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Weyl-type lower bound for non-scattering energies for
acoustic-type equations

Hisashi Morioka (Ehime University)*
Naotaka Shoji (TECNOS Data Science Engineering Inc.)

1 Introduction

1.1 Non-scattering energy

In this lecture note, we review some results for non-scattering energies (NSEs) of acoustic
equations and some related topics. In particular, the main purpose is the proof of a
Weyl-type lower bound for the number of NSEs. The original paper of our argument is
Morioka-Shoji [14].

Let us consider the scattering theory for time-independent acoustic-type equations on
a Riemannian manifold (M, g) with a flat end. The assumption is as follows. Let M be
a connected and non-compact C°°-Riemannian manifold of dimension d > 2. We assume
that M is split into two parts M = K U Q¢ where K is a connected and compact subset,
and Q¢ which is called end of M is diffeomorphic to a connected exterior domain in R%
with smooth boundary. Then we naturally identify Q¢ with a connected exterior domain
R4\ Q) where Q) is a connected and bounded domain in R? with the Euclidean metric.
In the following, Q¢ and T' denote the interior and the boundary of KC respectively. The
metric g = (le)z 1—1 1s positive-definite on M and satisfies gi; = dx; on Q¢. We denote by
Ay the Laplaciari on M which is given by

d

1 0 0
A= — S (gt
g9 \/g Z 817]C (\/gg 61'[) )

k=1

in local coordinates x. By the assumption, A, coincides the usual Euclidean Laplacian A
on 0°.

We consider the following time-independent acoustic-type equation
(1.1) —Agu=2Anu on M, A>0,

where the coefficient n € C'(M) satisfies the following conditions :
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n‘]c € C>(K),

e supp(n(p) —1) =K,
e n(p) >0 forall pe M,

e J,n(p) # 0 for all p € I' where 9, is the outward normal derivative on I' i.e. dyn
does not change its sign on I'.

Remark. The forth assumption can be replaced by “n(p) # 1 for all p € I'” and so on.
These kinds of singularities of n across I' have a crucial role in our arguments.

In the time-independent scattering theory, we study generalized eigenfunctions of (1.1).
Roughly speaking, the generalized eigenfunction can be written as u = u’ 4+ u° at infinity
where ' is the incident wave satisfying —Au’ = A’ on R%, and v is the scattered wave
associated with u’. If we take u'(z) = VAW for 1 € S4=1 the scattered wave u* satisfies
the asymptotic behavior

wi(x) = O\ x|~ D/2eVNE g (\s . 0) + O(|2|~@HD2), |2 — o,

for 6 := x/|x| € S4=1. Here the function A()\;w, 6) is the scattering amplitude. We replace
u® by the Herglotz wave

wi(z) = (2m) 42 / VAW )dy, ¢ e LA(STY),
Sd—l

where d¥ is the measure on S¢1 induced by the Euclidean measure. Then we obtain
u'(z) = O] @02Vl (A(N) ) (6) + O(l2] ~HHD/2), Ja| - oo,

where the operator A()) is a compact on L?(S%~1) and its integral kernel is A(\;w, ).
Thus the operator A()A) determine the far-field pattern of u®.

Now we consider the case where A(\) has the eigenvalue 0 in L2(S?"!). Then there
exists a non-trivial solution ¢g € L?(S971) to the equation A(\)¢g = 0. In this case, the
scattered wave u® associated with the Herglotz wave

ui(z) = (2m) 2 / VAT g ()4
Sdfl

satisfies u®(z) = O(|z|~(@*1)/2) as |2| — oo. The Rellich type uniqueness theorem ([17],
[20]) and the unique continuation property for Helmholtz equations imply that «® vanishes
on Q€. Thus the scattered wave cannot be observed at infinity even though the generalized
eigenfunction u of the equation (1.1) is perturbed by the coefficient n and the metric g.
Therefore, we define the notion of NSE as follows.
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Definition 1.1 If there exists a non-trivial solution ¢ € L?(S91) to the equation A(\)¢ =
0, we call the corresponding A > 0 a non-scattering energy (NSE).

Here we would like to make some comments on history. As far as the authors know,
there is only one paper by Colton-Monk [6] for the existence of NSE of acoustic equations.
Note that they considered the case M = R? with a spherically symmetric inhomogeneity
n. There are some examples of inhomogeneities (for acoustic equations) or potentials
(for Schrédinger equations) such that they do not have NSEs (see [9], [3], [7], [15]). NSEs
naturally appear in inverse scattering problems. For some numerical methods, NSEs cause
some difficulties.

