 

(-b..cont + V(x) - E)u = l, 
d [}2 

b..cont = L a 2 • 
j=l Xj 

The following problems are our concern. 

(3) 
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• How to interpolate uh(n)? 

• Does uh(x) converge? 

• Can one deal with scattering solutions? 

Here, by the scattering solution, we mean a solution to the Schrodinger 
equation (3) satisfying the radiation condition of Sommerfeld. Since it is 
the boundary condition at infinity, the last problem asks the behavior of 
solutions to the Schrodinger equation as n --+ oo and h --+ 0 at the same 
time. 

In the above situation, we started from continuous model and considered 
its discretization. However, in solid state physics, one often starts from 
the discrete model ( e.g. lattice), in which case the associated differential 
equation for the continuous model is not obvious. This sort of continuum 
limit problem has been basically open, especially for the case of scattering 
solutions, i.e. the ones describing the continuous spectrum. The aim of 
this work is to give a class of lattices for which this continuum limit can 
be computed. The applicability of our methods ranges over the following 
lattices: 

• square lattice, triangular lattice ==} Schrodinger equation 

• hexgonal lattice (graphen) ==} Schrodinger equation, Dirac equation 

• ladder of lattices ( e.g. graphite) ==} System of Schrodinger or Dirac 
equations 

As regards to the Fourier analysis, our argument is based on the following 
fact. Let Tt be the torus associated with the lattice zt: 

Td = (Sl)d = [ - ~ ~ld 
h h h' h ' 

(4) 

We use the following notations for functions on zt, Tt and Rd: 

Uh (uh(n)) on zt (5) 

uh(~) ( }!__ )d/2 L e-ihn·Euh(n) on Tt (6) 
21r nEZd 

uh(x) = (}!__)d/21 eix{uh(~)d~ 
27r T~ 

on Rd. (7) 

The formula (7), expanded into a Fourier series by using (6), is called a 
Cardinal series. Let us consider a series of transformations for cp E S(Rd): 



3

where 'Ph(n) = 'P(hn). 

Lemma 1.1 'Ph is an interpolation of 'Ph, and 'Ph ---+ 'P as h ---+ 0. 

In fact, recall that { (!!__)d/2 e-ihn•f.} is a C.O.N.S. of L2 (T~). Take 
27!" nEZd 

'P(x) E S(Rd), and put 'Ph(n) = 'P(hn). Then 

~ (C) ( h )d/2""" -ihn·f, ( ) 'Ph <, = -2 L.., e 'Ph n , 
7r n 

by the inversion formula of Fourier series. So, 'Ph(hn) = 'P(hn). Let h---+ 0 
and n---+ oo so that hn---+ x. Then 

The inversion formula of Fourier transform implies that 'P(hn) ---+ 'P(x) (at 
least in S'). 

Now we return to the equations (1) and (3). 

Assume : V(x) E C0 (Rd), real-valued. 

We also assume that the potential Vh ( n) satisfies 

(Vdisc,hu)(n) = V(hn)u(n), 'in E zd. (8) 

Then, the equations (1) and (3) have a unique solution satisfying the radi
ation condition, respectively. Here, one must pay attention to the radiation 
condition for the discrete equation, which we explain later. 

Given f E S(Rd), we put 

fh(n) = f(hn), 

and let uh ( n) be a solution to the equation ( 1), and uh ( n) and uh ( x) be 
defined by (6) and (7). As is proved above, 

(9) 

hence uh(x) is an interpolation of (uh(n))nEZd· For s E R, we define the 
weighted L2 space by 

Then, the following theorem holds. 

Theorem 1.2 Ash---+ 0, uh(x) ---+ u(x), in L2,-s(Rd) for s > 1/2, where 
u( x) is a solution to ( 3) satisfying the radiation condition. 



4

§2 Limiting absorption principle 

The proof of Theorem 1.2 traces the classical idea of limiting absorption 
principle, which we briefly review. Let H be a self-adjoint operator in a 
Hilbert space 11,. If A E ac(H), the limit limHo(H -A=fiE)-1 : 1i---+ 1i does 
not exist. However, by preparing Banach spaces Y, X satisfying Y C 1i C X 
with dense and continuous inclusions, one can sometimes prove the existence 
of the limit 

lim(H - A =f iE)-1 : Y---+ X. 
E---+0 

This is called the limiting absorption principle (LAP). The proof consists in 
the following lemma from elementary topology. 

