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§1. Introduction 

Inverse problems concerning nondestructive testing play an important role in science 

or other fields of activities of human being. Some inverse problems are formulated 

as those of differential equations. One of famous and interesting problems is to find 

information of the inside of a conductive body from a given pair of the voltage po­

tential and electric current on the boundary of the conductive body. In the author's 

best knowledge, this type of problems originate with Calderon [3]. This problem 

is formulated by boundary value problems for elliptic equations (representing static 

cases), which is called boundary inverse problems. The boundary inverse problems 

have the long history as in [9, 25, 26, 31] or the references in them. Even now, many 

researchers try to develop these fields. 
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In some context of boundary inverse problems, an interesting approach is introduced 

by Ikehata [6] and [7], which is called "the enclosure method" now. Recent works for 

inverse problems by using the enclosure method show that the shortest lengths ( or 

longest one which depends on settings of problems) in some sense ( depending on each 

setting of problems) can be picked up. In §2, we give a reason why the shortest lengths 

appear by using a model case closely related to the original work [7]. This is the main 

purpose of §2. 

For time dependent problems such as heat equations and wave equations, it is natu­

ral to formulate inverse problems, which are investigated by many researchers. It is no 

doubt that the enclosure methods are also useful for time dependent problems, which 

are called "the time dependent enclosure method". For boundary inverse problems of 

the heat equations, as in [8, 15, 16, 18, 23], the enclosure method is applied. A survey 

for recent development of the time dependent enclosure method is given by Ikehata 

[14]. For inverse problems of differential equations including the enclosure method, 

see for example, [9, 26, 27, 30, 31] and earlier references given there. 

In this article, we consider inverse problems governed by wave equations, which 

are related to find obstacles by using such waves as radar and sonar (see e.g. [1] for 

ground probing radar, and [4] for subsurface radar). You want to get information of 

obstacles D hidden by the ground or sea. In these cases, we need to take the layered 

boundary cases into account. But, as the first step, the simplest case is that there is no 

layer, i.e. obstacles are in whole (three dimensional) space ~ 3 filled by homogeneous 

medium. We fix some region B emitting incident waves. Since B is apart from D, 

it is natural to assume that B is disjoint to D. If the incident waves are emitted 

in B, the obstacle D reflects the waves and the reflected waves come back to B. A 

basic problem about this setting is to get information of D by observing the reflected 

waves in B. Ikehata gives serial papers concerning this problems (cf. [10, 11, 12] and 

for electromagnetic waves, [13]). In these investigations, it is assumed that medium 

~ 3 \ D is homogeneous, which means that the waves are governed by the usual wave 

equation 

with the propagation speed c > 0 of waves. In this case, it takes a time Ix - yl/c for 

waves emanating y E Band arriving at x ED. Thus, we can guess that the shortest 
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lengths in this case is given by the infimum 

c-1dist(B, D) = c- 1 inf Ix -yl. 
(x,y)EDxB 

As in [10, 11] (and section 2 of [24] for a case of less regularities), applying the 

enclosure method, we can show that this is true in §2. 

In §3, we consider what happens if we have some layers between D and B. As the 

simplest case with layers, we handle the case that there exists an only one flat layer. 

This type of inverse problems are already studied by many authors. Here, we handle 

the problem by using the time dependent enclosure method. For other approaches, 

see e.g. [2, 5, 28, 29]. 

We put JRi = {x = (x 1 ,x2 ,x3 ) E JR3 I± x3 > O}. Assume that the propagation 

speed of the wave in JRi is given by ff±, where 'Y± > 0 are constants with 'Y+ -/=- 'Y-· 

Thus, the transmission boundary alRi is corresponding to the flat layer (boundary). 

Speed:ff+ 

x' 

Speed:~ 
.,avity X3 = O:layer boundary 

Fig. 1 Two-layered case 

We call JRt (resp. JR~) the upper (resp. lower) side of the flat layer olRi- If there 

is no obstacle D in this two-layered medium, we call the free media or the free case. 

The waves propagating the free media is governed by 

{ (a; - L'Y0 )uo = 0 
uo(0,x) = 0, Otuo(0,x) = J(x) 

in(O,oo) x JR3 , 

onlR3 , 
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where 'Yo(x) = 'Y±h for ±x3 > 0 and Ly0 u = div('Yo'Vu). 

We consider the case that obstacles Dis inside of the lower side. To get information 

of D, we produce waves in some region B of the upper side, and staying B, we 

measure the waves reflected by the obstacles D. Hence, we assume that D C JR~ 

and B C JRt, and JR~ \ D is connected. In the case that there are some inclusions 

(i.e. heterogeneous media in the background material occupying the lower side of the 

flat layer boundary), [20, 21] (and [24] for inclusions with less regularities) handle the 

time dependent enclosure method. In §3, we give a formulation of the time dependent 

enclosure method for the inverse problems detecting obstacles D in the lower side of 

two-layered media. 

