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Abstract 

In this conference proceeding's paper we summarize some recent investigations on a scattering system 
given by the Neumann Laplacian on the discrete half-space perturbed by a periodic potential at the 
boundary. This material is borrowed from a joint paper [9] with H.S. Nguyen and R. Tiedra de Aldecoa. 
For more precise statements and details, we refer to this reference. 
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Overview 

For the last 20 years, Schrodinger operators with potentials supported on lower dimensional subspaces have 

been the subject of an intensive study motivated by both physical applications and mathematical interest, see 
for example [2, 3, 4, 5, 6, 7, 13] and references therein. These systems exhibit properties that are intermediate 
between the ones of standard scattering systems (with potentials decaying in all space directions) and the ones 
of bulk systems (with potentials having no specific space decay). A fundamental example of such property, 
appearing in discrete and in continuous settings, is the presence of surface states propagating along the lower 

dimensional subspace. Our goal is to present a detailed study of these surface states from a C*-algebraic 
point of view and for a two-dimensional system on the discrete lattice. In particular, we plan to establish an 

index-type theorem relating the surface states to the scattering part of system. Note that relations of this type 
in various contexts have already appeared in [1, 8, 20, 23]. However, before any C*-algebraic construction 
and prior to any index theorem, a lot of analysis is needed. This is the subject of this first part of a series of 

two papers. 
The model that we consider is a simple and natural quantum system exhibiting surface states. It is given 

by a Laplace operator on a discrete half-space, subject to a periodic potential at the boundary, see Figure 

1. Despite its simplicity, this model requires a non-trivial analysis, and reveals some unexpected properties. 

Note that this model has already been studied, for instance in [2, 3], but our paper contains more precise 
scattering results, presented within an up-to-date framework. 
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Claude Bernard Lyon 1, CNRS UMR 5208, lnstitut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, 
France. 
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N 

potential V of period N 

Figure 1: Representation of the discrete model 

Let us now give rather complete description of our results, and refer to the following sections for more 
rigorous statements. In the Hilbert space 1{_ := t2 (:Z x N) ~ t2 (:Z) :81 t 2 (N) we consider the free Hamiltonian 
Ho given by 

Ho := /J.z :81 1 + 1 :81 D.N, 

where /J.z denote the adjacency operator in t2(:Z) given by 

(D.z <p) (x) := <p(x + 1) + <p(x - 1) , <p E t2(:Z), x E :Z, 

and where /J. N denote the discrete Neumann adjacency operator on N whose action on rP E l 2 (N) is described 
by 

{
21/2 cp(1) 

(D. Nrfi) (n) = 21!2cp(o) + r/!(2) 

rfi( n + 1) + rfi( n - 1) 

if n = 0 

if n = 1 

if n ;:::: 2. 

The full Hamiltonian H describing our discrete quantum model is then given by 

H := Ho + V. 

where V is the multiplication operator by a nonzero, periodic, real-valued function with support on ;z x {O} . 
In other words, there exists a nonzero periodic function v : :Z --+ lE. of period N E N (N :2'. 2) such that 

( H'l/J)(x, n) = (Ho'l/J)(x, n) + 80.n v(x)'l/J(x , 0), '1/J E 1i.. x E :Z, n E N, 

with 60,n the Kronecker delta function. Note that the multiplication operator V associated to the potential 
v is not a compact perturbation of H0 . 

Since Ho and Hare N-periodic in the x -variable, it is a rather standard fact that they can be decomposed 
by using a Bloch-Floquet transformation. Namely, let us set 

and consider the direct integral Hilbert space f, := Jr~2"l ~f . Then, the operator Ho and H are unitarily 
equivalent to the operators direct integral operators in f, given by 

1EB H8 ~ with H8 ·= 2cos(r.>) + A8 
0 2,r O · 

[0 ,2,r] 
(1) 
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and 

[$ H0 ~ with H0 := 2 cos(\1) + A 0 + diag( v)PO (2) 
l [o .21ri 

where cos(\1) denotes the multiplication operator by the function w--+ cos(w) in I), A0 corresponds to the 
N x N hermitian matrix 

0 1 0 0 e - ;0 

1 0 1 0 

A0 := 0 1 
(3) 

1 0 

0 1 0 1 
ei0 0 0 1 0 

and 

( diag( v)f(0, ·) )J := vU) fJ(0, ·) and (P0 f(0, •) )J := 1" fJ(0,w)9,;"- (4) 

for f E .lj, j E {l, .. . , N} and a.e. 0 E [O, 27!-J. The main advantage of the above representation is that for 
each fixed 0 the operator diag(v)P0 is a finite rank perturbation of the operator Hg. 