1.2 Remark for resonant tunneling effect

Here we mention related topics in quantum mechanics. Typical example is the 1D Schrodinger
equation
)" +Vip=Xp on R,
with a double-barrier potential
\% x| € (r,r+e
V(T) _ 05 | ‘ ( .7 )7
0, otherwise,

for fixed r > 0 and small € > 0. When we take the incident wave ¢V with energy A > 0
coming from z = —oo, the generalized eigenfunction ¢y € L>°(R) is given by

eV + r+()\)e_i‘/xz, < —r —k,
Yy(r) = VA
tL(N)eVT L x> +e

Similarly, we can have the generalized eigenfunction _ € L*°(R) satisfying

(@) { t,()\)eﬂ"/x”, x< —r—e,
eV 4 r,()\)e“/xx, x>r+e.
The S-matrix is defined by

BN G RGY
S(\) = [ r () (A } e U(2).
It is well-known that there may exist infinite number of A > 0 such that [t.(A\)| =1 (i.e.
|r+(A)| = 0). We call this phenomenon the resonant-tunneling effect (See [5], [19]). The
similar phenomenon has been derived for quantum walks (see [13]).

We can consider the similar problem for multi-dimensional Schréodinger equations :
(=A 4+ V) = \p on R%  As has been mentioned above, the authors do not know
results for existence of resonant-tunneling effect of multi-dimensional cases. Note that our
argument in this article does not work for the Schrédinger operator —A + V on RY, since
we use a singularity of the coefficient of A for acoustic equations.



2 Results

Since the scattered wave u® vanishes if A > 0 is a NSE, we can reduce the problem to the
following boundary value problem. If u = u' 4+ «* is the generalized eigenfunction to (1.1)
such that u® vanishes on Q¢, we have

(2.1) (=A, = A)v=0 in QF

(2.2) (A= XNw=0 in Q,

v=w, Oyw=0,w on I
) v v )

where v = ulgr and w = u o

0
(2.3) the interior transmission eigenvalue problem (ITEP). If the system (2.1)-(2.3) has
a non-trivial solution in H2(Q%) x H2(QY), we call the corresponding A € C an interior

transmission eigenvalue (ITE).

We call the system of boundary value problems (2.1)-

Remark. The system (2.1)-(2.3) is non self-adjoint. Then there exist complex ITEs. In
general, the discreteness of ITEs is not trivial. Fortunately, we can prove the discreteness
of ITEs under our assumptions.

Obviously, we obtain the following inclusion relation.

Lemma 2.1 We have {NSE} C {ITE}. If the set {ITE} is a discrete subset in C, the
set {NSE} is a discrete subset in (0, 00).

Remark. The converse relation {NSE} D {ITE} does not hold. The relation {ITE} N
(0,00) C {NSE} is also nontrivial. We have to remove singular ITEs for this assertion.
The notion of singular ITEs will be defined later.

Now we state our results. For the proof of them, we basically adopt the argument of
Lakshtanov-Vainberg [12]. They studied the Dirichlet-to-Neumann map (D-N map) on
the boundary. Then we do not have to impose topological assumptions for QF and Qf).

First one is the discreteness of NSEs. This is a direct consequence of the discreteness
of {ITE}.

Theorem 2.2 The set {NSE} is a discrete subset in (0,00) with only possible accumula-
tion points at O and infinity.

Moreover, we can show the existence of infinitely many NSEs by proving a Weyl-type
lower bound for the number of NSEs. Here we put v = sign(&,nlr) =1or —1 and

V, = (2m)7¢ / , / déde,
2 J{EeRD; (g7 (w)€,€) <n(x)}

Vo = (2m)~Hvol () vol(By),

where By is the unit ball in R<.
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Theorem 2.3 Let o > 0 be sufficiently small. Suppose that C, = V;, —2Vy > 0 for
v=1o0rC,:=Vy—2V, >0 for v = —1. Taking account multiplicities of each NSE,
Nyse(X) := #{NSE € (a, \]} satisfies

Nyse(A) > CoAY2 + oad-1/2)
as A — 0.