For two-layered case, we can guess that for x E D and y E B, the shortest length 

l(x, y) means the consuming time for waves starting at y E B and arriving at x ED. 

Hence, the shortest length in this case is given by 

l(D,B) = inf l(x,y). 
xED,yEB 

Note that l(x,y) (resp. l(D,B)) are called the optical distance between x ED and 

y E B (resp. D and B). It is well known that the optical distance l(x, y) is given by 

Fermat's principle, 

l(x, y) = inf lx y(z') 
z 1ElR2 ' 

(1.1) 

where 

As in [20, 21, 24], the shortest lengths are closely related to the asymptotic behavior 

of the fundamental solution <l>7 (x, y) of 

(1.3) 

Hence, the problems are reduced to finding l(x, y) from the fundamental solution. 

This is the most important part of this problem, and developed in [20, 21]. In §4, 

along with these previous works, we give a review how and why the optical distance 

is appeared in the fundamental solution of (1.3). 

For incident waves starting from B, some refracted waves by the layered boundary 

hit the obstacles D. This produces reflected waves. Some of these waves come back 
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to B through the layered boundary. Hence, we measure the refracted waves by the 

layered boundary of the reflected signals by the obstacles D. If,- > 1+, all refracted 

waves are body waves, which means that the consuming time is given by (1.2). On 

the contrary, if,- < 1+, we have totally refracted waves. These waves propagate on 

the layered boundary, and emanate into the upper side of the medium. Hence, the 

consuming time of them are different from usual time given by (1.2) (see e.g. ( 4. 7) 

and figure 3 in §4). This fact requires additional arguments, however, eventually, we 

can show that these waves never affect the optical distance. We can say that this part 

is the most remarkable and interesting points among studies of the time dependent 

enclosure method for two-layered case. 

§2. Shortest lengths and the enclosure methods 

Let O c ffi.n (n = 2 or 3) be bounded domain with Lipschitz boundary 80. The set 

n stands for the whole shape of a homogeneous conductive body with some cavities 

inside of this body. All of these cavities are denoted by D. Hence, we assume that D 

is an open set satisfying DC 0. Then the voltage potential u(x) satisfies 

{
6u(x)=0 
Ov,,u(x) = 0 
u(x) = f(x) 

in O \ D, 
onoD, 
on an, 

(2.1) 

where Vx is the unit outer normal of D (or 0) at x E 8D (or x E 80), and Ov,,u = 

Vx · v' xulaD on oD(or Ov,, u = Vx · v' xulan on 80). 

For the solution u of (2.1), Ov,, ulan is the electric current on the outside boundary. 

Thus, put a voltage potential f on the outside boundary 80 of the conductive body n, 
and measure the current Ov,, ulan on 80. By this step, one can have a pair(!, Ov,, ulan) 

off and Ov,, ulan as measurement. The problems is to find how to detect D or give 

information of D by measurements given in the above. 

Take any w and WJ_ E sn-l with w . WJ_ = 0 and put f(x, T) = eT(x·w+ix-w_j_) 

(x E ffi.n). For f(x, T) on 80 we find the solution u(x, T) of (2.1). Next, we introduce 

the indicator function IT of the form: 

IT= r { Ov,, u(x, T) - Ov,,f(x, T)} f(x, T)dSx. lan 
In [7], Ikehata gives a procedure to obtain the support function of D defined by 
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hD(w) = supxED x · w. We can see that Dis contained the half space {x E JRnlx · w < 
h D ( w)}. Since we can take all w E sn- l theoretically, the convex hull D' of cavities 

Dis given by D' = nlwl=l {xlx. w < h(w)}. This is the prototype of the idea. Note 

that in this case, to obtain hD(w), we need to take the limit T-----+ oo for IT. Thus, for 

any w E 5n- 1 , we need infinitely many measurements corresponding to w and large 

T. For two dimensional case (n = 2), when we know that Dis polygon a priori, even 

if we have only one pair of the measurement, we can also obtain the convex hull of D 

by introducing some other indicator functions (cf. Ikehata [6]). 

Intuitively, we can see that IT gives information about "shortest lengths" in some 

sense. In this setting, -hD(w) can be regarded as the shortest lengths (hence, hD(w) 

itself is the longest one). Integration by parts implies that 

0= f _{6.u·f-6.f·J}dx=IT- f {a,,xu(x,T)-8,,xf(x,T)}f(x,T)dSx, 
ln\D laD 

which yields 

From this, we can get hD(w) since we have 

-1 
lim - log IITI = hD(w). 