Remark 1. A direct inspection shows that the matrix A0 has eigenvalues 

0 ·- (0 + 21rj ) \ .- 2cos --N- , j E {l, ... , N}, 

with corresponding eigenvectors f.J E c_N having components (f.J ) k := ei(0+21rJ)k/N , j, k E {l, . . . , N}. Using 

the notation PJ for the orthogonal projection associated to €J , we thus can write A0 as A0 = ~ J~l >..J PJ. 

As a consequence these unitary equivalences, the analysis of the pair of operators (H, Ho) is reduced 
to the analysis of the family of pairs of operators (H0 , Hg) indexed by a quasi-momentum 0 E [O, 21r]. We 
emphasize that all operators H0 and Hg act in the fixed Hilbert space I) = L2 ([O, 1r) , 9,;"-; c,N ). From now 
on, we shall study the operators H0 and Hg for fixed 0, and come back to the pair (H, HO) later on. 

A spectral representation of Hg is now easy to find, and since it plays an important role in the sequel, 
we provide its construction. Roughly speaking, it consists in diagonalizing the matrix A8 and in linearizing 
the function cos . More precisely, we first define for 0 E [O, 21r] and j E {l, ... , N} the sets 

IJ := (>..J - 2, >..J + 2) and 19 := usi=l lr 
with >..J the eigenvalues of A0 exhibited in Remark 1. Also, we define the fiber Hilbert spaces 

and the corresponding direct integral Hilbert space 

Then, we define the operator § 0 : I) --+ £ 0 by 

(ff9 g) (>..) := 1r-1/ 2 L (4 - (>..- >..J)2)-114 PJg (arccos (2?-)) , g E I), a.e. ).. E 1°. 
{Jl>-EIJ} 
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It is easily verified that »:-0 is unitary, with adjoint (§ 8 )* : £ 0 ---+ f) given by 

N 

((ff8)*() (w) := (27r sin(w)}112 L PJ( (2cos(w) +>-J), ( E £ 8 , a.e. w E [0,7r) . (5) 
j = l 

In addition, § 8 diagonalises the Hamiltonian Hg, namely for all ( E £ 8 and a.e. A E 1° one has 

with x 0 the (bounded) operator of multiplication by the variable in £ 8 . One directly infers from it that Hg 
has purely absolutely continuous spectrum equal to 

(6) 

and also that iY(Ho) = UeE[o, 2,,-J iY(Hg) = [-4, 4]. Note that the spectral representation of Hg leads also 
naturally to the notion of thresholds: these real values correspond to a change of multiplicity of the spectrum. 
Clearly, the set T 8 of thresholds for the operator Hg is given by 

T 8 := {>-J ± 21) E {1. . . . , N} }. (7) 

The next step is to analyse the operator H8 . In brief, we establish the spectral properties of this operator, 
and provide resolvent expansions near the thresholds of its spectrum. Based on the resolvent expansion we 
also provide information on the scattering operator for the pair (H8 , Hg) . 

For the spectral analysis, the main result is a necessary and sufficient condition for the existence of an 
eigenvalue for the operator H0 . For its statement, we follow some standard constructions borrowed from [14] 
and [24]. First of all, let us decompose the matrix diag(v) := (v(l), . . . , v(N)) as a product diag(v) = utl2 , 

where tl := I diag(v) l112 and u := sg n ( diag(v) ) is the diagonal matrix with components 

u11 = sg n ( d1ag( v)) = . {+1 
JJ -1 

We also introduce the expression 

if vU) ~ o 
if vU) < o, 

j E {1, ... , N}. 

The main spectral result for H8 then reads (see Remark 1 for the notation PJ) : 

Proposition 2. A value >, E JR. \ T 8 is an eigenvalue of H8 if and only if 

__ ( ~ tJ PJtl ~ ll PJtl ) n ( (' 0 )) K .- ker u + ~ - {30 (>-) 2 - ~ - {30 (>-) 2 nfJI.WJ} ke r P1 tJ -1- {O}, 
vl>-<>-J-2} J {Jl),>>-J+2} J 

in which case the multiplicity of A equals the dimension of K . 

(8) 

After this spectral result, we use a general approach for resolvent expansions [14, 21] to derive precise 
asymptotic expansions for the operators H0 . For that purpose, let us introduce the bounded operator G : 
f) ---+ CN defined by 

(9) 



22

Then, investigations on the resolvent of H8 are equivalent to the study of the expression 

(10) 

as £ approaches 0. The expansions that we obtain are expressed in terms of projections So, 5 1, 52 in rcN 
with decreasing range, with the most singular divergences of the expansions taking place in the ranges of the 
projections of higher indices (the greater the divergence, the smaller the subspace where it takes place). Our 
expansions are valid for any point ),._ in the spectrum of He_ That is, when ),._ is a threshold of H8 , when ),._ is 
an eigenvalue of He, and when ),._ is neither a threshold, nor an eigenvalue of He_ Note that the asymptotic 
expansion is too complicated and long to be stated in an introduction, but that the technics for deriving 
such results are nowadays rather standard. Let us also mention that a direct consequence of the asymptotic 
expansion is the finiteness of point spectrum of He_ 

