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1 Introduction 

The spectral analysis of scalar Schriidinger operators has witnessed a lot of progress in the last decades 
thanks to the impulse of various techniques from perturbation theory and semiclassical and microlocal 
analysis. We primarily refer to the monographs [DS, DZ, Ma, HS, Zw] and references therein. On the 
contrary, in the case of systems of Schriidinger operators the literature is much less rich and only few 
results are available. These systems play an important role in many problems in quantum physics and 
quantum chemistry where they either represent the original Hamiltonian which describes the physical 
system or a convenient model to simplify the study. A typical example arise in the framework of the 
Born-Oppenheimer approximation of molecular dynamics which allows for a drastic reduction of problem 
size when dealing with molecular systems. Roughly speaking, it states that the study of the molecular 
Hamiltonian which describes the dynamics of systems of nuclei and electrons is reduced to that of a 
N x N system of pseudodifferential operators of the form 

0 

where each Pi(h) := -h2 b.. + V;;(x), j = l, ... ,N, is a scalar Schriidinger operator with potential V;; 
corresponding to an electronic energy-level and R(x; hDx) is a N x N matrix pseudodifferential operator 
of order less than one. In this context the semiclassical parameter h > 0 represents the square root of 
the quotient between the electronic and nuclear masses. 

In the literature there has been some works devoted to the study of the spectral properties of systems 
of coupled Schriidinger operators most of them concern the study of quantum resonances. Martinez 
[Mal] obtained exponential bound on the widths (imaginary parts) of resonances for a two-level system 
without crossing at the classical level, i.e., in the phase space. This happens when the two potentials 
do not cross or the energy considered is lower than that of the crossing. This result has been improved 
in the one-dimensional case in [Ba, Na]. See also [GMl , GM2] for recent results in this direction. In 
[FLN] the authors studied the resonances of a two-level matrix Schriidinger operator in dimension 2 with 
linear conical intersection. They established a generalized Bohr-Sommerfeld quantization condition and 
an asymptotic description of the set of resonances using a decomposition of this model into a direct sum 
of first order systems on the real half line and the exact WKB method. In a serie of recent works, Fujiie, 
Martinez and Watanabe [FMWl, FMW2, FMW3] and Ashida [As] studied the asymptotic distribution 
of resonances near a given energy-level for a model of one-dimensional two-by-two system of coupled 
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Schrodinger operators with energy-level crossing of the form (1.1). They established precise asymptotics 
on both the real and imaginary parts of the resonances in the semiclassical limit h ➔ o+. We also refer 
to the recent work of Higuchi [Hi] where an absence of resonances result was proved for a two-by-two 
system with crossings. 

In this paper we review the recent results of [AF] where the asymptotic distribution of the eigenvalues 
in the semiclassical limit of a one-dimensional 2 x 2 matrix Schrodinger operator was studied. The 
considered Hamiltonian is of the form 

acting on the Hilbert space L2 (JE.) E9 L2 (JE.), where the diagonal elements 

d2 
Pi(h) := -h2 dx2 + ½(x) (j = 1,2), 

(1.1) 

are semiclassical Schrodinger operators on the real line with smooth real-valued potentials, and the anti
diagonal elements, R and its formal adjoint R *, are first-order semiclassical differential operators which 
play the role of the interaction (see (2.2)). We fix an energy-level EE lE., say E = 0, and we assume that 
each potential½, j = 1,2, admits a simple well at this level, denoted ]aj(0),,Bj(0)[ with aj(0):::; ,Bj(0) 
(we refer to the next section for the precise assumption). Under this assumption, in the phase space 
lE.;i = T*lE., the characteristic set 