T-HJO 2T 

Usually, the enclosure methods give the shortest or longest lengths for the problems 

in hand. Even the time dependent problems seem to have the same structures as 

the stationary problems. For the boundary inverse problems for heat equations, see 

[15, 16, 18, 23]. These problems are finally reduced to giving asymptotic behavior for 

the solutions of some elliptic boundary value problems with large parameter. In these 

asymptotics, the shortest lengths appear. Perhaps, the prototype of these phenomena 

is given by Varadhan [32] to give short time asymptotics of the heat kernels. To 

accomplish this, Varadhan [32] shows that the solution v(x; T) of 

satisfies 

inn, 
on an 

1. loglv(x;T)l __ d. ( ~"') Im ----- - ISt X, UH • 
T------)(X) T 
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Some types of the time dependent enclosure method are closely related to such 

asymptotics. Take a bounded set D with D C !1. Consider the following reduced 

problems: 

{ 
(r2 - L.)v(x; r) = 0 
8,,,v(x; r) = 1 
8,,,v(x;r) = 0 

in !1 \ D, 
on 8!1, 
on 8D. 

Since there is no signal on 8D, only the reflected signals of original source given in 

8!1 come back to the inside. Hence, in this case, dist(x, 8!1) is the shortest length 

from the boundary to x En\ D, which is justified in [19] (cf. Theorem 1.3 in [19]). 

To obtain this result, we essentially use the precise estimate given in [17], which 

gives the basis of developing some problems arising from the time dependent enclosure 

method (cf. [18, 23]). Thus, we can say that some inverse problems described above 

are closely connected to the problems finding the shortest lengths corresponding to 

the problems, which have a long history. 

§3. Inverse problems for two layered case 

In this section, we formulate the inverse problem for two layered case. Let D and 

B be the sets given in figure 1 of §1. We fix T > 0 and consider the following wave 

equation: 

8,,, u=O { 
(8; - L'Y0 )u = 0 

u(O, x) = 0, 8tu(O, x) = f(x) 

in (0, T) x (IB.3 \ D), 
on (0, T) x 8D, 
on IB.3 \ D, 

(3.1) 

where Vx is the unit outer normal of 8D. In (3.1), the initial datum f is the source 

of the waves emitting from B, and T > 0 stands for the time measuring the reflected 

waves. As in [20, 21, 24], we introduce the indicator function 

IT= r f(x)(w(x; r) - v(x; r))dx, 
j'R.3\D 

where w(x; r) and v(x; r) is defined by 

(3.2) 

(3.3) 

Note that IT is obtained from the measurement u(t, x) for 0 :=; t :=; T and x E B. 
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To make sure that waves are emanated from B exactly, we assume that f E L 2 (JR3 ) 

satisfies the emission condition on B, which is described as 

{ f E L2 (JR3 ) with suppf CB and there exists a constant c1 > 0 
such that f(x) ~ c1 (x E B) or -f(x) ~ c1 (x E B). 

Let us recall condition (C) introduced in [24], which describes regularities of bound­

aries in some sense. For x E JR3 , h > 0, 0 > 0 and n E JR3 with lnl = 1, put 

C(x, n, h, 0) = {y E JR3 IIY - xl :S h, (y - x)•n ~ IY - xl cos 0}. Note that C(x, n, h, 0) 

is a cone with vertex x, direction n, radius h and opening angle 0. We say that B 

satisfies condition ( C) if B satisfies 

(C) { for any x E 8B, there exists a cone C(x, n, h, 0) with vertex x 
satisfying C(x,n,h,0) \ {x} CB. 

Note that domains with C 1 or even c0 ,1 boundary satisfy condition (C). 

From asymptotic behavior of IT as T ------, oo, we can obtain the following result 

essentially given in [20, 21, 24]. 

Theorem 3.1 Suppose that D has C 1 boundary 8D and B satisfies condition (C). 

Then, the indicator function defined by (3.2) satisfies 

(i) for T < 2l(D, B), limT---too eTT IT= 0, 

(ii) for T > 2l(D, B), limT---too eTT IT = -oo. 

Further, suppose T > 2l(D, B), then 

lim ! log IITI = -2l(D, B). 
T--+00 T 

Remark 3.1 In the case of inclusions, we can handle the following two cases: 

(a) D has C1 boundary 8D and B satisfies condition (C), 

(b) D and B satisfy condition (C) and Bis convex. 

