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Abstract 

Spectrum and scattering theory for the quantum system with time
periodic magnetic field is very important problem not only mathemat
ically but also physically. Nevertheless as for such problems, only few 
models were considered and many open problems are still remaining. 
Moreover, in such model, there are many interests in the advanced 
studies such like nonlinear analysis, resonances and so on. Since the 
time-periodic magnetic field has the expected to developments in some 
research fields, we summarize the obtained result and introduce some 
advances studies. 

1 Introduction 

The Hamiltonian for Schrodinger operator with time-periodic magnetic fields 
H0 (t) is written as 

1 ( qB(t) ) 2 1 ( qB(t) ) 2 
Ho(t) = - P1 + --x2 + - P2 - --x1 , 

2m 2 2m 2 

where x = (x1 , x2 ) E I~.2, p = (p1,p2 ) = -i'\l, q #- 0, m > 0 are position, 
momentum, charge and mass of a particle, respectively. Magnetic field is 
IB(t) = (0, 0, B(t)) and B(t) denotes the intense of magnetic field in t. In this 
paper, we assume the periodic condition B(t + T) = B(t) on magnetic field. 
In such case, the quantum scattering theory were considered by Korotyaev 
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[12] and Adachi-Kawamoto [1]. As far as we know, except for these two 
papers, there are no results associated to the quantum scattering for time
periodic magnetic fields. The key approach of them is to deduce the limiting 
absorption principle for H0 , the Floquet Hamiltonian generated by H 0 (t), and 
extend this result to perturbed Hamiltonian iI = H 0 (t) + V(t) by employing 
the stationary scattering theory due to e.g., Kato-Kuroda [6]. However, only 
for this approach, one can not prove the non-existence of singular continuous 
spectrum of H, and hence, Kawamoto [7] proved the absence of the singular 
spectrum through by proving the Mourre theory. 

In this paper, we let H(t) = H0 (t) + V(t), and assume the following 
log-decay condition on the potential V ( t, x), 

Assumption 1.1 Potential V E L 00 (IR.; C2 (IR.2 )) satisfies V(t + T, x) 
V(t, x) and 

(1) 

for some positive constant p, Ca and for all multi-index a E N2 , where 
(·) = (1 + .2)1/2. 

We let U0 (t, s) and U(t, s) are propagators for H 0 (t) and H(t), respectively. 
The aim of this paper is to consider the spectrum and scattering theory for 
this system. In order to consider such issue, the following lemma acts very 
important role; 

Lemma 1.2 ( e.g., Kitada-Yajima [9] and Enss-Veselic [3]) 

L2 (IR.2 ) = Lc(U(T, 0)) EB Lp(U(T, 0)), 

where Lc(U(T, 0)) c L2 (IR.2 ) and Lp(U(T, 0)) c L2 (IR.2 ) are the subspace of 
continuous spectrum of U(T, 0) and the subspace of pure point spectrum of 
U(T, 0), respectively. 

By this Lemma, in order to consider the spectrum and scattering theory for 
this system, it is enough to investigate the properties of spectrum of U(T, 0). 
However, such operator is unitary and complex-valued, and it seems difficult 
to analyze the spectrum of U(T, 0) directly. To get over this difficulties, 
Howland [10] and Yajima [14] considered alternative approach with using 
Floquet Hamiltonian. In order to introduce Floquet Hamiltonian, we set the 
energy space by%= L2 (11'; L2 (IR.2 )) with 11' = IR./TZ, and for f E % define 

(£0,af)(t) = Uo(t, t - CY)f(t - CY), 
(£af)(t) = U(t, t - CY)f(t - CY). 
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Here we notice that for 0-1, 0-2 E IR, 

(£0,0-1 (£0,0-2!)) (t) = Lo,a-1 (Uo(t, t - o-2)f(t - 0-2)) (t) 
= Uo(t, t - o-1)Uo(t - 0-1, t - 0-1 - o-2)f(t - 0-1 - 0-2) 
= Uo(t, t - 0-1 - o-2)f(t - 0-1 - 0-2) 

= ( £0,0-1 +0-2 f) ( t), 

and which means £ 0 ,o- (resp. ,Co-) is the 1-parameter strongly continuous 
unitary gn~up on ~- Hence Stone's theorem leads there exist selfadjoint 
operators H0 and H such that 

We call H0 and H Floquet operator generated by H0 (t) and H(t), respectively. 
Let -i8t be the derivative operator in t with boundary condition 

{ 7/J(t) E L2 (IR2 ) I 7/J(t) and (8t'l/J)(t) are absolutely continuous and 7/J(0) = 7/J(T)}. 

