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Limit circle problem for a Fuchsian differential 
operator on a torus 

Kouichi Taira 

Abstract 

In this short note, we study spectral properties of the simple operator P 
-8x(sin x8x) on the one-dimensional torus. We prove that P is not essential self
adjoint and give its four proofs. Moreover, we prove discreteness of the spectrum of 
its self-adjoint extension. 

1 Introduction 

In this short note, we consider the following second order differential operator: 

We denote the symbol of P by p: 

The main theorem of this note is the following: 

Theorem 1.1. The symmetric operator P is not essential self-adjoint on C00 (11'). 

Remark 1.2. This theorem holds if we replace P by P + V, where V is a first order 
symmetric differential operator. In fact, the method in Section 3 can be applied with 
P+V. 

The purpose of this note is to collect various proofs of Theorem 1.1. To prove Theorem 
1.1, we construct the distributional eigenfunctions for P associated with the complex 
eigenvalues in various ways. In Section 3, we use the method developed in [5], which is 
an analog of the standard construction of generalized eigenfunctions in scattering theory. 
In section 4, we use the a priori estimate (so-called the radial source/sink estimates) and 
determine the regularity of eigenfunctions of P by using microlocal analysis. In Section 5, 
we only use the Fourier analysis and directly compute the regularity of the eigenfunctions 
from the recurrence formula which is equivalent to the eigenvalue equation for P. On the 
other hand, in Section 6, we prove Theorem 1.1 just by using the integration by parts. 

As an analogy of [5, Corollary 1.5], we obtain the following theorem. 

Theorem 1.3. Each self-adjoint extension of Plc=(11') has a discrete spectrum. 
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The proof of this theorem is given in the end of Section 4. Its proof is essentially 
due to the radial sink estimate and the fact that the radial sink for P is isolated in the 
characteristic set of p. Although we can prove Theorem 1.3 by an alternative proof which 
is similar to [5, Corollary 1.5], we omit its proof. While the proofs in Section 5 and Section 
6 are very short, the proofs in Section 3 and Section 4 make the connection between the 
classical trajectories and the quantum dynamics clear. 

It is believed that the completeness of classical trajectories and essential self-adjointness 
of the corresponding differential operators are closely related. This is because essential 
self-adjointness of a differential operator P is equivalent to existence and uniqueness of 
solutions to a time-dependent Schrodinger equation 

i8tu +Pu= 0, ult=O E L2 • 

Hence it seems important to prove essential self-adjointness or not essential self-adjointness 
of differential operators from microlocal point of view. 
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2 Pseudodifferential operators 

Let (M,g) be a closed Riemannian manifold with dimension n and let us denote 

n 

(() := (1 + 1(1;)½, 1(1; := L gik(x)(j(k, 
j ,k=l 

where the left hand side is independent of the choice of the trivialization of T* M. We 
denote by the Kohn-Nirenberg symbol classes by Sk: 

5k := {a E C00 (T*M) I la~afa(x,()I ~ Ca[3((?-lf3I} 

for k E R We also denote the sets of all pseudodifferential operators of order k by 
OpSk. Moreover, we fix the quantization Op(a) of a E Sk (see [1, Proposition E.15]). For 
A E OpSk, we denote its principal symbol by cr(A) E Sk (see [1, Proposition E.14]). 

Lemma 2.1. /1, Proposition E.23} Let A E OpS2k+l with k E lR and Re cr(A) 2': 0. Then 
there exists C > 0 such that 

Re (u, Au)L2(M) 2': -Cllulltk(M)' U E C00 (M). 

In our case (M = 11'), we can take Op such that Op(a) is formally self-adjoint for 
real-valued symbol a. 

We recall the definition of the radial source/sink from [1]. Let p E Sk be a real-valued 
symbol with k > 0. We denote the projection map by 

K : T* M \ 0 ---+ S* M = fJT* M, ' K(x,() = (x, ~) 
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We write the radial compactification r* M = T* MU 8T* M. Then it follows that r* M 
becomes a manifold with boundary and that the vector field (() 1-k HP on r* M generates 
the corn plete flow 

cpt = et(l:,)l-kHp : r* M ➔ r* M. 