The case (a) is the same as Theorem 3.1. The case (b) means that we can relax the 

regularities of 8D if B is convex ( cf. [24]). It seems to be difficult to handle the case 

(b) for the case of cavities with the Neumann boundary conditions. Thus, we assume 

that D has C1 boundary. 

From Theorem 3.1, we can enclose D. In what follows, for p E JR3 and r > 0, we 

put BT(P) = {x E lR3 llx - PI < r}. Take p E JRt and r > 0 so that Br(P) C JRt, 
and put B = Br(p). Then, Theorem 3.1 implies Dis in the set {x E JR~ll(x,p) > 
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l(D, Br(P)) + r/ ff+}. Since l(x,p) '.S Ix - z'I/ vn=- + IP - z'I/ ff+ for any z' E ~ 2 , 

it follows that 

Thus, in this case, D can be enclosed from the upper side. This result is reasonable 

with this setting, because we only can emanate signals to the cavities D and catch 

the reflected waves. 

The steps getting Theorem 3.1 are the same as for the case of inclusions given in 

[20, 21, 24]. First we reduce the problem to estimate of v(x;T) defined by (3.3). 

Lemma 3.1 Suppose that D has c0 ,1 boundary 8D. 

(i) There exist constants C > 0 and C' > 0 such that 

(ii) There exist constants C0 > 0 and Cb > 0 such that 

Probably, the almost same lemma mentioned above would have been given somewhere, 

but we give a proof of Lemma 3.1 in the last of this section by similar method to section 

2 of [15] and appendix in [20]. 

Now, we introduce the most important estimates of v(x; T). 

Proposition 3.1 Suppose that D has C 1 boundary and B satisfies condition (C). 

Then, there exists a constant C > 0 such that 

Proposition 3.1 is a key to Theorem 3.1. Lemma 3.1 and Proposition 3.1 imply 

Theorem 3.1. 

Since v(x; T) is characterized as the £ 2-solution of 

(3.4) 

v(x; T) can be represented by 

v(x; T) = L <I>r(x, y)f(y)dy, 
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where <l>7 (x, y) is the fundamental solution of (1.3). Hence, the problem is eventually 

reduced to finding asymptotic behavior of v' x<I>7 (x, y) (x E D, y E B) as T -----+ oo. 

This is given as Proposition 1 in [20, 21]. Before introducing this, we need to express 

l(x, y) defined by (1.1) in terms of Snell's law (as in Lemma 4.1 of [20]). 

For x = (x',x3) E JR~ and y = (y',y3) E JRt, there exists a unique point z'(x,y) E 

ffi.2 satisfying l(x,y) = lx,y(z'(x,y)), and the point z'(x,y) is on the line segment 

x'y' and C00 for (x, y) E JR~ x JRt (cf. Lemma 4.1 of [20]). Since z' = z'(x, y) 

is a unique point attaining l(x, y) = infz'Effi.2 lx,y(z'), z'(x, y) = (z'(x, y), 0) satisfies 

8z,lx,y(z') = 0, which yields 

_1_ z'(x, y) - x' + _1_ z'(x, y) - y' = 0. 
~ lz'(x, y) - xl ff+ lz'(x, y) - YI 

We define O ~ 0± < 1r /2 by 

. 0 - lz'(x, y) - x'I 
sm - - 1~ ( ) I' z' x,y - x 

. 0 - lz'(x, y) -y'I 
sm+-1~() 1· z' x,y -y 

Then, the relation (3.5) implies 

sin 0 _ z' ( x, y) - x' + sin 0 + z' ( x, y) - y' = 0 
~ lz'(x, y) - x'I ff+ lz'(x, y) - y'I · 

This means that z'(x,y) E ffi.2 is on the line segment x'y' on ffi.2 , and 

sin0_ sin0+ 

~ ff+' 

which is Snell's law exactly. 

(3.5) 

Let us recall the asymptotics of <l>7 (x, y) given in Proposition 1 of [20, 21]. Take 

open sets B' and D' with B' c JRt, D' c JR~, B c B' and D c D'. 

Proposition 3.2 Assume that 'Y+ =I- 'Y-· Then fork= 0, 1, we have 

k - e-Tl(x,y) ( -T ) k ( ~ -j (k) (k) ) 
v' x<I>T(x, y) - 8 ✓d H( ) Fv ~ T <I>j (x, y) + QN,T(x, y) ' 

7r'Y+'Y- et X, y y'Y- j=O 

where H(x, y) = Hess(lx,y)(z'(x, y)) is the Hessian of lx,y given by (1.2) at z' 

z'(x,y), <I>t)(x,y) (k = 0, 1) are C00 in D' x B', for any NE NU {0}, Q~;7 (x,y) 