Remark. The condition V,, — 2V > 0 for v = 1 holds for n such that n(z) < 1 near the
boundary I' and n(x) is sufficiently large inside of Q'. Similarly, the condition Vp—2V;, > 0
for v+ = —1 holds for n such that n(z) > 1 near the boundary I' and n(z) is sufficiently
small inside of Q.

Theorem 2.3 follows from the same kind of estimates for ITEs. In order to derive a

key lemma, we introduce the notion of singular ITEs here.

Definition 2.4 We call A\ € (0,00) a singular ITE if there exist v € H?(Q) and w €
H?(Q}) such that
(A, = A\n)v=0 in Q
(A= Nw=0 in Q)
v=w=0, Jw=0dw on T.

The multiplicity of X is defined by the dimension of the subspace of L*(T') spanned by
dyv(= 0yw) above.

Let op(—n~1A,) and op(—A) be the set of Dirichlet eigenvalues of —n='A, on €
and —A on 0, respectively. Definition 2.4 implies A € op(—n tA ) Nop(—A) if A is a
singular ITE.

Then we can state key lemmas as follows.

Lemma 2.5 If A € (0,00) is a non-singular ITE, X is also a NSE.
Lemma 2.6 Let
N9 (N) = #{non-singular ITEs € (a, N}, N;j"(X) = #{singular ITEs € («, ]}

Then we have
NIFIN) 4 NN > A (Vi = Vo)AY2 4 O(Ad-D/2),

and
NI <V A2 oA D2) 0 and VA2 o(Ad-D/2))

as A — 0.
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It follows from Lemma 2.6 that
NJ9(A) > CAY2 L oAdD/2) 0\ o 0,

Then Lemma 2.5 implies Theorem 2.3.

In order to prove these key lemmas, we use the one-to-one relation between the operator
A(A) and the D-N map on I'. This means that the far-field pattern of the scattered wave
and the boundary measurement on I' are equivalent. This fact is well-known in inverse
scattering problems (see [10] and so on). For inverse scattering problems, one can avoid
Dirichlet eigenvalues in ¢ or ). However, we have to deal with them for our argument.
Thus we derive this equivalence on a subspace of L?(I') by using the Laurent expansion
of the D-N map at each Dirichlet eigenvalue.

We mention some related works on the Weyl-type estimate for ITEs. As has been
mentioned above, our argument is based on Lakshtanov-Vainberg [12]. Lemma 2.6 has
been derived in [12] for the case where 2 is a domain in the Euclidean space. Recently
Petkov-Vodev [16] gives a sharp estimate for the number of ITEs lying on the complex
plane not only real ITEs.

3 Summary of scattering theory

Let H = —n A, and Hy = —A. H is self-adjoint on L2(M) = L?(M,ndV,). We can
prove the limiting absorption for R(z) = (H —z)~! and Ro(z) = (Hg—2)"!, z € C\[0, 00).
In fact, we have R(\ +i0) € B(B(M); B*(M)) and Ry(\ % i0) € B(B(R?); B*(RY)) for
A > 0. Here B-B* are Agmon-Hormander’s spaces (see [1]).

Let hy, be the Hilbert space on the sphere S9! with its inner product

Ald—=
2

2)/2 o
(¢, d)ny = / d(0)(0)dE. A> 0.
Sgd—1

‘We define the restriction of the Fourier transform by
FoN) f(0) = (2m)~Y/? / VMO () dy, 9 e S
Rd

Note that Fo(\) € B(B(R%);hy). The adjoint operator Fo(A\)* € B(hy; B*(R%)) gives the
Herglotz wave with its pattern ¢ € hy.
We also define the distorted Fourier transform Fy () by

F=(A) = Fo(A) (xe = VIR(A £i0)) € B(B(M); hy),

where Y. is a smooth function on M such that y. vanishes in a neighborhood of K and x. =
1 at infinity, and V' = Hyx, — xeHo. Then FiL(A\)* € B(hy;B*(M)) is the eigenoperator
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of H i.e. FL(\)*¢ for ¢ € hy, is a generalized eigenfunction of H. Moreover, F_(\)*¢ —
XeFo(N)*¢ for ¢ € hy gives the outgoing scattered wave of the form

F-(N)¢ = xeFo(\)'¢ — R(A+i0)VFo(N)"¢.
Then we have the asymptotic behavior
Fo(N)6 = Fo(N)'6 — Co (W] 72 AI(AMN)9)(0),
at infinity for A(\) = F4(A\)VFo(\)*. Here f ~ g for f,g € L? (M) means

loc

. 1
f~g& lim E/ |f(z) — g(z)|*dz = 0.
R—oo [ J{zeQe:|z|<R}

Thus NSEs can be defined as has been introduced in Section 1.