Lemma 2.2. (1, Definition E.5O} We say that a non-empty invariant set L c {(()-kp = 
O} n 8T* M is a radial source for p if there exists a neighborhood U c r* M of L such that 

K(cpt(x, ()) ➔ L, t ➔ -oo, 

lcpt(x,()lg 2': Ce01t11(1g, t ~ 0 

uniformly in (x, () E Un T* M with constants C, 0 > 0. We say that L is a radial sink if 
L is a radial source for -p. 

Consider a formally self-adjoint operator P E OpSk with k > 0 and a real-valued 
principal symbol p. We assume 

(2.1) 

Theorem 2.3. (1, Theorem E.52 and exercise 37} Assume that L is a radial source for 
p and (2.1) is satisfied. Lets E IR satisfy 

(2.2) 

Then there exists a E C00 (T* M; [O, 1]) with a= l near the conic neighborhood of L such 
that 

IIAullH8 (M) ~ CIIPullHs-k+l(M) + CllullH-N(M) 

for A= Op(a), N > 0 and u E H•0+0 (M), where s0 satisfies (2.3) and s > s0 • 

Theorem 2.4. (1, Theorem E.54 and exercise 36} Assume that L is a radial sink for p 
and (2.1) is satisfied. Fix a conic neighborhood V of L. Lets E IR satisfy 

(2.3) 

Then there exists a E C00 (T* M; [O, 1]) with a= l near the conic neighborhood of L and 
b E C00 (T* M; [O, 1]) supported away from a conic neighborhood of L and supp b c V such 
that 

IIAullH8 (M) ~ CIIPullHs-k+1 (M) + CIIBullH8 (M) + CllullH-N(M) 

for A= Op(a), B = Op(b) N > 0 and u E '.D'(M). 

3 First proof, the method in [5] 

In this section, we apply the method developed in [5] with our operator P and prove 
Theorem 1.1. We recall 
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3.1 Construction of an escape function 

In this subsection, we construct an escape function which is needed for the definition of 
the anisotropic Sobolev space. Let p E C00 (~; [0, 1]) and x E C00 (~; [0, 1]) satisfying 

(t) - {lift~½, tp(t) ~ 0, p'(t) ~ 0, inf lp(t)I > 0, inf p'(t) > 0, 
p - -1 if t < _! ltl:C:1/4 1t19/4 

- 2' 

and 

(t) = { 1 if t ~ 2, 
X O if t::; 1, 

x'(t) ~ o. 

We define 

Lemma 3.1. There exists C > 0 such that 

Proof. We note lx1(l) ~ 0 and 

(Hpry)(x,l) = -2(sin2 x)e, Hp(p(ry))::; 0, mHplog(l) = -ry(x)p(ry(x))x1(l)e(l)-2 ::; 0. 

In particular, we have 

(Hpm)(x,l)log(l)::; 0, m(x,l)(Hplog(l))::; 0 

for Ill ~ 2. For l'TJI ~ 1/4 and Ill ~ 2, we have 

Hp(m(x, l) log(l)) =(Hpm)(x, l) log(l) + m(x, l)(Hp log(l)) 

::;m(x, l)(Hp log(l)) 

::; - C(l). 

For l'TJI::; 1/4 and Ill~ 2, we obtain 

Hp(m(x, l) log(l)) =(Hpm)(x, l) log(l) + m(x, l)(Hp log(l)) 

::;(Hpm)(x, l) log(l) 

::; - C(l). 

This completes the proof. 

3. 2 Fredholm estimate 

□ 

Let m be a symbol constructed in the above subsection and t > 0. Take an invertible 
operator Am E OpS½+m(x,O satisfying (A.1): 

atmt(x,l) := (l)½+tm(x,~J, Atm - Op(atm) E OpS-00 • 
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Define 

(3.1) 

By the asymptotic expansion (see [3, Lemma 3.2] for the Anosov vector field), we have 

The main result of this subsection is the following Fredholm estimates. 