(k = 0, 1) are continuous in D' x B' with a constant CN > 0 satisfying 

(x E D',y E B',T 2: 1). 
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Moreover, iJ?bk) (x, y) (k = 0, 1) are given by 

qi(O) - Ea(x - z'(x, y)) 
0 (x, y) - Ix - z'(x, y)llz'(x, y) - YI' 

and 

qi(l)( )-iJ?(O)( )x-z'(x,y) 
o x,y - o x,y I -,( )I' 

X - Z x,y 

where 

(3.6) 

As stated in Proposition 3.2, the asymptotics of iJ?T(x, y) does not depend on 

whether 1+ is larger than ,- or not. But, their proof is different. For a proof 

see Proposition 1 of [20] for the case of 1+ < ,- (resp. Proposition 1 of [21] for the 

case of 1+ > ,_). The differences between 1+ < ,- and 1+ > ,- concern the total 

reflection phenomena for incident waves coming to the layer boundary from the lower 

side. In line with section 2 of [21], we give some explanation in §4. 

Proposition 3.1 is given by Proposition 3.2. For a proof, see the proof of Theorem 

1.3 in [20] and section 4 of [24]. Algebraic orders in estimates of IIVxv(·;T)lli2(D) + 
T2 llv(·; T)lli2(D) are different from those in [20, 21]. These differences come from lower 

order estimates given as the following lemma: 

Lemma 3.2 (1) (Proposition 3.2 of [15]) For any a, p E JR3 and r > 0 with la - PI = r, 

there exists a constant C > 0 such that 

r e-Tly-aldy;:::: CT-2 

}Br(P) 

where Br(P) = {x E 1R3 I Ix - PI< r}. 

(2) (Lemma 2.4 of [24]) For any cone C(a,n,h,0) = {x E JR3 llx-al::::; h, (x -a)·n ;::=: 

Ix - al cos 0}, there exists a constant C > 0 such that 

1 e-Tlx-aldx ;::=: CT-3 

C(a,n,h,0) 

In the rest of this section, we give a proof of Lemma 3.1. 
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Proof of Lemma 3.1: We put h(x; T) = fYtu(T, x) + Tu(T, x). From (3.1) and (3.3), 

it follows that w(x; T) is the £ 2-solution of 

{ (L-y0 - T2)w + f(x) = e-TT h(x; T) 
OvxW = 0 

and v(x; T) is the £ 2-solution of (3.4). 

From (3.4), integration by parts implies that 

in ~ 3 \ D, 
on aD, 

1 2 2 1 1 2 T2 2 bov' xV · v' xV + T lvl }dx = fvdx '5. -2 2 IIJIIL2(JR3) + -2 llvll£2(JR3), JR3 JR3 T 

which yields 

since suppf c B. From (3.7) and (3.4), w - v satisfies 

{ (L-y0 - T 2)(~ - v) = e-TT fr(x; T) 
Ovx ( W - V) - -Ovx V 

Integration by parts and (3.9) imply that 

r ho v' x(w - v). v' x(w - v) + T2lw - vl 2}dx 
JJR3\D 

(T > 0) 

in ~ 3 \D, 
on aD. 

(3.7) 

(3.8) 

(3.9) 

= - { 'Y-(avJw - v))(w - v)dSx - e-TT { h(x; T)(w - v)dx (3.10) 
lan JIR3 \D 

{ e-2TT T2 
'5. Jan 'Y-(avx v)(w - v)dSx + ~llhlli,2(JR3\D) + 2 llw - vlli,2(JR3\D), 

which yields 

llv' x(w - v)lli,2(JR3\D) + T2 llw - vlli,2(JR3\D) (3.11) 

'5. c{ r 'Y-(Ovx v)(w - v)dSx + e-2TT T-2 llhlli2(JR3\D) }­lan 
Since aD is c 0 ,1 , we note that the following estimates seems to be well known. 

Lemma 3.3 (1) There exists a constant C > 0 such that 

(2) There exists a linear extension operator E 7 : H 112 (8D)------, H 1 (D) such that 

llv' x(ETg)IIL2(D) + TIIETgllL2(D) '5. C{ll9IIH 1 / 2(BD) + v'Tll9IIL2(BD)} 
(T 2 1,g E H 112 (8D)). 
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Since w, v E H 1 (R3 \ D), it follows that w - v E H 112 (8D). We put T/ = ETg E 

H 1 (D), where g = (w - v)lan and ET is given in (2) of Lemma 3.3. From 

div(T/'YO v' xv) = 'f/div('Yo v' xv)+ "(o v' xV · v' xT/ = T2'f/V + "(o v' xV · v' xT/ in D, 

it follows that 

I kn 'Y-(8,,,, v)(w - v)dBxl ::::; l ho v' xV · v' xT/ + T2 v'f/ldx 

::::; Cllv' xvllL2(D) llv' xT/IIL2(D) + T2 llvllL2(D) IIT/IIL2(D) 