Then it is seen ( e.g., by M0ller [13]) that 

H0 = -i8t + H0 (t), H = H0 + V(t). 

To consider the spectrum of U(T, 0) the following lemmas are very useful; 

Lemma 1.3 

X = Xc(H) EB Xp(H), 

where Xc(H) C X and Xc(H) C X are the subspace of continuous spectrum 
of H and the subspace of pure point spectrum of H, respectively. 

Lemma 1.4 (e.g., Yajima [15]) Let HJ= >.J. Then f = f(t) is L2 (IR2)

valued continuous function and satisfies f(t) = ei>-tu(t, 0)f(0). In particular, 
U(T, 0)f (0) = e-i>..T f(0). Conversely if rp satisfies U(T, 0)rp = e-i>..T rp, then 
by letting J(t) = ei>-Tu(t, 0)rp, we have f E ~(H) and H f = >.J. 

The following lemma is so called Howland-Yajima method; 

Lemma 1.5 If the wave operators in the sense of the Floquet Hamiltonian 

w± = s- lim eitfI e-itfio 
o-➔±oo 
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exist and complete that is 

where Xac(H) C X indicates the subspace of the absolutely continuous spec
trum of H. Moreover, the usual wave operators 

w± = s- lim U(t, 0)*U0 (t, 0) 
t--t±oo 

exist. Then the usual wave operators w± are complete that is 

Lac(U(T, 0)) C L2 (IR2 ) indicates the subspace of the absolutely continuous 
spectrum of U(T, 0) 

Thanks to this lemma, one can prove the completeness of w± by proving the 
completeness of w±, alternatively. 

Constant magnetic field 1B = (0, 0, B) make the classical trajectory of 
a quantum particle on the plane IR2 which perpendicular to magnetic filed 
the circular orbit, and the particle is trapped by constant magnetic field. 
On the other hand, we oscillate the magnetic field periodically in the time, 
the particle is not always trapped and under the some suitable condition, 
scattering states appear, which is characterized by Lac(U(T, 0)) or Xac(H). 
The particle is trapped or not is determined by so-called discriminant of 
Hill's equation D; If D 2 < 4, we have L2 (IR2 ) = Lp(U(T, 0)), and if D 2 2: 4, 
at least one can prove Lp(U0 (T, 0)) = 0, i.e., L2 (IR2 ) = Lc(U0 (T, 0)). Here we 
define Hill's equation for this system as follows 

and we also define the discriminant of Hill's equation as follows 

For the special case in the case of D 2 > 2, the solution of Hill's equation 
can be represented as 

(2) 

where Xi and x2 are periodic or anti-periodic functions, respectively. By us
ing such representation, [12] proved the existence of wave operators and these 
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completeness with the potentials V which satisfies slowly decaying condition, 
that is, for some p > 0, 

(3) 

In the paper of [12], the approach due to [14] (see also Kato [5]) was employed, 
which uses the following representation of resolvent of H0 ; Let z E C\IIL, 
qJ E ,Jf; and f E £ 2 (11'; Ca(IR2)), and define X1(z)rp := f(Ho - zt1 frp 

(X1(z)ef>)(t, x) ~ if (t, x) t, 1T c'(t+NT-,)•u0 (t + NT, s)(H)( s)ds 

+ if(t, x) 1t ei(t-s)zu0 (t, s)(Jrp)(s)ds. 

In the case of time-periodic magnetic fields, in order to use this approach, 
the integral kernel of U0 ( t, s) was found by [12], [1] and [7], and by employing 
the representation of integral kernel of [7], we get 

(JUo(T, s)frp)(T, x) 

= ( 21r ) m2 ei(!1(7 )-!1(s))Le-ia(T)x2 J(t x) J er'2(T,s,x,y)(g)(s y)dy 
mlf 1(T, s)I 2(1ri)2(2(T)(2(s) ' ' ' 

where g( s, y) = e-ia(s)y2 f ( s, y )rp( s, y) with a( s) = m(l - (~( s)) / (2(2 ( s) ), 

r 1(T, s) = (1(s)/(2(s) - (1(T)/(2(T) 

and 

Hence the following LP - Lq estimate can be obtained 

IIUo(t, s)<jJIILP(~2) ::; C l(1(t)(2(s) - (1(s)(2(t)l-(l/q-l/p) llrjJIILq(~2) (4) 

for l/p+ 1/ q = l with 1 ::; q ::; 2 ::; p::; oo, which was firstly obtained by [12] 
and extended by [7] for more general magnetic fields. However, dealing with 
the right-hand-side of (4) for general time-periodic fields is very complicated 
and hence to this easier, [12] assumed the condition (2). Under this condition, 
one can prove 