(1.2) 

for E near 0 is a simple smooth closed curve. In this case, the spectrum of each scalar operator Pi, j = 1, 2, 
is discrete near 0, consists on h-dependent eigenvalues subject to the Bohr-Sommerfeld quantization rule 
(2.4). If the interaction is absent, i.e., R = 0, then the spectrum of P(h) near 0 is just the union of the 
spectra of P1 and P2. Under the interaction, one naturally expects that the eigenvalues of the system 
are approximated in the semiclassical limit by the union of those of Pi and P2. We studied the accuracy 
of this approximation in the case where the two characteristic sets f 1 (0) and f 2 (0) cross to each other, 
which in particular implies an energy-level crossing at the level of the potentials. Assuming that the 
energy-level crossing occurs at x = 0 and setting Eo := V1(0) = ½(0), we studied the following two cases: 

• Tangential case: f 1 (0) and f 2 (0) intersect tangentially at one point (see Figure la). 

E 

,/32(0) X 

(a) Characteristic sets (b) Potentials 

Figure 1: Tangential case 
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• Transversal case: r 1 ( 0) and r 2 ( 0) intersect transversally at two points ( see Figure 2a). 

E 

p_(O) 

(b) Potentials 
(a) Characteristic sets 

Figure 2: Transversal case 

At the level of the potentials, the tangential case corresponds to the degenerate situation where the 
crossing level coincides with 0, i.e, Ea= 0 (see Figure lb), while the transversal case corresponds to the 
situation where the crossing level is below 0, i.e., Ea< 0 (see Figure 2b). In these cases, the interaction 
between the two wells is stronger than in the case without crossing. This interaction is observed as 
eigenvalue splitting when the two action integrals along r 1 (E) and r 2 (E) coincide. We proved that the 
splitting is of polynomial order in h in both cases and gave precise estimates for it. In particular we 
computed explicitly the leading coefficients which reflect the geometry of the crossing. 

For the background of this study and the detailed proofs, we send the readers to [AF]. Here we only 
state the main results and we give a very brief sketch of the method. One can also finds an account 
on the existing literature in relation with the eigenvalue splitting phenomena in the introduction of the 
above paper. 

2 Main results 

2.1 Precise assumptions 

We suppose the following conditions on the potentials Vi, Vi and the interaction operator R,. 

Assumption 2.1. For each j = l, 2, we assume that 

{i) ½ is smooth and real-valued on JR, and it admits limits as x -+ ±oo such that 

lim ½(x) > 0. 
x---t±CXJ 

Moreover-, there exists Sa > l such that 

Vj(x) 2 + IVj'(x)I = O(lxl-80 ) (j = 1,2), as lxl-+ +oo. 

{ii) There exist two real points ai < /Ji such that 

½(x) 
( )( ) > 0, Vx ER 

X - CY.j X - /Jj 
(2.1) 
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Assumption 2.1 (ii) is the so called simple-well condition. It means that½ admits a simple well ]aj,,Bj[ 
at the energy-level E = 0. In the following, when E varies near 0, we denote by aj(E) and ,Bj(E) the 
zeros of V"j(x) - E near ai and ,Bi respectively. These are the so-called turning points. 

Assumption 2.2. R is a first-order semiclassical differential operator of the form 

R = R(x; hD,,) = ro(x) + ir1(x)hD,,, 
1 d 

D,, = i dx' 

with ro, r1 smooth real-valued functions bounded together with all their derivatives on JR. 

(2.2) 

For E > 0 possibly depending on h, we set I(c) := [-E,c]. Under the above assumptions, the operator 
P(h) is self-adjoint in L2 (JR) EB L2 (JR) and its spectrum is discrete in I(c) for sufficiently small E > 0. 

For EE I(c), we define the action integrals along the characteristic sets rj(E) defined by (1.2) 

Ai(E) := ~ { (dx = 1/3;(E) ✓ E - V"j(t)dt (j = 1, 2). 
2 }r;(E) a;(E) 

(2.3) 

The functions A1 and A2 are smooth and strictly increasing near 0. It is well known (see e.g. [01, Ya]) 
that the eigenvalues of the scalar operator Pj in I(c), for E > 0 small enough, are approximated by the 
roots of the Bohr-Sommerfeld quantization rule 

cos(AiiE))=o (j=l,2). (2.4) 

Set 
Uh(E) := u?\c) u u2) (c), U~j) (c) := { E = E(h) E I(c), E satisfies (2.4)} (j = 1, 2). 