::::; C{llv' xvllL2(D) + TllvllL2(D)Hllv' xT/IIL2(D) + TIIT/IIL2(D)}-

Lemma 3.3 and usual trace theorem imply that 

llv'xT/IIL2(D) + TIIT/IIL2(D)::::; C{ll9IIH1 / 2(8D) + VTll9IIL2(8D)} 

::::; C{llv' x(w - v)IIL2(IR3\D) + Tllw - vllL2(IR3\D)} 

Combining these estimates, we obtain 

r 'Y-(8,,,, v)( w - v)dSx ::::; s(llv' x( w - v) lli2(JR3\D) + T2 llw - vlli2(JR3\D)) 
Jan 

+ Cc 1 (llv' xvlli2(D) + T2 llvlli2(n)) 

for alls> 0 and T 2: 1. From this estimate, (3.8) and (3.11), we obtain 

llv' x( w - v) III2(JR3\D) + T2 llw - vllI2(JR3\D) 

::::; C{ llv' xvllI2(D) + T2 llvllI2(D) + e-2TT T-2 llhllI2(JR3\D)} 

::::; CT-2 {IIJIII2(B) + e-2TTllhllI2(JR3\D)} (T 2: 1). (3.12) 

Since 

f(w - v) = -{((L,0 - T2 )v)w - ((L,0 - T2 )w - e-TT fr )v} 

= -div('Yo(v' xv)(w - v)) - div('Yo(v' xv)v) + div('Yo(v' xw)v) - e-TT frv, 

(3.7), (3.10) and (L,0 -T2 )v = 0 in R~, it follows that 

IT= f 'Y-(8,,,, v)(w - v)dBx + f 'Y-(8,,,, v)vdBx - f e-TT frvdx 
lan lan JIR3\D 

= - f 'Y-(8,,,,(w - v))(w - v)dSx + f 'Y-(8,,,, v)vdSx - f e-TT frvdx 
lan lan JJR3\D 

= r bov'x(w-v)·v'x(w-v)+T2 lw-vl 2 }dx+e-TT r h(w-v)dx 
JJR3\D JJR3\D 

+ r h-lv' xvl 2 + T2 lvl 2 }dx - e-TT r frvdx. 
Jn k3\D 
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From this equality, (3.8) and (3.12), we obtain Lemma 3.1. 

§4. Asymptotics of some function derived by the fundamental 

solutions 

In this section, in line with section 2 of [21], we give a sketch how the asymptotic 

behavior of <I> T ( x, y) can be obtained. For z' E l~.2, y E ffi.t, we put 

(z' = (z', 0) E offi.t), 

which is a usual fundamental solution of b+L"> - T 2 ) + 47r1+c5(x -y) = 0. By partial 

Fourier transform, we can see that <I>T(x, y) is given by 

Ai. ( ) - _T_ 1 E'Y- ( ')E'Y+,O( I )d I 'l!'T X, Y - 4 T X, Z T Z , Y Z . 
1l"1'+ JR2 

( 4.1) 

This integral representation describes that signals arriving at x E ffi.~ are made up of 

all signals starting from y E ffi.t, and refracted at z' E offi.t ( on the layered boundary). 

Thus, in (4.1), EJ-(x,z') corresponds to the refracted part, which is important to 

find asymptotic behavior of <I>T(x, y). Note that as in section 2 of [21], EJ-(x, z') is 

given by 

EJ-(x,z')= T 3/2 rL,.,o(x-z',(2)d(2, 
2(27r)2,_ J]R 

where i = Tj~, ao = J,-h+, 

Thus, it suffices to obtain asymptotics for the refracted part EJ- (x, z'). 

Since we need to take exponential decay term from integral (4.2), we change a 

contour of the integral to use the steepest descent method. For x E ffi.~ and z' E ffi.2, 

we define 0 by the equations 

. Ix' -z'I 
sm0 = I _11 , x-z 

(0:::; 0 < 1I" /2). (4.3) 
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We put r = Ix - z'l ✓l + (i and 

(4.4) 

where 0 is defined by ( 4.3). Since ( 4.4) is equivalent to ( 1 = i.>. sin 0 ± ✓ >.2 - 1 cos 0, 

as (33) in [20], putting >. = J"l+p2 for >. 2: 1, we define a contour by 

(4.5) 

If 1'- > 1'+, Q0 ((1 , ( 2) given in ( 4.2) is holomorphic for ( 1 E C\ ((-ioo, -i] U [i, ioo) ). 