J,00 
IIVUo(t, 0)rjJIIL2(~2) dt::; C IIVIILP(~2) llrjJIILq'(~2) L e-2l>-nl/P 

1 NEZ 
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with 1/p+ 1/q = 1/2 and 1/q+ 1/q' = 1 (but even the case of (2), to deduce 
which demands long and complicated calculations), and this inequality indi
cates the wave operators exist under the potential satisfying IIVIILP(JR.2) < oo. 
Since the term I:NEZ e-21>-nl/P is summable for any 2 ::; p < oo, one can 
take p enough large. This is the reason why one can prove the existence and 
completeness of wave operators for the weak decaying potentials such like 
(3). 

After in [1], under the pulsed condition of B(t), the scattering theory was 
considered. In this case, by the virtue of the pulsed condition, we can obtain 
the explicit representation of ( 1 ( t) and (2 ( t), and by using this representation, 
asymptotic completeness was proven under the only two conditions that D 2 > 
4 and (2 (T) -=J. 0 but with pulsed condition (this condition includes not only 
the model of [12] but also more generalized model but with pulsed condition). 

In papers [12] and [1], to prove the absence of singular spectrum of H 
is difficult for some technical reasons. In the current approaches, the well
used approach for to prove such issue is to deduce the Mourre estimate. The 
Mourre theory for time-periodic magnetic field was open problem and [7] 
proved this. As the corollary, the absence of singular spectrum has been 
proven. The approach of [7] is firstly reducing the Floquet hamiltonian H0 

to the more simplified form. We let 

and call pseudo energy. Then it follows that 

][))Ho(t)(a(t)) = 0 

holds, where IIJJ. ( •) indicates the Heisenberg derivative, and that yields 

i[H0, a(t)] = 0. 

Hence a(t) can be regarded as the alternative energy of Floquet energy H0 . 

Here we remark that a(t) can be rewrite as 

Hence we see that the energy U0 (T, 0) can be divided into the form such 
like U0 (T, 0) = einx2 e-i(some operator le-inx2 , and [7] found corresponding 
result in Lemma 1.4. of [7]. From such decomposition, we obtain the unitary 
operator /D(t) which reduces H0 to 
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where AD and BD are constants which satisfy AD, CD #- 0, BD #- 0 if D 2 > 4 
and BD = 0 if D 2 = 4, and ED = 0 if D > 0 and ED = 1r /T if D < 0, see 
[7]. Noting the case where D 2 > 4, one can see that the reduced operator 
can be written as the form 

with a, fJ, 'Y #- 0 (here we remove ED for simplicity), and the operator ap2 -

f]x 2 is called repulsive operator, the mathematical aspects for which were 
considered by Bony-Carles-Hafner-Michel [2]. In this paper, they considered 
the Hamiltonian 

(5) 

with VR = VR(x) E L00 (IR~) satisfies (1) with lal = 0 and p > 1, and found 
that the conjugate operator for HR is 

/p+x) d = log \-2- - log (p - x) . 

Indeed by the simple calculation, the commutator i[HR, d] satisfies 

. ( p2 x2 ) 
z[HR, d] = 1 + p2 + 1 + x2 + JC 

1 
>-+JC - 2 ' 

where JC(HR + i)-1 is compact. Thanks to the condition 

i[-i8, d] = i[L, d] = 0, 

one can also obtain the positive commutator 

A ~ 1 
i[H0,d] ~ 2 +JC 

with 

d = af]log (tx + 2~p )- af]log \P - ~x) 
By the virtue of this positive commutator, we find the following Mourre 
estimate 
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Theorem 1.6 Define cp E C0 (IR\o-PP(.H)). Suppose Assumption 1.1, and 
suppose also that D 2 > 4 and (2 (T) -/- 0. Then there exists a compact 
operator K such that for all 'I/; E X, 

holds. 