Lemma 2.1 Let X be a complete metric space, and { xi}~1 a precompact 
sequence in X with unique accumulation point x EX. Then, Xi---+ x. 

To prove LAP for the continuous operator H = -~ + V(x), put 

Then, one can show 

• uE (0 < E < Eo) satisfies the radiation condition 

(10) 

uniformly in E > 0. 

The key fact is the following. 

Lemma 2.2 The solution of the equation (-~ + V - E)u = f satisfying the 
radiation condition is unique. 

Then, we are done by virtue of Lemma 2.1. This is the method due to 
Eidus [3], and has been frequently used in the spectral and scattering theory. 

To prove Lemmas 2.1 and 2.2, the main issues are 

• Precompactness ---+ a-priori estimates in suitable weighted spaces, 

• Uniqueness of accumulation points ---+ Rellich type theorem for scat
tering solutions. 

Both of them boil down to elliptic boundary value problems in an infinite 
domain. 

One can use the same idea for discrete cases. In our previous paper [2], 
we have already discussed 
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• Uniform estimates and precompactness of solutions to the discrete 
equation 

• Radiation condition, 

which enabled us to prove LAP for a class of lattice Schrodinger equations. 
A new problem in the continuum limit is that the radiation conditions 

for continuous operator and discrete operator must be compatible. Our 
radiation condition in [2] fulfils this requirement. 

§3 Proof of Theorem 1.2 

First we consider the continuous case. Let R( z) 
know that for E > 0, 

(H - z)-1 . Then, we 

R(E + iO) E B(L2'8 ; £ 2,-s), s > 1/2. 

Consider a pseudo-differential operator (wDO) p_(x, Dx) with symbolp_(x, e) 
satisfying 

p_(x,e) = 0, if 
X e ~- 0 > 1-E. 

We say that a solution u to (-b.+ V - E)u = f satisfies the outgoing 
radiation condition if there exist 8 < 1/2 < s such that 

u E £ 2,-s, P-(x, Dx)u E £ 2,-8 

for all suchp_(x,Dx)- Then, the resolvent R(E+i0) satisfies this radiation 
condition. Moreover, the solution to (-b.+ V - E)u = f satisfying this 
radiation condition is unique. This formulation of radiation condition is 
equivalent to the classical one: 

Next we consider the discrete case. The free equation is 

Passing to the Fourier series, we have 



6

where Ph(~) is given as follows and behaves like 

as h ➔ 0. We define the characteristic surface ME,h by 

We are interested in the regularity of uh(~), since we are concerned with the 
behavior of uh(n) as lnl ➔ oo. Then, one can easily see: 

• Outside ME,h, uh(~) has the same regularity as h(~)-

• Near ME,h, uh(~) can be dealt with in the same way as in the contin
uous case. 

Now, let us recall the Agmon-Hormander approach to LAP [1]. Consider 
a differential equation of constant coefficients: 

(P(D) - >.)u = f. 

Assume that P(~)->. is simple characteristic. Then, one can factrize P(~)->. 
as 

P(~) - >. = (6 - p(())q(~, >.), q(~, >.) #- 0, 

and transform the above equation into the following one: 

(6 - p(())v = g. 

By the partial Fourier transform, we then have 

The Sobolev space on T~ is then defined by 

f E L2'8 (Z~) ~ h(~) E H8 (T~)-

If supp h(~) is localized near ME,h, this is equivalent to Jh E H8 (Rd). 
Arguing in this way, one can show that the resolvent of -fl.disc,h sat

isfies the same estimates as the continuous case. The radiation condition 
formulated by \liDO is also satisfied. By the perturbation theory, it is not 
difficult to include the potential Vh(n). Moreover, the resolvent estimates 
thus obtained are uniform with respect to O < h < ho. In summary, the 
following lemma holds. 