The elements of Uh(E) will play the role of reference points near which the eigenvalues of the operator 
P(h) are localized. In the following, we assume without loss of generality that the energy-level crossing 
occurs at x = 0 and a1(0) ::; a2(0)::; 0. We set 

Ea:= Vi(0) = Vi(0), Vj := Vj(0), j = 1,2. 

2.2 Tangential case 

Throughout this paragraph, we assume the following condition on the characteristic sets r1(0) and r2(0). 

Assumption 2.3 (Tangential case). r 1 (0) and r 2(0) intersect tangentially at one point (x, () = (0, 0), 
and their interior domains are disjoint ( see Figure 1). 

Remark 2.1. Under the assumption 2.1 (ii), this condition is equivalent to that the two potentials 
Vi and V2 cross at the origin with value O and with derivatives of different signs (see Figure lb), namely, 

,81(0) = a2(0) = 0, Ea= 0, v1 > 0, v2 < 0. 

The first result is the following Bohr-Sommerfeld type quantization condition which determines the 
eigenvalues of P(h) on any interval centered at 0 of size O(hi). 

Theorem 2.1. Let Assumptions 2.1 , 2.2 and 2.3 hold and fix Co> 0. 

(i) There exists a smooth function m(E; h) of E defined in I( Goh¾) for sufficiently small h and satis
fying the estimate 

such that 

E = E(h) Ea (P(h)) n I(C0 hi) iff cos ( AiiE)) cos ( A 2iE)) = m(E; h). (2.5) 
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{ii} Assume moreover that A1(E) = A2(E). Then we have 

(2.6) 

uniformly for EE I(Coh¾), where 

Here Ai(t) is the Airy function solution to the Airy equation u"(t) = tu(t) defined by 

1 r+00 (ri3 ) Ai(t) = :;;: lo cos 3 + t1) d1). 

This result entails the following one about the location of the eigenvalues of the operator P(h) and 
the eigenvalue splitting in the case A 1 (E) = A 2 (E). 

Corollary 2.1. Let Assumptions 2.1 , 2.2 and 2.3 hold and fix Co > 0. Then, we have 

{1} The eigenvalues EE I(Coh¾) of P(h) satisfy 

<list (E,Uh(C0 ht)) = O(hi). 

{2} Assume moreover that A1(E) = A2(E) =: A(E). Then, the operator P(h) has exactly two eigen
values E+(h) and E_(h) in a neighborhood of size h! of each element E E Uh(Coht), and they 
satisfy 

2.3 Transversal case 

Now, we consider the transversal crossing case, namely, we assume that 

Assumption 2.4 (Transversal case). r1(0) and r2(0) intersect transversally at two points P±(0) := 
(0, ±-v'IEol) (see Figure 2). 

Remark 2.2. Under the assumption 2.1 {ii}, this condition is equivalent to that the two potentials 
Vi and V2 cross transversally at the origin with negative value E0 (see Figure 2b}, namely, 

Remark 2.3. Notice that under the assumption 2.4, for E close enough to 0, r1(E) and r2(E) still 
cross transversally at two points P±(E) := (0, ±✓E - E 0 ). Notice also that in this case, the derivatives 
of V1 and Vi at x = 0 dont have to be of different signs. 

We shall also need the following microlocal ellipticity condition on the interaction operator R at the 
crossing points P±(0). Let r(x,~) := r0 (x) +ir1(x)~, (x,~) E JR.2 , be the symbol of the operator R. 

Assumption 2.5. r(p±(0)) =J 0. 