4 From boundary data to scattering data

4.1 Interior D-N map
The D-N map is defined by

(4.1) AN f=0,,0 on T,

where v is a solution to the Dirichlet problem

(4.2) (-=n'A, = Nv=0 in Q) v=f on I.

Note that the argument in this subsection is similar if we replace (4.1) and (4.2) by
(4.3) AN f=0,w on T,

(4.4) (kA =MNw=0 in Q) w=f on I.

The one-to-one relation between A(A) and A, (\) for A & op(—n~"1A,) can be seen in
Isakov-Nachman [10], Eskin [8], Isozaki-Kurylev [11] and so on.

Lemma 4.1 For A& op(—n"1A,), A(X) and A, ()\) determine each other.
Thus we have the relations
AN & An(X), 0 Ao(N),

for N op(—n"1A,) Uop(—A).

It is well-known that A, (\) has a simple pole at A =y € op(—n~"1A,) as follows. Let
{¢; };n:“l be the orthonormal eigenfunctions associated with y € op(—n"1A,). Here we
choose the Hilbert space L2 (%) with the inner product

(f;9) 2@ = /

Qi

f(@)g(@)n(2)dV,.

Then we obtain the Laurent expansion of A, ().



Lemma 4.2 The D-N map An(\) is meromorphic with respect to X\ € C and the first
order poles at every A = p € op(—n"1tA,). Moreover, A,()\) satisfies the following repre-
sentations. In a small neighborhood of i € op(—n~1A,), we have

Qu

M) = S T (),

where Q,, is the residue of A, (\) at X = p given by
M
Quf=-Y /F Buo; - fdSO,0;, f € HYA(T),
j=1

and T,,(X\) € B(H3/2(I); HY*(T")) is analytic in a small neighborhood of ju.

For Ag(A), the similar expansion holds for each eigenvalue p € op(—A). The range of
Q,, is a finite dimensional subspace

Bn(ﬂ) = Span{au¢1a cee 78V¢7TLM}'

Similarly, By(u) for u € op(—A) is defined by the finite dimensional subspace as above
for n =1 on Qf. In the following, we use the auxiliary operators D,,(\) and Do()\) defined
by

Da() = Ap(N), A ¢0D(77171Ag),
AT, Aeop(—nTtA,),

. Ao(N), A& op(—A),
Do) = {To,,\()\)» A €op(=4),

where T () is the regular part of the Laurent expansion of Ag(\) at 41 € op(—A). Note
that the operator D,,()) is defined on the subspace B, (\)*NH3/2(T) for A € op(—n~1A,).

4.2 From D,()\) to A(N)

As has been considered for the proof of Lemma 4.1, we consider the exterior Dirichlet
problem. We have only to study the case A € op(—n"1A,).
Now let us define the exterior D-N map by

(4.5) AS(N)f=0us on T,
for f € H3/*(T'). Here we define

Ov(x) = lim  v(z) -Vou(y), zel,
y—x,yede

A
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and v is the outgoing (for +) or incoming (for —) solution with Sommerfeld’s radiation
condition to the equation

(4.6) (—A=MNui=0 in Q° wur=f on T.

We can derive the equation to (4.6) by using the layer potential method. Let us define
the operator 6 € B(L*(T"); H'/2(M)) and &y € B(L*(I'); H-/2(R%)) by

§f-ondy, :/f-WdS, fe LX), wve M),
M N

Sof - TndV, :/f-mds, fe L), wveH/*RY,
R4 r

where 6* and 4§ are trace operators to I

Due to R(A%i0) € B(H, /*(M); H?(M)) and Ro(A+i0) € B(H1/2(R4); H3/2(R%)),

loc loc
we have

ROA+i0)5f € H/2(M), Ro(A+i0)5of € H/*(RY),

loc
for f € L*(I).
Letting ¥* and x® be the characteristic function of Q' and Q°, respectively. Then we
put

(4.7) us = x'u' + xus,

where u is the solution to (4.2), and u$ is the solution to (4.6) with the radiation condition.
Note that we assume that u' € H?(Q%) N E,(A\)* if A € op(—n~1A,). The next lemma
follows from the integration by parts.