Hence, we can change the contour of integral (4.2) to the curve r x,z' defined by (4.5) 

(see the figure in the left side of figure 2). 

Im(1 sin0 

1'- > 1'+ 1'- < 1'+ 

Fig. 2 Change of contour of integral ( 4.2) 

Let us consider the case 1'- < 1'+· Since a0 < 1, Q0 are holomorphic for ( 1 E 

(C \ ((-ioo, -ibo((2)] U [ibo((2), ioo)), where 

1- a2 

1 -~ < 1. 
1 + '>2 

Thus, if sin0 < a0 , we can change the contour in (4.2) to fx,z', which is the same as 

for the case of 1'- > 1'+· Let us introduce the following set: for 8 with 0 < 8 < ao1 

and x E JR~, 

U15(x) = {z' E lR2 I Ix' - z'I < aolilx - z'I }(= {z' E lR2 I sin0 < ao8}). 

Since inf{liao - (11 I (1 E fx,z'} = ao(l - 8) > 0 for any 0 < 8 < 1, x E JR~ 

and z' E U15(x), the argument for getting Proposition 2 in [20] yields the following 

expansions of the refracted part for z' E U15 ( x). 
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Proposition 4.1 For any O < 15 < 1, the refracted part E;.- (x, z') for x E ~~ and 

z' E U0 ( x) is expanded by 

and fork= 1,2,3, 

-Te-rlx-z'l/v"','=" (N-l ( ~ )j _ ) 
OxkE;.- (x, z') = 3/2 ~ L Gk,j(X - z') I - ~11 + Gk,N(x, z'; T) ' 

41r"(_ Ix - z'I j=O T x z 

where Ej(x - z'), Gk,j(x - z') (k = 1, 2, 3 and j = 0, 1, 2, ... ) are 0 00 functions for 

x and z' with z' E U0(x). Here, the remainder terms EN(x,z';T) and Gk,N(x,z';T) 

(k = 1, 2, 3) are estimated by 

for some constant CN,15 > 0 depending only on NE N and 15. In particular, we have 

{ 
Gk,o(x - z') = Eo(x - z') ~: ~ ;,1 
G3,o(x - z') = Eo(x - z') Ix : 3 z'I' 

where E0 (x - z') is given in (3.6). 

(k = 1, 2), 

Note that for the opposite case; 'Y- > 'Y+, in Proposition 4.1, we can replace U0 (x) to 

the whole space ~ 2 since we can take the contour r x,z' as the left side of figure 2. 

Next, we consider the remaining case, i.e. 'Y- < 'Y+ and sin 0 2 a0 , which has the 

case sin0 > b0 ((2 ) for some ( 2 E R Hence, we need to make a detour to connect 

r x,z' and the branch point ( 1 = ib0 ((2 ) of P((1 , ( 2 ). Existence of these detours 

corresponds to the total reflection phenomena and makes the problems more difficult 

than the previous case. One of the main part of section 2 in [21] is to handle these 

new problems. 

Proposition 4.2 (Proposition 2 in [21]) Assume that 'Y+ > 'Y-· Then, for any fixed 15 

with O < 15 < 1, the refracted part E;.-(x,z') for x E ~~ and z' E U1 (x) \U0(x) is 
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expanded by 

e-rlx-z'II~ ( _ ) 
K/.-(x, z') = 4 I -,1 Eo(x - z') + EJ'a(x, z'; T) ' 

H"f- X - Z ' 

-Te-rlx-z'II~ ( _ ) 
OxkK/.-(x,z')= 3/2 _ Gk,o(x-z')+EZ,o(x,z';T) 

47r"(_ Ix - z'I 
(k=l,2,3). 

In the above, E 0 and Gk,O are the functions given in Proposition 4.1. For the re­

mainder terms EZ~(x, z'; T), for any 0 < 15 < 1, there exists a constant C0 > 0 such 

that 

_ 1 _ I ( ~ )1/4 
IEk,o(x, z; T)I :s:; Co Tix - z'I 

Proposition 4.3 (Proposition 3 in [21]) Assume that 'Y+ > 'Y-. Then, there exists a 

constant C > 0 such that the refracted part EJ-(x, z') for x E JR~ and z' E JR2 \U1(x) 

is estimated by 

IV~EJ-(x, z')I :s:; CTke-TTx,z'(0o) - I 2 (xED,z ElR \U1(x),k=O,l), 

where for x E JR~ and z' E JR2 , Tx,z'(a) is defined by 

It seems hard to obtain higher order expansion for 0 near 00 and even to pick up 

the first term for 0 > 00 . For the stationary waves, reduced equation is given by 

(4.6) 

In this case, recently, Isozaki, Kadowaki and Watanabe [22] give a precise asymptotics 

of the fundamental solution of (4.6) as lxl ---t oo for k > 0, and get the main term 

even in the case of 0 > 00 . Since our case corresponding to k = iT, T > 0, the results 

given in [22] can not be applied to our case. 