The following Bohr-Sommerfeld type quantization condition determines the eigenvalues of P(h) in 
any interval centered at E = 0 of size O(c:), for c: > 0 sufficiently small. 

Theorem 2.2. Let assumptions 2.1, 2.2, 2.4 and 2.5 hold. 
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(i) There exists a smooth function m(E; h) of E defined in I(z) for sufficiently small h with 

m(E; h) = O(ht), 

such that 

(2.7) 

E = E(h) E cr (P(h)) n J(z) iff cos ( Ai~E)) cos ( A2~E)) = m(E; h). (2.8) 

(ii) Assume moreover that A1(E) = A2(E). Then, we have m(E; h) = O(h), more precisely, 

uniformly for EE J(z), where 

where B(E) is the action defined by 

10 ~-~ 1/31 (E) 
B(E) := ✓E - Vi(t)dt+ ✓E - Vi(t)dt. 

a 2 (E) 0 

As a consequence, we get the following result. 

Corollary 2.2. Let assumptions 2.1 , 2.2, 2.4 and 2.5 hold. Then, we have 

(i) The eigenvalues EE J(z) of P(h) satisfy 

dist(E,Uh(z)) = O(hH). 

(2.9) 

(2.11) 

(ii) Assume moreover that A1(E) = A2(E) =: A(E). Then the above estimate holds with h! instead 
of hH. More precisely, the operator P(h) has exactly two eigenvalues E+(h) and E_(h) in a 
neighborhood of size h! of each element EE Uh(z), and they satisfy 

Remark 2.4. The condition A1 ( E) = A2 ( E) near E = 0 holds for example when Vi ( x) = V2 ( -x) 
and when V1(x) = Vi(x + a), for some a ER 

3 Outline of the proofs 

In this section we give the main ideas of the proofs of the previous results. The core of the proofs relies 
on two steps. We consider the eigenvalue problem 

(P(h) - E)w = 0, E = E(h) near 0. (3.1) 

In the first step we construct two L2 solutions to the system (3.1) on the half-line (-oo, 0] and two other 
L2 solutions on the half-line [0, +oo ). We denote these solutions by 

(3.2) 
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This construction is made by means of the method of successive construction of serie solutions established 
in [FMWl, FMW3] starting from suitable solutions to the underlying scalar equations 

(3.3) 

The eigenvalues of P(h) are characterized as the energies such that the four solutions (3.2) are linearly 
dependent. More precisely, the quantization condition is given by 

where Wh(E) stands for the Wronskian of w1,L, w2,L, w1,R and w2,R• The asymptotic behavior of Wh(E) 
with respect to h depends on the behaviors of the solutions to the scalar equations (3.3) which in theirs 
turn depend on the case, that is, the tangential case (near the crossing-level) or the transversal case 
(above the crossing-level): 

• Tangential case: In this case, estimates on the first terms of the constructed series solutions are 
sufficient to get the precise quantization condition (2.5). The result in this case is achieved only by 
means of this tool. 

• Transversal case: In this case, due to the existence of a region where both potentials Vi and Vi 
are below E = 0 (see Figure 2b), the solutions to the scalar equations (3.3) are both oscillating 
in this region which makes the convergence of our series solutions slower and then requires many 
terms computation for a satisfactory quantization condition for the eigenvalues of the system. At 
this step we content ourselves with a quantization condition with a rough error estimate. This in 
particular ensures the existence of the eigenvalues but only give a rough estimate on their location. 

To obtain a precise quantization condition in the transversal case, we use a microlocal approach that 
relies on the study of the behavior of the corresponding eigenfunctions microlocally near the characteristic 
set 

Char(P(h) - E) = f1(E) U f2(E), EE J(e). (3.4) 

The key point in this method consists in the computation of the microlocal transfer matrix that link the 
microlocal data at the crossing points of Char(P(h) - E). In [AF], we derived this microlocal transfer 
matrix in the framework of a general non necessarliy self-adjoint pseudodifferential system. We present 
this result in details in the next section. We send the readers to the end of section 5 in the above paper 
for the details of the derivation of the quantization condition from the microlocal connection formulae. 