Lemma 4.3 (1) We have
ux = R(A£i0)0(Dn(A) — AL (M) f,

for f € H¥?(I') when \ & op(—n"1A,) or f € H32(I)NBy(\)* when X € op(—n"1A).
(2) We have

(Dn(N) £, 9) L2y = (f, Dn(N)g) 21y
AL 92y = (L AS(N9) L2 r)

for f,g € H¥?(I') when A & op(—n"1A,) or f € H32(T)NB,(\)* when A € op(—n~'A,).

Let us introduce the operator My (A) which is equivalent to Dy, (\) by
Mi(\)f = 0*R(AN£i0)df, fe HY*I).

Thus the asymptotic behavior and the jump relation on I' of the layer potential of Lemma
4.3 implies the following properties.
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Lemma 4.4 (1) My()) is one to one on HY2(T') for A & op(—n"'A,). If A € op(—n~1A,),
we have KerMy(\) € HY?(T') N B, (\).

(2) Let X\ & op(—n~tA,). Then Dyp(\) — Aft()\) is an isomorphism from H3/?(T) to
HY2(T) and we have M (X\) = (Dp(X) — AL(N)
(3) Let A € op(—n~'Ag). We put Dy(A) = D ()\) ©(A) on H¥*(L) N By(A)*. Then
Dn(X) is an isomorphism from H32(T) N Bu(A)* to RanDy(X), and M (

Dn,(N) L.

A) ‘Ranﬁn (M) -

We need another operator associated with the exterior Dirichlet problem. Let G1(\) €
B(H?*2(I'); hy) be defined by

GL(Nf = FoN) ((—A = N (xeud)) -
By the definition, G+ (\) depends on the shape of Q¢ but is independent of n.
Lemma 4.5 For any f € H3/?(T'), we have
ug = Ce(W]a| D2 (G () £)(£6).

Moreover, we have

Ge(Nf = FL(N)d(Dn(X) = AL(N) S,
for X\g ap(—n"'Ay) and f € H?(T) or A € op(—n"'A,) and f € H3/2(T') N B,(\)*.

If we replace Q' and n by Qé and 1 respectively, Lemmas 4.3-4.5 also hold.
The operator G4 (A) has the following properties.

Lemma 4.6 (1) G+ () is one to one on H3*(I).
(2) The range of G+ (\)* is dense in L*(T).

Now we can state the equivalence between the scattering data A(\) and the boundary
measurement Dy, () from Lemmas 4.4-4.6.

Lemma 4.7 A(\) and M, (\) determine each other in the sense of
MM (A)G-(N)" = A°(N) = A(N),

where A°(N) is an operator of the scattering data associated with the exterior Dirichlet
problem.

This lemma implies the relation
A(N) & Dp(N), 0< Do(N),
for any A > 0. As a consequence, we obtain the following fact.

Corollary 4.8 If A € (0,00) is a non-singular ITE, X\ is a NSE.

Overall, the arguments in this section are technical. For details of the proofs, see the
section 4 in our original paper [14].
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5 Discreteness of ITEs

For the proof of discreteness of ITEs, we can apply the analytic Fredholm theory and
the theory of parameter dependent elliptic operators. In fact, non-singular ITEs are
characterized by A € C such that the kernel of the operator A, (X) — Ag(\) is non-trivial.
Thus if the inverse (A, (\) — Ag()\)) ™! exists, the corresponding A is not an ITE.

5.1 Parametrix of Dirichlet problems

Non-singular ITEs are characterized by the kernel of A, (A\) —Ag(A). Namely, Ker(A,(\) —
Ao())) is defined by

{f € HY2T); (Ap(N) — Ag(N))f =0}, if Xis not a pole,

An(N) — Ag(N)) =
Ker(An()) 0(N) {{feH3/2(F) i Qxof =To(No)f =0}, if Xis a pole,

where @), is the residue and T),()) is the regular part at a pole Ag. Then A is a non-
singular ITE if and only if Ker(Ay,(\) — Ag(\)) is non-trivial. The multiplicity of non-
singular ITEs are given by dimKer(A,(A\) — Ag(A)).