Proposition 3.2. Lett > 0. Then for any N > 0, there exists C > 0 such that 

llullH½('Ir) :'SCll(Ptm - z)ullH-½('11') + CllullH-N(ll'), 

llullH½(1r) :'SCll(Ptm - z)*ullw½(1r) + CllullH-N(1r), 

(3.2) 

(3.3) 

(3.4) 

for z E <C and u E 'D'('lI'). Here P/m is the formal adjoint operator of Ptm· Moreover, if 
Im z >> l, then the term llullH-N(1r) in (3.3) and (3.4) can be removed. 

Remark 3.3. We obtain the Fredholm estimates uniformly in Re z, which is different from 
[5, Proposition 3.4]. This seems reflect the property of Hp: The trapped set of HP lies 
only int the zero section of T*'lI'. 

Lemma 3.4. We consider the Banach space 

equipped with the graph norm of Ptm• Then it follows that 0 00 (11') is dense in Dm. 

Remark 3.5. This lemma holds ifwe replace Ptm by the general pseudodifferential operator 
Q E OpS2 • See [1, Lemma E.45]. 

Proof. Let x E C~(JR; [0, 1]) satisfying x(t) = 1 on ltl :'S 1 and x(t) = 0 on ltl ~ 2. Set 
AR := Op(x( Jft )) for R ~ l. We note that [Pm, AR] is uniformly bounded in Op'lI' and 
converges to O in OpSH0 . 

Now let u E Dtm and set UR:= ARu E 0 00 (11'). Clearly, we have UR---+ u in H½('lI'). 
Moreover, we have 

This completes the proof. 

□ 

Lemma 3.6. There exits C > 0 such that for u E 0 00 (11'), 

Proof. This lemma follows from Lemmas 2.1, 3.1 and the formula (3.2). 

□ 
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Proof of Proposition 3.2. We only deal with (3.3). The inequality (3.4) is similarly proved. 
By virtue of Lemma 3.4, it suffices to prove (3.3) for u E C'x0 (11'). Lemma 3.6 implies 

Im (u, (Ptm - z)u)L2('ll') =t(u, Op(Hp(mlog(~) ))u) - Im zllulli2c'll') + O(llullt+o('ll')) 
:::: - Ctllull~½ - Im zllulll2 + O(llullt+□ ('ll')) 

for u E 0 00 (11'). The Cauchy-Schwarz inequality and the interpolation inequality 

llullt+□ ('ll') :=:: Ellull~½('ll') + Cllullt-N(T)' VE> 0, N > 0, 

we obtain 

This implies (3.3). Moreover, if Im z >> l, the term llullt-N('ll') in the left hand side can 
be removed. □ 

From Proposition 3.2 and the proof in [5, Corollary 3.6], we obtain the following 
corollary. 

Corollary 3. 7. Consider a family of bounded operators 

(3.5) 

Then it follows that the (3.5) is an analytic family of Predholm operators with index 0. 
Moreover, there exists a discrete subset St C CC such that the map 3.5 is invertible for 
z E CC\ St. 

3.3 WKB solutions 

In this subsection, we construct an approximate eigenfunction of P which wavefront set 
lies in the incoming region (the radial sink) for p. 

First, we consider the WKB state 

u_(x) := x(x) 1 a0 (~)eix{d~, 

where x E C~(IR; [0, 1]) and a0 E C 00 (!R) 

x(x) = {1 for lxl ::; %, 
0 for lxl 2: ~' 

( ) _ {½ for ao ~ -
0 for 

(3.6) 

(3.7) 

We shall see that u_ is the approximate eigenfunction for P. By virtue of its support 
condition, we can regard u_ as a smooth function on 11'. We note that u_ is a Lagrangian 
distribution ([4, Definition 25.1.1]) associated with the conic Lagrangian submanifold 

L-,0 := {(0,~) E '][' X JR I~< 0}. 

Moreover, we have 

u_ E 0 00 (11'\ {O}) nH½-0 (11'), u_ (/. H½('ll'), WF(u_) c L-,o- (3.8) 
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Lemma 3.8. We have Pu_ E H~-0 (1'). 