Once the asymptotic expansion of the operator (10) is obtained, the next key result of our investigations 
can be proved, namely the continuity of the scattering matrix. Indeed, early investigations on scattering theory 
usually deal with the existence and completeness of the wave operators. Such results lead to the existence 
and the unitarity of the scattering operator, but does not say anything about its continuity of the scattering 
matrix. On the other hand, the future C*-algebraic framework requires the continuity of this operator. 

For getting such a result, let us recall that the wave operators 

exist and are complete since the difference H8 - Hg is a finite rank operator, see [15, Thm. X.4.4]. As a 
consequence, the scattering operator 5 8 := (W! )*W~ is a unitary operator in ~ commuting with Hg, and 
thus 58 is decomposable in the spectral representation of Hg, that is, 

with the scattering matrix 5 8 (>,._) a unitary operator in £ 8 (>,._) _ 
To give an explicit formula for 5 8 (>,._) , Proposition 2 and the asymptotic expansion play a key role. 

Indeed, it follows from them that that the operator 

belongs to ~ (CN) for each ),._ E <T(Hg)\ (T8 U<Tp(He)). Here, we have used the notation <Tp( He) for the point 
spectrum of the operator He_ We also define for j,j' E { 1, . .. , N} the operator OJ/ E ~(PJ,CN ; PJCN ) by 
OJ/ := 1 if j = j' and OJ/ := 0 otherwise. Then, a computation using stationary formulas as presented in [24, 
Sec. 2.8] shows that for ),._ E (tJ n tJ, ) \ (T8 U<Tp( H8 ) ) the channel scattering matrix 5 8(>,._ )J/ := PJ Se(>,._)PJ, 
satisfies the formula 

(11) 

For the continuity of the scattering matrix, the explicit formula for G( Hg- ),._- io)-1G* provided in [9] 
implies the continuity of the map 

Therefore, in order to completely establish the continuity of the channel scattering matrices 5 8 (>,._ )JJ' , what 
remains is to describe the behaviour of 5 8 (>,._ )JJ' as ),._ --+ ),._ , E T8 U <Tp(H8 ) . We will consider separately 
the behaviour of 5 8 (>,._)J/ at thresholds and at embedded eigenvalues, starting with the thresholds. For that 
purpose, we first note that for each ),._ E T e, a channel can already be opened at the energy ),._ (in which case 
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one has to show the existence and the equality of the limits from the right and from the left), it can open at 
the energy A (in which case one only has to show the existence of the limit from the right), or it can close 
at the energy A (in which case one only has to show the existence of the limit from the left). Therefore, we 
will fix A E T 0, and consider the matrix 5°(>. + E)JJ' for suitable €. In this setting our main result is (see [9] 
for a statement with the operators at the limits): 

Theorem 3. Let A E T 0, take € E ~ with lc:I small enough, and let j,j' E {1. ... , N} . 

(a) If A E tJ n tJ, then the limit li mc➔o 5°(>. + c:)JJ' exists. 

{b) If A E Tj n Tf, and A+€ E tJ n IJ, for c: > 0 small enough, then the limit li m,",o 5°(>. + c:lJJ' exists. 

(c) If A E Tj n Tf, and A - € E tJ n IJ, for €> 0 small enough, then the limit lim,",o 5°(>. - E)JJ' exists. 

For the statement about the continuity of the scattering matrix at embedded eigenvalues not located 
at thresholds. 

Theorem 4. Let A E /J"p( H0 ) \ T 0 , take c: E ~ with lc: I > 0 small enough, and let j,j' E {l, . .. , N} . Then, 
if A E tJ n tJ, , the limit lim,-+o 5°(>. + c:)JJ' exists. 

Let us now return to the wave operator W~ . which is of primary interest for future investigations. By 
using the stationary approach of scattering theory and by looking at the representation of the wave operator 
inside the spectral representation of Hg, we can express W~ as the sum of two distinct contributions, namely 
for suitable t ( E £ 0 

(12) 

(13) 

(14) 

Note that the main term (12) could be called the on shell contribution while the remainder term (13) could 
be called the off shell contribution. 