Lemma 3.1 
(-fl. . + Vi _ z)-l . £2,s ➔ £2,-s disc,h h · , 
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P_(-b..disc,h + Vh - z)-1 : L 2'8 -+ L 2,-6 

for r5 < 1/2 < s, uniformly with respect to 0 < Imz < 1, 0 < h < ho. 

Letting Im z ➔ 0, we have 

(-b...disc,h + Vh - E - i0)-1 : L2' 8 -+ L2'-s, 

P_(-b..disc,h + Vh - E - i0)-1 : L 2 ,s-+ L 2,-6 

for r5 < 1/2 < s, uniformly with respect to O < h < ho. 
By a little more computation, one can prove the precompactness of 

(-b...disc,h + Vh - E - i0)-1 . 

From this, we can conclude the theorem. 

§4 S-matrix 

As an application of Theorem 1.2, we show that the S-matrix of continuous 
Schrodinger operator is approximated by that of the discrete Schrodinger 
operator. Put for w E 5d-l 

cp(x, VE,w) = eiv'Ew•x - (-b...+ V(x)- E-i0)-1(V(x)eiv'Ew•x). 

It satisfies 
( - b..+ V(x) - E)cp(x, E,w) = 0. 

v'E eiv'Er 
cp(x,E,w) ~ e- Ew·x -C(E)r(d-l)/2 A(E,0,w), 0 = x/r 

Heisenberg's S-matrix is then defined by 

S(E, 0, w) = r5(0 - w) - c(E)A(E, 0, w), 

where the scattering amplitude A(E,0,w) is defined by 

A(E,0,w) = { e-iv'E(e-w)·xv(x)dx 
}Rd 

!Rd e-iv'Ee·xv(x) ( - D..+ V(x) - E - iO )-l ( V(x)eiv'Ew·x)dx. 

The scattering amplitude Ah(E, 0, w) for the square lattice is almost the 
same. Replace 

Fourier transform ➔ Fourier series, 

S d-1 M -+ E,h· 

Note 
M S d-1 

E,h ~ ( diffeomorphic) 

By Theorem 1.2, we have 

Theorem 4.1 For any E > 0, and 0,w E 3d-l, we have Ah(E,0,w)-+ 
A(E,0,w) ash ➔ 0. 
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§ 5 General scheme for convergence of discrete operators to 
continuous operators 

We start from the discrete operator and consider the passage to continuous 
operators. We denote the Fourier transformation on Rd by 

the shift operator Sh,j by 

(Sh,jf)(x) = f(x - hej), 

e1 = (1, 0, · · ·, 0), · · ·, ed = (0, · · ·, 0, 1), 

and put 

Then, we have 
L s -ihf;,· L 

J cont h,j = e 1 J cont• 

Similarly, we have for the discrete Fourier transform, i.e. Fourier series, cf. 
(7), 

T S -ihf;,· T 
J disc h h J. = e 1 J disc h · , , , 

The discrete Laplacian is a matrix whose entries are shift operators. There
fore, it is transformed to a matrix of trigonometric polynomials. 

§5.1 Expansion of the characteristic roots 

Conider the case h = 1. A lattice Hamiltonian is an s x s matrix 

where Lij(z) is a polynomial of z E Cd and z. Let >.('TJ) be one of its 
characteristic roots: 

where we use the notation 

'T/ E Rd, e -ir, = ( e -ir,1 , ... , e -ir,d). 

Assume that at a point 'T/ = d1 E Td, >.('TJ) takes a local minimum: 

>.('TJ) 2: Eo, >.(d1) = Ea. 

We call Eo the reference energy. 
Consider a scaled Hamiltonian on Ti: 
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Here, v in lv depends on Eo, and is chosen so that the following arguments 
work well. Letting dh =di/hand making a change of variable 'T/ = ~ + dh, 
consider 

Assume that 

Near dh, we pass to a gauge transformation 

Lh(Sh)---+ gh.ch(Sh)(h, 

(<Jha)(n) = ihn·dha(n), dh = difh. 

We expect that the term (Jh.Ch(Sh)Yh converges to a differential operator 
(more generally \JJDO): 

Let us examine it for basic examples. 