Proof. By the Taylor theorem, we have 

(3.9) 

where his smooth near supp X· A direct calculation gives 8x(x8x)(u_) E C00 (1'). More
over, since 8x(h(x)x38x) is the second order differential operator which vanishes at O of 
third order and since u_ is the Lagrangian distribution, then we have 8x(h(x)x38x)u_ E 

H~-0 (1'). This completes the proof. 

□ 

Next, we shall construct the approximate eigenfunction for P - z for z E C. Let x be 
as in (3.7) and consider 

where az E C 00 (IR) is supported in -t ?: 1 and is determined later. Moreover, we impose 

(3.10) 

Then it follows that u-,z is a Lagrangian distribution associated with L_,0 and satisfies 
(3.8). A direct calculation (as in Lemma 3.8, use (3.9)) gives 

(P - z)u_,z(x) = i 1 (ea€az(t) + taz(t) + izaz(t)) eix{dt + H~-0 (1') for lxl::; 1r/4 

and (P - z)u-,z E C 00 on 1' \ {lxl :S 1r/4}. If we take az E C 00 (IR) as 

az( t) = { ½ + ~ for - t ?: 2 
0 for - t :<:::: 1, 

then we have az E S_1 and ea€az(t) + taz(t) + izaz(t) E S-2- Consequently, we obtain 
the following lemma. 

Lemma 3.9. For z E C, we have (P - z)u-,z E H~-0 (11') and u-,z satisfies (3.8). In 
particular, u-,z -=I= 0. 

Remark 3.10. A finer construction gives existence of an approximate eigenfunction u-,z 
satisfying (3.8) and (P - z)u-,z E C 00 (1'). 

3.4 Existence of generalized eigenfunctions 

In this subsection, we construct a generalized eigenfunction of P. In order to show 
Theorem 1. 1, it suffices to prove the following proposition. 

Proposition 3.11. Lett> 0 small enough satisfying H~- 0 (1') C H½+tm(xi)(1') c £ 2 (1') 
and let z E C \ St. Then there exists u E £ 2 (1') \ {O} such that (P - z)u = 0 in the 
distributional sense. 



120

Proof. By (3.1) and Corollary 3.7, it follows that the map 

P - Z: Dtm := {u E H½+tm(x,fl('f) I Pu E H-½+tm(xll('f)}-+ H-½+tm(x,~l('f) (3.11) 

is a Fredholm operator with index and that z -+ P - z is analytic. Moreover, (3.11) is 
invertible for z EC\ St, where St is same as in Corollary 3.7. We denote the inverse of 
(3.11) by R+(z) for z EC\ St. 

Take u-,z -/= 0 satisfying (3.8) and (P - z)u-,z E H~- 0 ('f). Set 

Then we have Uz E L2 ('f) and (P-z)uz = 0. Moreover, we have Uz-/= 0. In fact,u_,z-/= 0, 
its wavefront condition (3.8) and the construction of the escape function m imply Uz = 
U+,z + U-,z-/= 0. 

□ 

4 Second proof, via radial point estimates 

In this section, we give another Fredholm estimate which is different from the last section 
and is similar to the estimate in [6]. 

4.1 Hamilton dynamics 

We recall p(x,[) = (sinx)e for (x,[) E T*'f = 'f x R Set 

L'F,O = {(x,[) E 8T*'f Ix= 0, [ = ±oo}, L±,1' = {(x,[) E 8T*'f Ix= n, [ = ±oo}. 

Proposition 4.1. It follows that 

• L_,0 and L+,1' are radial sources for p, L+,o and L_,1' are radial sinks for p, 

in the sense of Definition 2.2. 

In the following, we prove that L_,0 is a radial sink only. The other part of Proposition 
of 4.1 is similarly proved. Set 

We denote the integral curve of fIP with a initial data ( x0, [ 0 ) by ( z ( t), ( ( t)): 

{
{kz(t) = 2(sinz(t))(((t))-1((t), 

ft((t) = -(cosz(t))(((t))-1((t)2, 
{

z(O) = x, 

((0) = f. 