4 Microlocal transfer matrix at a crossing point for a general 
pseudodifferential system 

We send the reader to the textbooks [DS, Ma, Zw] for the details of the different notions of semiclassical 
and microlocal analysis used in our study. We introduce the class of symbols 

s0 := { q = q(·, ·; h) E C00 (T*JR.; C); laiaf q(x, ~; h) I = 0,,,13(1), Va, (3 EN}. 

For a symbol q E s0 , the corresponding h-pseudodifferential operator denoted Q(h) = Op;:'(q) can be 
defined using the h-Weyl quantization by 

Q(h)u(x) := - 1-J ei(x-y)~fhq (x + y, ~; h) u(y)dyd~, u E C0 (1R.). 
21rh T*ll!. 2 

Let Q1, Q2, R-1 and R-2 be four h-pseudodifferential operators with symbols q1 (x, ~), q2(x, ~), r1(x, ~) and 
r2(x, ~) respectively. Consider, microlocally near po = (0, 0) E T*JR., the two-by-two h-pseudodifferential 
system 

(4.1) 
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We study the microlocal solutions near po to the system 

Q(h)u = 0. 

We make the following assumptions on the symbols q1, q2, r1 and r2. 

Assumption 4.1. The symbols q1 , q2 E s0 are real-valued, and satisfy the following conditions: 

q1(po) = q2(po) = 0, 

81;,q1(po)81;,q2(po) =I= 0 and {q1,q2}(po) =/= 0, 

where {q1, q2}(x, I;) := (81;,q18xq2 - 8xq181;,q2)(x, I;) denotes the Poisson bracket of q1, q2. 

Assumption 4.2. The symbols r1, r2 E s0 satisfy the ellipticity condition at po: 

Let rQ be the characteristic set of Q(h) given by 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The condition ( 4.4) means that r q, and r q2 intersect transversally at p0 . Since the operator Q is microlo
cally elliptic outside rQ, it follows from standard arguments of microlocal analysis that the solutions to 
the system (4.2) are microlocally supported in a neighborhood of rQ. First, we study these microlocal 
solutions away from the crossing point p0 , that is, near the four curves 

rt, := {(x, I;) Er q,; q2(x, I;) > 0}, r;, := {(x, I;) Er q,; q2(x, I;) < 0}, 

rt,:= {(x,1;) E rq2 ; q1(x,1;) > 0}, r~ := {(x,1;) E rq2 ; q1(x,I;) < 0}. 

In the following proposition we give a basis of WKB microlocal solutions to the system (4.2) on each of 
the four curves (r~)j=l,2· 

Proposition 4.1 (WKB basis of solutions). Let j E {1, 2}. On each of the curves r~, the space of 

microlocal solutions to the system (4.2) is one-dimensional and there exist J;f: such that 

Qf t; ~ 0 microlocally on rt , 
and ft'; have the following WKB form 

microlocally on rt , (4.6) 

where the phase function <Pq; is defined as the unique solution of the eikonal equation 

(4.7) 

and aq;, bq; are symbols of the form aq; (x; h) ~ Lk>O hkaq;,k(x), bq; (x; h) ~ Ek>O hkbq;,k(x) with leading 
terms given by - -
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and 

On rt, the operator Q1 is of real principal type while Q2 is elliptic, and the same is true on r~ by 
interchanging Q1 and Q2. Hence microlocally on each of the four curves (rt)j=l,2, the system (4.2) is 
reduced to a scalar one-dimensional equation. Thus, the space of microlocal solutions on each of these 
curves is one-dimensional. The construction of the ft is based on formal computations using standard 
pseudodifferential calculus. We refer to [AF] for the details of this construction. The main result of this 
section is the following: 