In order to apply the analytic Fredholm theory, we compute the parametrix of Dirichlet
problems. We consider

(5.1) (=Ay—M)u=0 in Q) u=f on T,

for f € H?’/Q(F). By using the parametrix of this problem, we can derive the symbol of
An(N).

Let {x;} be a partition of unity on I' such that the support of cach x; is sufficiently
small. We take a coordinate patch {V;} on T' such that x; € C§°(Vj). Let U; be a small
open subset in 0 such that Vj Nnir= V] We can take an open set ﬁj c R? which is
diffeomorphic to U;. Without loss of generality, we can assume that there exists a constant
€p > 0 such that (~Jj ={y € R; |y| < €p,ya > 0}, the boundary V; is identified with the
set ‘7J ={y € R%; |y| < co,yq = 0}, and ¢F(y) satisties g*¥(y/,0) = g% (y/,0) = 0 and
g% (y/,0) =1 for any (y/,0) € 173-, k=1,...,d—1, by using a suitable change of variables.
In particular, we have T*U; = ﬁj x R% and y € ﬁj gives a local coordinate of U;.

Under this setting, we can construct a parametrix for (5.1) near the boundary I". In
fact, we identify —A, — An with

5 5 o

A= —— 2 ara(y)————
oyi A2 ) Byidn ; kd(y)aykﬁyd
d



for smooth coefficients ay;, bk, and n. The symbol of the operator A is given by

a(y,§,A) = d+zakz §k§z+2zakd Ek&i-lzbk )&k — An(y).

kl=1 k=1 k=1

Taylor’s theorem implies that a(y, &, A) can be expanded by homogeneous functions as
a(y, & N) = ao(z,€, &) + a1(zy — 2, ya, €, €a)
N
+ > am(zy — 2 ya € €0 N) + dy (2 — 2 ya, € €a V),

m=2

where z = (/,0) € 173',

¥
L

ao(z:€,6) =&+ Y a8,

k=1
and a/y is the remainder term. Letting
d—1 1/2
Dy, = —za—yd H ZO@ ) lﬂgkl 2)G& |
we define the differential operator A by A= Z e A A 'v Where
Ay = ag(2:€, Dy,) = 5‘;2 (=),
d

A\l = al(z;ﬁf’:yd7€/>Dyd)7
Am = a/m(Z;DE/,yd,fl,Dyd,/\),
‘/A\/]V = a/]\f(z;ﬁglvydvg/aDyda )‘)7

for 2 <m < N.
We consider the function E of the form E(z;yq,&) = 2%:0 En(z;94,&). Then we

have
2N
=Y > AuE.+ AyE.
7=0 m,k<N,m+k=j
If E is a solution to the system of differential equations

(5.2) AgEy =0,
(5.3) AoE1 + A1Ey = 0,

m
(5.4) Z m—1E; =0,

13
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for 2 <m < N, with boundary conditions Eo(2;0,¢') = 1, Fp(2;0,¢’) = 0 for m # 0, and
limy, o0 Em(2;94,&’) = 0 for all m, then AFE satisfies

2N
(5.5) A=Y > AnBi+AyE, E(20,¢) =
J=N+1m,k<Nm+k=j

When p(z;¢') # 0, there exists a unique solution E to (5.2)-(5.4) with the conditions
Ey(2;0,¢) =1, En(2;0,8) =0 for m > 1, and limy, 00 Em(2;ya, &) = 0 for all m.

The parametrix for (5.1) near the boundary I is given as follows. Let (&) € C°(R*™1)
such that B(¢') = 0 in a small neighborhood of 0 and B(¢) = 1 for large [¢|. For
fe H3/2( ;) with a small support, we define

Qmf(y) = (2m) =41 / eV B¢ / e By (2194, §) f(2)dZ dE
Rd-1 Rd-1
and put
N
Ry = Qm.
m=0
Thus we have
Rxfl) = [ oty - ) e
Rd-1
where
N (2:y ya) = (2m) 7 Z / eV EB(E) B2 ya, €)dE'.
It follows that Ry is a parametrix near the boundary.

Lemma 5.1 For f € H3/2(~‘) with a small support and sufficiently large N > 0, we have
a(y, Dy, \\Rnf € H*(U;) with s < N —d/2+5/2 and BNf} — feCc>®V;).

As a consequence, we can compute the symbol of the D-N map.