First, we prove that the any trajectory through {f = 0} must be constant. 

Lemma 4.2. Let x E 'f and [ = 0. Then z(t) = x and ((t) = 0 for any t ER 

( 4.1) 

Proof. A pair (z(t), ((t)) = (x, 0) is a solution to (4.1). By the uniqueness of solutions to 
ODE, we obtain our conclusion. □ 
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Now the proof of Proposition 4.1 reduces to Lemma 4.3 and 4.4 below. 

Lemma 4.3. There exists 0 > 0 such that for each initial value (x, l) E U, 

((t) 2: e01t1t, for t :::; 0. 

Proof. Let (x, l) E U. First, we show lz(t)I < 1r/4 for all t :::; 0. We set S = {t :::; 
0 I z(t) E (-1r/4,1r/4)}. We note that 0 belongs to S. Suppose (-oo,0] \ S-=/- 0 holds. 
Setting s0 = sup(-oo,0] \ S, we have lz(so)I = 1r/4 and lz(s)I < 1r/4 for all s0 < s:::; 0. 
This contradicts to 

d 2 . (( so) v'21r (( so) 
dtlz(t)I lt=so = 2z(so)(smz(so)) (((so))= - 2-(((so)) 2: 0, 

which follows from the equation (4.1) and Lemma 4.2. Thus we have S = (-oo,0]. 
Then there exists 0 > 0 such that 

('(t):::; -0((t) 

for t :::; 0. From a simple calculation, we obtain 

□ 

Lemma 4.4. For each initial value (x, l) E U, we have z(t) ➔ 0 as t ➔ -oo. 

Proof. Let (x,l) EU. As is shown in the proof of Lemma 4.3, we have lz(t,x,l)I < 1r/4 
for t :::; 0. Thus we have 

:tlz(t)l 2 = 2z(t)sinz(t) (~~!~) 2: clz(t)l 2 

fort:::; 0, where we use xsinx 2: cx2 for x E (-1r/4,1r/4) with c > 0. Thus we have 

as t ➔ -oo. 

4.2 Fredholm estimates in Sobolev spaces 

The main theorem of this subsection is the following: 

Theorem 4.5. For z E C, we define 

d(z) := dim Ker '.D'('Il')(P - z), d*(z) = dim Ker H½-o('Il'/P - z), 

Then we have d*(z) = 2 for z E (C and 

d(z) = 2 for z-=/- 0, d(0) = 3. 

Moreover, if (P - z)u = 0 with u E 'D'(11') \ {0} and z EC, then we have 

u is not a constant function =} u E H½-0 (11') \ H½+0 ('ll'). 

□ 



122

Theorem 1.1 directly follows from Theorem 4.5. In the following of this subsection, 
we shall prove Theorem 4.5. Let us define 

X8 = {u E H•+1 (11') I Pu E H 8 (11')}, zj 8 = H 8 (11') 

for s > -½- From the results of the last subsection, Theorems 2.3 and 2.4, we obtain the 
following proposition. 

Proposition 4.6. Fors>-½, N > 0 and c: > 0, we have 

llullxs S:Cll(P - z)ull1as + CllullH-N(11') for u E H½+c('ll') (4.2) 
llullH-8 (11') S:Cll(P - z)ullH-s- 1 (11') + CllullH-N(11') for u E 'D'('ll'). (4.3) 

Remark 4.7. When applying the radial sink estimate (Theorem 2.4), we use the fact that 
we can take the control region (supp bin Theorem 2.4) as supported in the elliptic set for 
p. 

Now we study the Fredholm property of P from '.XS to zj 8 • As a warm up, we prove P 
is a bounded operator. 

Lemma 4.8. The operator P : xs -+ 'as is bounded. 

Proof. It suffices to prove that P is a closed operator. Take a sequence Un E xs such that 
Un -+ u in xs and Pun -+ w in 'as for some u E xs and w E 'as. By the definition of xs, 
we have Pun -+ Pu in H 8 (11') = zj 8 • This implies w = Pu and u E X8 • This completes 
the proof. □ 

Next proposition assures P is a Fredholm operator. 