Theorem 4.1 (Microlocal transfer matrix). Let Assumptions 4.1 and 4-2 hold, and let u(x; h) E 

L2 (IR) E& L2 (IR) be a solution to the system Qu = 0 microlocally in a small neighborhood of p0 such that 

u ~ tf 1: microlocally on r! , 
for some scalar complex numbers tf = tf (h), j = 1, 2. Then, there exist classical symbols of order 0, 

µ = µ(h) ~ Lk2'.0 hkµk andµ= µ(h) ~ Lk2'.0 hkµk such that 

(4.8) 

where /'i,j,k(h) ~ Ln2:o hn/'i,j,k are symbols with leading terms given by 

where u := -sgn(a~q18N2l(xl)=po). 

The rest of this paper devoted to the proof of Theorem 4.1 which relies on many steps. The first step 
consists in the reduction of the system ( 4.2) to a scalar equation using the ellipticity condition ( 4.5) and 
then to solve this equation by means of a normal form in the spirit of [Sj , CdvPa]. 

Step 1: Reduction to a scalar equation and normal form 

Setting u = t(u1, u2) and using the ellipticity of R,1 at p0 according to assumption (4.5), the system (4.2) 
is reduced microlocally near the origin to a scalar equation of u1. More precisely, there exists a small 
neighborhood V c IR2 of po such that microlocally in V, the system Qu ~ 0 is reduced to 

(4.9) 

where R,11 denotes a parametrix of R,1 in V and £, is the h-pseudodifferential operator defined by 
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with semiclassical Wey! symbol C(x,~;h) = Lj;:,_ohjCj(x,~)- In particular, by the pseudodifferential 
symbolic calculus, we have 

i 
Co=q1q2; C1(po)= 2{q1,q2}(po). 

The crossing point p0 is a hyperbolic fixed point of the Hamiltonian vector field of C. We set 

(4.10) 

Without loss of generality, we assume that /38 > 0 and D > 0. 
In our one-dimensional case, we have the following normal form for the quantization £: 

Lemma 4.1. There exist a small neighborhood n c JR2 of (0,0), a Fourier integral operator U 
with associated canonical transformation ,,, sending V to n and ,,,(po) = (0, 0), and a classical symbol 
F(t; h) ~ Lk?.O hk Fk(t) E c= defined near t = 0, with 

F(0;h) = -~h+µh2, (4.11) 

whereµ= µ(h) ~ Lk?.O hk µk is a classical symbol of order 0, such that 

UF(C; h)U-1 ~ Q := ~(yhDy + hDy · y) microlocallyin !1. (4.12) 

Proof. The normal form (4.12) is due to [Sj]. Notice that in this work, this result was proved for 
self-adjoint operators, but it still holds for our non-self-adjoint operator £ which is self-adjoint at the 
principal level Oph(Co). In the following, we prove (4.11). 

The FIO U is associated with the canonical transform,,, : (x, ~) rt (y, 77) satisfying 

In particular, we can choose 

After a normalization, we can write u-1 in the form 

u-1v(x; h) = L ei,j;(x,y)/hc(x, y; h)v(y)dy, 

where c(x, y; h) ~ Lk>O q(x, y) is a symbol with co(0, 0) = 1 and the phase function 'lj!(x, y) is a 
generating function of ,,,-=- 1, in the sense that ,,,-1 : (y, - 'v y 'ljJ) rt ( x, 'v x 'ljJ). In particular, near ( x, y) = p0 , 

we have 
1 

'l/!(x, y) = 2/-1 x2 + 2VDxy - f3y2) + O((x, y)3 ). 

At the levels of principal and sub-principal symbols, the relation (4.12) implies that 

Fo(Co(,,,-1(y,77))) = Y77, 

F1(Co(,,,-1(y,77))) +£1(,,,-1(y,77))F~(Co(,,,-1(y,77))) = 0. 