Our interest in such a decomposition is that main term is equal to the product of an explicit operator 
independent of the potential, and the operator 5° - 1. Namely, we show that the operator described by (12) 
is unitarily equivalent to the operator 

(15) 

where X and :Dare representations of the canonical position and momentum operators in the Hilbert space~­
Let us emphasize that such a formula has been derived by looking at the on shell contribution into a rescaled 
energy representation whose importance has been revealed in [1, 23] and which was also used explicitly in 
[12] and implicitly in [18, 19]. 
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The analysis of the remainder term (13) is more involved, and depends on the value of 0 E [O, 21r]. For 
0 c/ 0, then the operator defined by (13) extends continuously to a compact operator. Since (15) is never 
a compact operator it means that the remainder term can indeed be considered as small compared to the 
leading term. Note that the same result holds when 0 = 0 and N (the periodicity) is odd. On the other hand, 
when 0 = 0 and N is even, more analysis is required. In fact, it is interesting to observe that a compacity 
argument does not work exactly when two energy bands in the spectrum of H0 touch but do not overlap 
(the energy bands are [-4, OJ and [O, 4]). In the special case 0 = 0 and N even, one can still show that 
the remainder term is compact if the vectors ll~~ and ll~~/2 are linearly independent (see Remark 1 for the 

definition of the vectors ~~ and ~~12). The very exceptional situation 0 = 0, N even and ll~~ and ll~~/2 
are linearly dependent is called the the exceptional case and take place if and only if the matrix tl is of the 
specia I form 

(

v(1)0 O) 
ll = v(3) O or tl = 

0 

(
0 0 ) v(2) 

0 0 v(4) . . . . 
(16) 

In the exceptional case, the remainder term is bounded but not compact. Let us however already mention 
that this operator will still be smaller than the main term in a sense which will be fully explained in the 
second part of this work, once suitable C* -algebras will be introduced. 

By summing up the previous two paragraphs in a single statement: 

Theorem 5. For any 0 E [O, 21r], one has the equality 

with .tt0 E X (IJ ) in the nondegenerate cases, and .tt0 E 36'(1) ) in the degenerate case. 

Let us mention that this kind of results for various models having a finite point spectrum are not new: The 
first appearance took place in [16, 17], it has then appeared in several papers and summarized in the review 
paper [20], and independently developed in [1] and in [12]. An extension for an infinite number of eigenvalues 
has also been provided in [10, 11]. However, our main interest is now to combine such formulas for all quasi­
momenta, and derive a new representation formula for the full wave operators W± := s- li mt--+±oo eitH e-itHo 

for the initial pair of Hamiltonians (H, Ho)- Note that such an approach for the full wave operators has 
already been used for example in [6, 7, 22]. 

For this last step, it follows from the direct integral decompositions of Hand H0 , from the existence 
and completeness of Wl for each 0 E [O, 21r], and from [6, Sec. 2.4], that W± exist and have same range. In 
addition, both W± and 5 are unitarily equivalent to the direct integral operators 

1EB 
W 0 d0 

± 2,r 
[0,2,r] 

and 

which act on the Hilbert space Sj_ Therefore, by collecting the formulas obtained in Theorem 5 for W~ - 1 
in each fiber Hilbert space I), we obtain a formula for W_ - 1 (and thus also for W+ if we use the relation 

W+ = W_S*): 

Theorem 6. The operator W _ - 1 is unitarily equivalent to the direct integral operator 

f EB (½(1- ta nh (1r'.D ) - i cosh(1r'.D)- 1 ta nh (.x)) (5° - 1) + .tt0) ~ 
} [0,2,r] 

acting in S'J, with .tt0 as in Theorem 5. 

(17) 
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Note that a more precise version of this statement is provided in [9] with the unitary equivalence clearly 
stated. Let us also emphasize that event though this theorem is the culminating result of this paper, it 
is also the starting point for subsequent investigations. Indeed, in recent years, similar formulas for the 
wave operators have been at the root of index theorems in scattering theory. Such results correspond to 
generalizations and to a topological version of the so-called Levinson's theorem. The index theorems are 
based on fact that wave operators are partial isometries relating, through the projection on their cokernels, 
the scattering theory of a system to its bound states. Now, in our situation, due to the direct integral of 
(17) states which belong to the cokernel of W _ are no more bound states but surface states. Therefore, the 
relation mentioned at the beginning of this introduction will be an index theorem based on Theorem 6. In 
fact, a relation of this type has already appeared in [23]. and it relates the total density of surface states 
and the density of the total time delay, see this reference for more details. Let us mention also [8] which 
contains a bulk-edge correspondence for two-dimensional topological insulators whose proof is partially based 
on scattering theory. Four our model, the necessary C*-algebraic framework will be introduced in the second 
paper, and the continuity of the scattering matrices and the existence of their limits at thresholds established 
here will play a crucial role for the choice of the C*-algebras. The 0-dependence of all the operators appearing 
in the current paper will also be a key ingredient for the construction. More information on these issues, and 
the applications of the analytical results obtained here, will be presented in the subsequent paper. 
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