Proposition 4.9. P- z : xs -+ 'as is an analytic family of Predholm operators for z E C. 

Proof. We take c > 0 such that s + 1 > ½+c. First, we prove Ker xs(P - z) is finite 
dimensional. Take a sequence Un E Ker xs ( P - z) with I I Un 11 xs = 1. It suffices to show 
that Un has a convergent subsequence in xs. Since the natural injection xs Y H½+c (11') is 
compact, Un has a convergent subsequence in H½+c('ll'). We also denotes the subsequence 
by Un- Using (4.2), we have 

as n, m-+ oo. Thus, Un is Cauchy in xs and hence converges in X8 • 

Next, we show that P - z has a closed range. By virtue of [4, Proposition 19 .. 1.3], 
it suffices to prove that any sequence Un E xs such that Un is bounded and (P - z)un 
is convergent has a convergent subsequence. Take a sequence Un E xs such that Un is 
bounded and (P - z)un is convergent. By using the compactness of the natural injection 
xs Y H½+c('ll'), it follows that Unk -+ u in H½+c('ll') for some u E H½+c('ll') for a sub
sequence Unk· Due to (4.2), Unk is convergent in xs_ It easily follows that u E xs and 
Unk -t U in xs. 

Finally, we show that the kernel of (P - z)* : ('as)• = H-8 (11') -+ (X8 )* is finite 
dimensional. Note that if (P - z)*u = 0 for u E H-•(11'), then (P - >..)u = 0 in the 
distribution sense since C 00 (11') C x•. Take a sequence Un E H-•(11') such that (P -
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z)*un = 0 and llunllH-s(11') = 1. If we take N > 0 large, the natural injection H-s(11') '--+ 
H-N(11') is compact. Then Un has a convergent subsequence Ujk in H-N(11'). By using 
(4.3), it follows that Ujk is convergent in H-s(11'). 

□ 

The next lemma specifies the regularity of eigenfunctions of P. From the next lemma, 
it turns out that if (P - z)u = 0 with u E '.D'(11'), then we have u E C00 (11') or u E 

H½-0 (11') \ H½+0 (11'). 

Lemma 4.10. For.\ E CC and s > -½, 
Ker xs(P- z) = {u E C00 (11') I (P- z)u = 0}, 

Ker H-s('lI')((P - z)*) = {u E H½-0 (11') I (P - z)u = 0}. 

Proof. The first equality directly follows from ( 4.2). We show that the second equality. If 
u E Ker H-s(1I')((P-z)*), then (P-z)u = 0 in a distribution sense since C00 (11') c X". By 

using (4.3), we have u E H½-0 (11'). Conversely, suppose u E H½-0 (11') and (P - >.)u = 0. 
Note that u E H-s(11'). Then, for w E C00 (11'), 

0 = (u, (P- z)w) = ((P- z)*u,w). 

Using Lemma 4.11 below, we obtain (P - z)*u = 0. 

Lemma 4.11. C00 (11') is dense in xs. 
□ 

Proof. Let x E C~(IR) such that x(t) = 1 on t ::; 1. Let u E xs. Set uR(x) 
Op(x(-~))u(x) E C00 (11') for R 2: 1. Then, uR---+ u in Hs+1 (11') and 

PuR = [P,Op(x(l~))]u+Op(x(l~))Pu. 

Since Pu E H 8 (11'), then Op(x(J.ft))Pu---+ Pu in H 8 (11'). Moreover, since u E H 8 (11') and 

[ P, Op(x( J.ft))] is uniformly bounded in OpS1 and converges to O in OpSH0 , we obtain 

[P, Op(x( 1ft)) ]u ---+ 0. Thus, uR ---+ u in xs. □ 

We can calculate the eigenfunctions of P with 0-eigenvalue. 

Lemma 4.12. For C0 , C1 , C2 > 0, set 

X 
uo(x) = Co, u1(x) = C1H(x), u2(x) = C2 log I tan 21, 

where H(x) = 1 on [0, 1r] and H(x) = 0 on (1r, 21r). Then Puj(x) = 0 in the distributional 
sense. Moreover, u0 E Ker xs(P) and u1 , u2 E Ker H-s('lI')(P*). 