(4.13) 

In particular, the first equation at (y, 77) = (0, 0) implies that Fo(0) = 0 and F6(0) = 15, and the second 
one gives 

F1(0) = -C1(po)F~(0) = -~, 

since £1 (po) = if. Thus the symbol F(0; h) has the form (4.11). □ 
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Step 2: Microlocal solutions near the crossing point 

Setting iii := Uu1, the equation £u1 ~ 0 microlocally in V is equivalent to 

Qih ~ F(O; h)ih microlocally in !1, 

which can be rewritten as 
yu~ ~ iµhu1 microlocally in !1. 

(4.14) 

The space of microlocal solutions of this equation is two dimensional and a basis is given by the two 
functions 

(4.15) 

where H denotes the Heaviside function, i.e., H(y) = l for y::,. 0 and H(y) = 0 for y < 0. In particular, 
we have 

FS(g;) = {±y > 0,71 = 0} U {y = 0}. 

Thus, uf := u-1gt are solutions to the equation £u1 ~ 0 microlocally in V, and we have 

More precisely, we have the following asymptotic formulae for uf. 

Proposition 4.2. There exist symbols a±(x; h) ~ ~k>O hkat(x), 17±(x; h) ~ ~k2'.0 hk11t(x), with 
leading terms given by -

'8 
11t(x) = ± ~ (1 + O(x)), 

vDx 

such that, modulo O(h00 ) ash ➔ o+, we have 

+ . - { y27rka+(x; h)ei<I>., (x)/h + hl+iµ.h1/+(x; h)ei</>•2 (x)/h 
u 1 (x,h)- hl+iµ.h1/+(x;h)ei</Jq2(x)/h 

and 

Proof. We only prove the formula for ut. By definition, we have 

ut(x; h) = u- 1gt(x; h) = 1+oo ei,jJ(x,y)/hc(x, y; h)yiµhdy, 

(x > 0) 
(x < 0) 

(x > 0) 
(x < 0). 

(4.16) 

where the phase function 1j; satisfies (4.13). The right hand side of (4.16) is an oscillatory integral and 
up to O(h00 ), its asymptotic behavior as h ➔ 0 is governed by the contributions of the critical points of 
the phase function y >-+ 1j; ( x, y) and the end point y = 0 of y >-+ yiµ.h. 

For x > 0, the function y >-+ 1j;(x,y) has a positive non degenerate critical point Yc(x) which behaves 

like Yc(x) = v'J5x + O(x2 ) as x ➔ 0. The critical value 1j;(x,yc(x)) coincides with the generating 

function (/Jq, (x) of fq,, and 1/J(x, Yc(x)) = -ix2 + O(x3 ) as x ➔ 0. Moreover, we have 8;1f;(x, Yc(x)) = 

-i + O(x) < 0. Then, for a cutoff function x(y) E Cif(JR.) identically 1 near 0 and supported in a small 
neighborhood of y = 0 so that Yc(x) !/: suppx, we have, by the stationary phase theorem (see e.g. [Ma] 
Corollary 2.6.3), 

(4.17) 
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where a+(x; h) ~ Lk2:o hkat(x) is a symbol with leading term 

(4.18) 

On the other hand, we have 

l+oo ei,j;(x,y)/hc(x, y; h)yiµhx(y)dy = hl+iµh7/+(x; h)ei</Jq2(x)/h, 

where 7/+(x; h) ~ Lk2:0 hkr,t(x) with 

7/ci(x) = ;! co(x, 0) = ;! (1 + O(x)). 
vDx vDx 

For the study of this contribution from the endpoint, we develop 'lj!(x, y) in Taylor expansion at y = 0: 

'lj!(x, y) = c/Jq2(x) + ( :ip- + O(x)) y + O(y2). Then using the fact that D =fc 0, we reduce the integral to 

a Laplace integral after a change of variable which eliminates the term O(y2). The above asymptotic 
formula results from the term by term integration which is known as Watson's lemma. 