As the sub consequence of this Theorem, we have the following corollary 

Corollary 1. 7 Under the same assumptions as in Theorem 1. 6, H has at 
most countable pure point spectrum and which singular continuous spectrum 
is empty. 

This theorem and corollary can be proven by employing the approach due 
to [7] 

2 Proof of Theorem 1.6 

Lemma 2.1 Under the assumption 1.1, V(t)(H0 + i)-1 is the compact one. 

This lemma can be proven as the direct consequence of Theorem 4.1. of [7]. 
Indeed, by replacing J(lxl) in [7] to J(t, x) E £ 2 (11'; C0 (IR2 )), we have the 
operator 

is compact one, where z E C+. Hence in order to prove Theorem 1.6, it is 
sufficient to prove 

i[V,d] 

is a relatively compact operator. On the other hand, by the virtue of §5.1 of 
[7], we have that dis written as 

for bounded and periodic functions 0j(t), j E {1, 2, 3, 4}. Let FR E C0 (IR) 
with FR(s) = 1 for lsl :SR and= 0 for lsl 2: 2R. Define 

~ := (01x + 02p)2 
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and 

Then for any fixed R, by the Helffer-Sjostrand formula, we find there exists 
lR(z) E C0 (C) such that 

LR(PJJ) = ~ r f\ZR(z)(z - PJJ)- 1dzdz. 
21ri le 

Then the commutator i[V, log(l + PJJ) 1!2] formally will be 

lim (~ r DzlR(z)(z - PJJt1 [V, PJJ](z - PJJ)-1dzdz) . 
R--+oo 27r } c 

Noting [V, PJJ] = 202 ((01x + 02p) · v'V + v'V · (01x + 02p))) and (log(2+x2 ))-8cp(H) 
for 8 > 0 is the compact operator, we can prove the relative compactness for 
i[V, log(l + PJJ) 112] by proving 

11vv. (01x + 02p)(z - PJJ)-1 (log(l + x2)/II ::; CIImzl-312 , 

and which can be proven just by imitating the approach of [7]. 

3 Future works 

Thanks to the result in [12] and [1], one can see that Ran(W±) = Lac(U(T, 0)) 
under the potential satisfying (3) and specialized B(t). To extend this result 
to more general B(t) is not so complicated since the important properties for 
asymptotic behavior of (1(t) in order to consider the scattering theory has 
been obtained by [7], and which implies scattering theory can be considered 
all B(t) with conditions D 2 > 4 and ( 2 (T) =/- 0. Hence as the future works, 
under the above assumption of B(t), to consider the following issues are very 
interesting and important; 

(I). Absence of embedded eigenvalues for H. Even the strong decay condi
tion (3), this has not been proven yet. Recently Itakura [11] considered the 
absence of embedded eigenvalues for generalized hamiltonian including HR 
with (1). However, to imitate the approach of [11] is not easy. Because, our 
model demands to deal with the potential /D(t)-1 V /D(t) which is not just 
multiplication operator but pseudo differential (like) operator. 

(II). Spectral and scattering theory for H with (1). This is very interesting 
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problem. However to imitate the approach of [12] and [1] is impossible since 
for all 1 ::; p < oo, IIVIILP(JR2) = oo. Hence it is better to deduce the propa

gation estimate for e-iail by using Mourre estimate. As for HR, [2] deduced 
this but in our model, the situation is completely different. 

(III). To investigate the lifespan of resonances. As the same reason as above, 
it is difficult to consider the resonances for H. However, even for HR, this 
issue has not been considered. Hence, as the first step for this, we need to 
investigate the resonances for HR. Probably redefining HR = p2 - CrX2 + VR, 
the lifespan of resonances is characterized by Cr and such lifespan is com
pletely different from those for H = -~ + V. 

(IV). Nonlinear analysis . Recently, the nonlinear problem for the general
ized equations including time-decaying harmonic oscillators (similar to the 
time-decaying magnetic fields) was considered by Kawamoto-Muramatsu [8] 
and the asymptotic behavior of solutions to nonlinear equations was investi
gated. To imitate the approach of [8] directly is difficult since the case (j(t) 
with time-decaying B(t) has no 0-point for all t » 1 but which is not true for 
time-periodic case. For the periodic solution, Hani-Thomann [4] considered 
the similar issue for constant magnetic field. Hence combining the results 
in [8] and [4], one may investigate the asymptotic behavior of the case of 
time-periodic magnetic fields. 
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