§5.2 Triangular lattice 

The Laplacian for the triangular lattice is defined by 

( !).disc,hf) ( n) 
1 [ 1(~ ~ ~ 
h2 f(n) - 6 f(n1 + 1, n2) + f(n1 - 1, n2) + f(n1, n2 + 1) 

+J(n1,n2 -1) + f(n1 + l,n2- l) + f(n1 - l,n2 + 1))]. 

Passing to the Fourier series, -b,.disc,h is rewritten as 

1 
3h2 (3 - cos h6 - cos h6 - cos(h6 - h6)) 

2 ( . 2 h6 + . 2 h6 + . 2 h(6 - 6)) - sm - sm - sm ---- . 
3h2 2 2 2 

Arguing as in the case of the square lattice, one can show : 

Theorem 5.1 The scattering solution of the triangular lattice converges to 
that of the equation1 

1a2 a2 a 02 ( - -(- + - + (- - -) ) + V(x) - E)u = f 
6 oxy OX§ OX1 OX2 

The S-matrix also converges. 

1 For the topology of convergence, see Theorem 7.1. 
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§5.3 Hexagonal lattice 

The hexagonal lattice is a 2 x 2 system, hence has 2 characteristic roots. 
When they cross, the solution of the lattice Schrodinger equation behaves 
differently. 

5.3.1 Dirac points The Laplacian for the Hexagonal lattice is given by 

1 ( 0 
-b..disc,h = - 3h 1 + S + S 

h,1 h,2 

Its symbol is 

0 
1 + e-ihr,1 + e-ihr,2 

We put 

Then, we have 

The characteristic roots of Ch(Sh) are 

,\(±)( ) = ± J3 + 2b2(h77) 
h 7J 3h . 

By elementary geometry, we have 

3 + 2b2(77) = 0 ~ 

3 + 2b2 ( 77) = 9 ~ 

The spectrum of -b..rh is 

We say that 7]o is a Dirac point if det(£h(ih77) - ,\) = 0 has a multiple 

root at 7J = 7JO · 

5.3.2 Derivation of Dirac equations. We expand the discerete equation 
near the center of the energy, i.e. 0 of a-( - b..rh). Let d~±) be the Dirac 
points for the hexagonal lattice, i.e. 
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and take open sets K6±) C Td such that 

We take x(±) ( TJ) E C 00 (Td) such that 

supp X(±) C K6±), X(+) + X(-) = 1 on Ta. 

In particular, x(±) = 1 in a neighborhood of d~±), and x(±) = 0 in a neigh

borhood of d~~). 

We put 

(±)( )- ✓3+2b2(h(~+d~+))) 
ph ~ - 3h ' 

x:,(±) = K6±) - d~±). 

On K,(±) /h, Pt)(~) vanishes only at~= 0. Moreover, there exists a constant 
C > 0 such that 

The next step is the cut-off near Dirac points. For the solution of the 
equation 

(,C,h(Sh) - z)uh = fh, 

we split uh= u~+) + u~-), where 

(±) r-1 ( (±)(h )~ ( )) uh = .r disc h X T/ Uh T/ , 
' 

! (±) -1 ( (±)( )'i( )) h = Fdisc,h X hry Jh T/ , 

which satisfy 
(,C,h(Sh) - z)u~±) = f~±). 

We also introduce the Gauge transformation g(±). 

(±) ·h a<±) · a<±) (Q a)(n) = ei n· h a(n) = ein· 1 a(n), 

One can then show that ih behaves as follows. 

Theorem 5.2 

where v(±) is a solution to the 2-dim. massless Dirac equation. 2 

Let us give a sketch of the proof of Theorem 5.2. We put 

2 For the topology of this expansion, see Theorem 6.1. 
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Then, 
( £,h( eih(~+d~±)) - Z )-1 = 

1 ( 0 q(h(~ +
0 

di±))) ) . 
p~±) (~) _ z2 q(-h(~ + di±))) 

We take 7jJC±l(77) E C0 (Rd) and put 

fh(x) = ( _!!_ t 12 { iX·TJ (7/J(+)(rJ - i+)) + 7jJC-l(77 - i-l)) d77. 
27f }Rd h h 