For x < 0, there is no positive critical points of y >-+ 'lj!(x, y), and hence on this side, the asymptotic 
expansion of ut comes only from the endpoint of the integral, which can be computed similarly as above. 

□ 

Now, we construct another pair of solutions v± = t(vf,vf) to the system (4.2) that are microlocally 
zero on one of rt, and r,;;,. To do this, we proceed in a similar way as above but now by reducing the 
system (4.2) to a scalar equation of v2 instead of v1. Setting v = t(v1, v2) and using the ellipticity of R2 
at Po, the system Qv ~ 0 is reduced microlocally near Po to 

(4.19) 

where 7?21 denotes a parametrix of R 2 in a neighborhood of p0 and Z is the h-pseudodifferential operator 
defined by 

As before, we can construct two microlocal solutions v:f'using a normal form reduction. 

Proposition 4.3. There exist microlocal solutions v:f' to Cv2 ~ 0 in a neighborhood of po such that, 
modulo O(h00 ) ash--+ o+, we have 

and 

(x > 0) 
(x < 0) 

_ . _ { y12irh&-(x; h)ei</Jq2(x)/h + hl+ifihij_(x; h)ei1'., (x)/h (x > 0) 
V2 (x, h) - hl+ifih ij_(x; h)ei1'"1 (x)/h (x < 0). 

where &±(x; h) ~ Lk2:0 hk&t(x), ij±(x; h) ~ Lk2:0 hkijt(x), µ(h) ~ Lk2:0 hkµ_,k with 

iJt(x) = ± :! (1 + O(x)). 
vDx 
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Summing up, we have then constructed 4 microlocal solutions to the system (4.2) rnicrolocally in a 
small neighborhood V of Po 

with 
FS(u±) n V c (r! u rq2 ) n V, FS(v±) n V c (r! u rq1 ) n V, 

where uf and vt are defined above and 

ut ~ -h-1R;11Q1uf, vf ~ -h-1(R2)-1Q2vt. 

Step 3: Connecting the solutions to the basis elements and conclusion 

Now we connect our microlocal solutions u± and v± to the WKB solutions ft, j = 1, 2, given by 
Proposition 4.1 and we deduce the transfer matrix at the crossing point. The following result is an 
immediate consequence of Propositions 4.2 and 4.3. 

Proposition 4.4. There exist symbols 

with leading terms 

(4.20) 

(4.21) 

such that 

{ At,hlt:, on rt, nv r on rt, nv 
+ 0 on r;;-1 nv _ A- h½J.+ on r;;-; nv 

rv Ql Q 
u ~ A+,+hiµhj+ on rt, nv , u A-,+hiµht.+ on rt, nv Q2 Q2 Q2 Q2 

At,,-hiµh f;;, on r;;:, n v A;;:,,-hiµhf;;, on r;;:, nv 

,+ ~ { 

Bt,h½ J;j:, on rt, n v r on rt, nv 
0 on r;;:, nv B-h 1 j+ on r;;:, nv - Q2 2 9.2 

Bt,,+hifihf,J;_ on rt, n v , V ~ B-,+ hiµh j+ on rt, nv Ql Ql 

Bt,•- hifih f;;; on r;;-; n v B;;;•- hifih f;;; on r;;-1 nv. 

We set 

(
tt(h)) = (s1,1(h) s1,2(h)) (t1(h)). 

tt(h) s2,1(h) s2,2(h) t2(h) 

Observe that if t1 (h) = 1 and t2 (h) = 0 then u should be equal to (Bt,•- hifih)- 1v+ microlocally near 
Po, and therefore we have 
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Analogously, if t1 (h) = 0 and f2(h) = 1 then u should be equal to (At,,-hiµh)- 1u+ microlocally near 
Po, and therefore we have 

This ends the proof of Theorem 4.1. 
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