From (4.1) and Proposition 4.1, for 'Y- > 'Y+, we can reduce the problem to applying 

the Laplace method of integrals of the form: 

L(T; x; y) = r e-Tlx,y(z')a_(z')dz', 
J"JF.2 

where lx,y is defined by (1.2) and a_(z') is a B00 function in JR2 (i.e. a_ E C 00 (JR2 ) 

satisfying supz'E"JF.2 18,~';a_(z')I < oo for any a). Noting (1.1), we can show Proposition 

3.2 by using a usual Laplace's method (cf. the proof of Proposition 1 of [20]). 
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If 'Y- < 'Y+, from (4.1), Proposition 4.1, Proposition 4.2 and Proposition 4.3, we 

can reduce the problem to giving asymptotics for integrals of the forms: 

I+(T; x; y) = 1 e-Tlx,y(z')a+(z')dz' 
Uo 1 (x) 

for some 1 > 81 > 0 sufficiently close to 1 (determined in Lemma 4.1 below), and 

evaluate integrals of the form: 

where 

I+,-oo(T; x; y) = r e-Tlx,y(z')ii+(z')dz', 
j.1F.2 \Uo1 (x) 

_ {lx,y(z') 
lx,y(z') = Tx,z'(0o) + lz~I 

'Y+ 

a+ E 1300 (]1~.2) and ii+ E B0 (ffi.2). Hence, we find that the shortest lengths in this case 

is given by infz'EJF.2 Zx,y(z'). 

sin0o = ao 

X 

: 0o : critical 
r------- angle 
I 0··- ... 

creeping part 

total refracted case 

Fig. 3 broken paths propagating signals 

As in section 3 of [21], for z' E ffi.2 \U1 (x), we can see that 

- Ix - z'I lz' - YI lx,y(z') = -'----'-{ cos0cos00 + sin0sin00 } + -'----'-
ff -ff+ 

y 

Speed:-ff+ 

'Y- < 'Y+ 

Speed:ff 

_ Ix - z'I (0 0 ) lz' - YI Ix - z'I lz' - YI _ l ( ') 
- lrit COS - O + ~ < /rit + ~ - x,y Z , 

v'Y- v'Y+ v'Y- v'Y+ 
(4.7) 

which means that for the case of the total refraction phenomena, the paths containing 

creeping part along the layered boundary are shorter than the usual paths. 
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Thus, we can say that the total refracted phenomena make some influence for 

the fundamental solution <I>T(x, y). However, Proposition 3.2 shows that the total 

refracted phenomena do not affect the asymptotic behavior. From Remark 1 of [21], 

we obtain 
T (0 ) _ lzb - xl lzb - z'I 

x,y O - hi + ~ , 
v'Y- v'Y+ 

where zb E ~ 2 is the point on the line segment x' z' satisfying Ix' -zb 1/lx-i'o'I = sin 0o 

and Ix' - z'I = Ix' - zbl + lzb - z'I- Hence, we have 

f (z') = T (0 ) + lz' -yl = lzb - xl + lzb - z'I + lz' -yl > l (z') x,y x,y O ~ hi ~ ~ - x,y O , 
v'Y+ v'Y- v'Y+ v'Y+ 

which yields infz'ElR2 fx,y(z') = lx,y(z'(x, y)) = l(x, y). More precisely, we can obtain 

the following properties: 

Lemma 4.1 (Lemma 3.1 of [21]) Assume that 'Y- < 'Y+· 

(1) For any x E ~~, y E ~t, infz'ElR2 fx,y(z') = l(x, y), and this infimum is attained 

at only z' = z'(x, y). 

(2) There exists a constant O < 80 < 1 such that z'(x,y) E Ur50 (x) ((x,y) ED x B), 

and for any 81 > 0 with 80 < 81 , there exists a constant c0 > 0 such that 

lx,y(z') 2". l(x, y) + colz' - z'(x, y)I 

From (2) of Lemma 4.1, it follows that there exist constants c0 > 0 and C > 0 such 

that 

This estimate means that the term I+,o(T;x;y) gives the principal part of <I>T(x,y) 

as T ----, oo. Thus, in view of (1) of Lemma 4.1, the same argument as for the case 

'Y- > 'Y+ is applicable even in the case containing the total refracted waves, and we 

obtain Proposition 3.2. 
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