Let Vh±) = Vh±) (E + i0) for E > 0. Then, we have for E > 0 

llvi±)ll-1;2-E '.S Cllfllm,s, 

IIP-(Dx)vi±)ll-1;2+E '.S Cllfllm,s, P- E p_, 

where 11 · llm,s denotes the weighted Sobolev norm: 

ll!llm,s = L lief~ ills• 
lal:"'.m 

Let uh= uh(E + i0) = g(+)v(+) + g(-)v(-). Noting that 

g(±)v(±) = i/±l(~ - di±)), 

we have 
- ix-i+l_(+) ix-l-l-(-) 
Uh = e h vh + e h vh 

We then see that Vh±) --+ v( ±), hence uh behaves like 

. i+) ( ) . l-l ( ) Uh '.::::' eix· h v + + eix· h v - . 

We show that v( ±) are solutions to massless Dirac equations. We consider 
the case of Vh +), and make the chang of variables 

to obtain 

as h --+ 0. We put 

21r 
7J1 = 6 + 3h' 

21r 
7J2 = 6 - 3h' 

e21ri/3(eih6 _ l) + e-21ri/3(eih6 _ l) 

-hi6 + 6 _ h J3(6 -6) 
2 2 
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Then, we have 

We put 
Yl = V3(x1 - x2), Y2 = -3(x1 + x2). 

Then, the map (x, 77) ➔ (y, () is symplectic. We then have 

- 3~ (1 + eihrJ1 + eihrJ2) ~ (1 - i(2, 

as h ➔ 0. Similarly, 

We have thus obtained 

where 0-1, 0-2 are Pauli spin matrices. Therefore, v( +) satisfies 

Similarly, v(-) satisfies 

5.3.3 Derivation of Schrodinger equations. We expand the hexagonal 
lattice system near the bottom of the spectrum. To deal with the case near 
the lowest energy, we should consider 

1 ( o 1 + s;;,1 + s;;,2 ) 
3h2 1 + sh,1 + sh,2 0 . 

Here, note that we take v = 2 in hv, while in the previous case v = 1. 

The reference energy is Eo = -h2 /2, and we consider the Hamiltonian 

Then, the characteristic roots are 
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The minimum is attained only at 77 = 0, and >.~ - ) ( 77) has a Taylor expansion 

Arguing in the same way as in the case of square lattice, we obtain the 
following theorem. 

Theorem 5.3 The solution of the Schrodinger equation on the hexagonal 
lattice 

converges to that for the continuum Schrodinger equation 

§6 General formulation I 

The arguments in the previous section can be generalized so that we can 
deal with the following lattices: 

Square, Triangluar, Hexagonal, ladder of square lattices, graphite. 

We consider the symbol .Ch(z) of -~f:. For 77 E Rd, let 

be the characteristic roots of £h(e-ih1J). We restrict ourselves to two cases: 
(1) a simpe root, (2) double roots. 

We assume for some 1 :::; j :::; s, there exists an h-independent open set 
Ko in Td with the following properties. 

(B-1) On Ko, Aj(e-i1J) 2: 0, and there exists a unique d1 E Ko such that 
>.j(e-id1) = 0. 

We next assume either the following (B-2-1) or (B-2-2): 

(B-2-1) There exist constants E1, E2 > 0 such that 

(B-2-2) Aj-i(e-i1J) = ->.j(e-i1J), and there exist constants E1 , E2 > 0 such 
that 

Aj-2(e-i1J) < -E1 < Aj-1(e-i1J):::; >.j(e-i1J) < E2 < Aj+1(e-i1J), V77 E Ko. 
(12) 

In both cases, we put 
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JC= /Co - d1 = {77 - d1; 77 E /Co}, 

Ph(~) = Aj,h(~ + dh), dh = di/h, 

and assume as follows. 

(B-3) For O -=f- ~ E /C/h, the limit 

Ph(~) -+ P(~), 

(13) 

(14) 

(15) 

together with all of its derivatives, exists as h -+ 0, where P(~) is C00 for 
~ -=f- 0, homogeneous of degree 'Y > 0 and 

(16) 

for a constant C > 0. 

Let IIh(~) be the eigenprojection associated with the eigenvalue Aj,h(~ + 
dh) for the case (B-2-1), and the sum of eigenprojections associated with 
Aj-1,h(~ + dh) and Aj,h(~ + dh) for the case (B-2-2). We assume: 

(B-4) For 0 -=f- ~ E JC/h, there exists a projection IIo(~) such that 

(17) 

as h -+ 0, together with all derivatives. 