Lemma 5.2 (1) The full symbol of Ay (X) is formally given by
— OF ~
A (56 0) = —B(&) Z T:;(z;(),g/)’ (#,¢) e TV,

If X is a pole of Ay (N), this formula gives the full symbol of the regular part of Ap(\) in
view of the Laurent expansion.
(2) The principal symbol of Ayn(X) — Ag(N) is given by

AB(€)oun(z)

4p(2 €2 (2,§) € T"T.



By the similar argument, we also have an expansion of the D-N map in view of the
theory of parameter-dependent elliptic operators (see [2]). Then we have

Lemma 5.3 Let L(1) = 72729 (A, (72%%) — Ao(72€2?)) for 7 > 0 and 0 € R with
6 # 0 modulo w. Then L(7) is uniformly parameter elliptic of order —2 and regularity oo.
Its principal symbol is given by

dyn(z)

4(p(z; €)% — 72e20) (2,&)eTT.

In view of Lemma 5.2, Ap(A) — Ag(A) is Fredholm for A € C\ {0}. Theorem 2.2 is
follows from the following analytic Fredholm theory (see [4]) and the invertibility of L(7)
for large 7 > 0.

Theorem 5.4 Let D C C be a connected open domain, and Hy and Ha are Hilbert
spaces. Suppose that a B(H1;Ha)-valued function A(z) for z € D is finitely meromorphic
and Fredholm in D. If there exists its bounded inverse A(z)~' at a point zg € D, then
A(2)~Y is finitely meromorphic and Fredholm in D.

6 Weyl-type lower bound for the number of NSEs

Theorem 2.3 follows from Weyl’s law for Dirichlet eigenvalues of —n~'Ay in Q and —A
in Q. See Theorem 1.2.1 in [18].

Theorem 6.1 Let
Na(N) = #{p € op(=n""Ag) ; p <A}, No(A) = #{p € op(=A) : p< A},
for A > 0. We have
Na(A) = VA2 + 0A4D72) 0 Ny(A) = Vo2 + o(A[4=D/2),
as A — oo.

By using this estimate, we evaluate the number of p € (0, ) for large A > 0 such
that Ker(An(p) — Ao(r)) # {0}. In order to avoid the compactness of the operator
An(X) — Ag(N), we define the auxiliary operator

AN = 9(=Ar + 1)34(An (V) = Ao(N)) (—Ar + 1)3/4,

where —Ar is the positive Laplacian on I Thus A is a non-singular ITE if and only if
KerA(\) is non-trivial.
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Let {)\JT} be the set of ITEs lying in (a, 00) for sufficiently small o > 0. We put
Nr(A) = #{j ; a <] <AL

taking into account the multiplicities of ITEs where \XI' < A\I' < ... Letting ur()\) €

op(A(N)), we evaluate Np(A) by the number of A € (o, 00) such that ug(A) = 0 for some
k. We define

N_(A) = #{k ; pe(N) <0},
for A € op(—n"1A,) Uop(—A). Suppose that 7 € R moves from « to co. Since (1) is
meromorphic with respect to 7, N_(7) changes only when some p(7) pass through 0 or 7
passes through a pole of A(7). When 7 moves from a to A > a, Ny(A) denotes the change
of N_(\) — N_(a) due to the first case and N_()\) denotes the change of N_(\) — N_(«)
due to the second case. By the definition, we have

N_(A) = N_(a) = No(A) + N_oo(N).

We put
IN_o(A) = N_(A+¢) — N_(A—e),

at a pole A of A()\) for sufficiently small € > 0. We can show
ON—o(N) = #{j 5 resr=apj(7) > 0} — #{j ; resr=ap;(7) <0},
Moreover, we also have
0N (A) +7(mn(A) = mo(A))] < m(X),
at a pole of /N\()\) where

mp(A) = dimRan@y, mo(X) = dimRanQy »,
m(A) = dim(Ran@y N RanQ »),

for the residues @y and Qo of A, (A) and Ag(A), respectively. Taking the summation of
this inequality on poles in («, A], we can see

NN 47 D (ma(N) = mo(X))| < NjP(N).

a<N<A
Plugging this inequality and N_(\) — N_(a) = NMy(A) + N_s (), we have

Nr(X) > No(A) + N79(N)
> ¥(Np(A) = No(N)) = N—(e)
> (Vo = Vo)AY? + OAD/2),

as A — oo in view of Theorem 6.1.
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