We then have the following theorem. We state only for the case (B-2-1). 

Theorem 6.1 Assume that f E Hm,s(Rd) for some s > d + l and m > 
[d/2] + l. Assume {B-1}, {B-2-1}, {B-3}, {B-4) and {U-1). Let uh(n, E+i0) 
be an outgoing solution to the gauge transformed equation 

(-9i',,Lldisc,hYh - E)uh = !h on zd, 

where fh(n) = f(hn). We put ih(t E + i0) = Fdisc,huh, and 

vh(~, E + i0) = Xd(h~)IIh(~)uh(~, E + i0). (18) 

vh(x, E + i0) = ( .!!.._ tl2 { eix•l;uh(~, E + i0)d~. (19) 
27r }Td 

h 

Then, there exists a strong limit 

lim vh(x, E + iE) = v(x, E + iO) in L2,-1/2-E(Rd), E > 0, 
h➔O 

which is a unique outgoing solution to the Schrodinger equation 

where ( Fcontg) ( ~) = Ilo ( ~) ( Fcontf) ( ~), and v satisfies the radiation condition 

P-(x, Dx)v E L2,-l/2+E(Rd), P- E p __ 
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§7 General formulation II 

Let us consider the case where the characteristic root Aj,h(~) has a unique 
global minimum. Assume that 

(C-1) On Td, Aj(e-i11) ::::: 0, and there exists a unique d1 E Td such that 
Aj(e-id1) = 0. 

(C-2) There exist constants E1, E2 > 0 such that 

Aj-1(e-i17 ) < -E1 < Aj(e-i17 ) < E2 < Aj+1(e-i17 ), \/ry E Td. (20) 

(C-3) Letting Ph(~) be 

Ph(~) = Aj,h(~ + dh), dh = di/h, 

we assume that Ph(~)----+ P(~) on Td, where 

P(~) = L aa(\ 
lal=2m 

m being a positive integer. 

(C-4) The eigenvector associated with Aj(e-11 ) does not depend on ry. 

(21) 

(22) 

Under these additional assumptions, one can add a scalar potential V(x) 
to -~rh. Assume that 

(V-2) V(x) E H0(Rd) for some s > d/2. 

We finally assume the uniqueness of solutions to the Schrodinger equa
tion. 

(U-2) The solution of the equation 

(P(Dx) + V(x) - E)u = f E B (23) 

satisfying u E B* and the radiation condition is unique. 

Theorem 7.1 Assume that f E Hm,s(Rd) for some s > d + 1 and m > 
[d/2] + 1. Assume (C-1), (C-2), (C-3), (C-4) and (U-2). Let z ri R, and 
uh(n, z) be an L 2 -solution of the equation 

on zd 
' 

where fh(n) = f(hn). Then, there exist a strong limit 

lim uh(x, z) = u(x, z) in £ 2,-s(Rd), 0 < s < 1/2. 
h---tO 

The convergence is locally uniform on Rd. Moreover, u satisfies 

u = IIou, (P(Dx) + V(x) - z)u = IIof. (24) 



17

§8 Complex energy 

In the above arguments, we used Rellich type uniqueness theorem. For this, 
we need the unique continuation theorem for the Helmholtz equation on the 
lattice. However, Kagome lattice, Subdivision of square lattice do not have 
this unique continuation property. For this case, by considering the complex 
energy, our theorem still holds: 

Theorem 8.1 Assume that f E Hm,s(Rd) for some s > d + l and m > 
[d/2] + 1. Assume (C-1), (C-2), (C-3), (C-4) and (U-2). Let z ri R, and 
uh(n, z) be an L 2 -solution of the equation 

on zd 
' 

where fh(n) = f(hn). Then, there exist a strong limit 

lim uh(x, z) = u(x, z) in L2•-s(Rd), 0 < s < 1/2. 
h---+0 

The convergence is locally uniform on Rd. Moreover, u satisfies 

u = IIou, (P(Dx) + V(x) - z)u = IIof. 
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