Proof. This lemma follows from a direct calculation. 

Proposition 4.13. We have Ind(P - z) = -2, d(0) = 3 and d(z) 
Moreover, if z E CC\ {0}, then 

dim Ker xs(P - z) = 0, dim Ker H-sc1n((P - z)*) = 2. 

□ 

2 for z -=I- 0. 
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Proof. First, we prove Ind(P - z) = -2. If we write u = LkEZ eikxak E '.D'(1'), Pu = zu 
is equivalent to 

In fact, we have 

Pu= zu {:} - ifJ ((eix - e-ix) ~ ka eikx) = zu 
X 2i ~ k 

kEZ 

{=}Ox(L kakei(k+l)x - kaki(k-l)x) = -2zu 

kEZ 

{:}i L(k(k - l)ak-l - k(k + l)ak+I)eikx = -2zu 
kEZ 

(4.4) 

This implies d(z) = 2 for z -=/- 0 and d(O) = 3. Let z = 0. Note that (4.4) is uniquely 
solved if a0 , a1 , a_1 are determined. Moreover, any solutions to Pu = 0 with u E '.D'(1') 
can be written as 

00 1 . 00 1 . 
u(x) = a + a ~ --e'(2k+I)x + a_ ~ --e-,(2k-I)x. 

0 1 ~ 2k + 1 1 ~ 2k - 1 
k=0 k=0 

In particular, Pu= 0 has just three linearly independent solutions in '.D'(1'). By Lemma 
4.12, we conclude that IndP = 1 - 3 = -2. The stability of Fredhollm index under the 
continuous perturbation implies Ind(P - z) = -2 for z E IC. 

Suppose z E IC\R Let u E dim Ker xs(P-z). Since u E C00 (1') and P = P* formally, 
then an integration by parts gives u = 0. 

Next, suppose z E ffi. \ {0}. Then ( 4.4) gives a0 = 0. Moreover, { ak}k>O is uniquely 
determined by (4.4) and a 1 E IC. Similarly, {akh<o is uniquely determined by (4.4) and 
a_1 E IC. Consequently, (4.4) has just two solutions. Ind(P - z) = -2 implies that 
Pu = zu also has just two distributional solutions. □ 

Proof of Theorem 4.5. Theorem 4.5 follows from Lemma 4.10 and Proposition 4.13. □ 

4.3 Discreteness of the spectrum 

Proof of Theorem 1.3. By (4.3), we have 

(4.5) 

for u E £ 2 (1') if the right hand side is bounded. This implies that there is a continuous 
inclusion Dmax = D((Plc=('Ir))*) C H 1!2- 0 (1'). Now fix a self-adjoint extension of P and 
let D be its domain. By virtue of [5, Proposition 5.1], it suffices to prove that the inclusion 
D C £ 2 (1') is compact. Then D C Dmax is a continuous inclusion. Since the inclusion 
H 1/ 2- 0 (1') c £ 2 (1') is compact, the inclusion D C £ 2 (1') is also compact. □ 
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5 Third proof, via Fourier analysis 

In this section, we give a shorter proof of Theorem 1.1 via Fourier analysis. We construct 
u E H½-0 ('l!') \ {O} satisfying 

(P - i)u = 0. (5.1) 

If we write u(x) = L;;"=-oo akeikx, then the above equation is equivalent to 

k(k - l)ak-l - k(k + l)ak+l = -2ak. (5.2) 

For a proof, see after ( 4.4). 

Lemma 5.1. Let {ak}k=-oo be a sequence satisfying (5.2). Then we have lakl :::; C(k)-1 

fork E Z. In particular, if u E '.D'('ll') satisfying (5.1), then we have u E H½-0 ('l!'). 

Proof. We only deal with the case of k ~ 0. Set bk = kak. Then the equation (5.2) is 
equivalent to 

First, we prove that for each integer n ~ l, we have 

(5.3) 

To see this, it suffices to prove that lbkl :::; C1k1/n and lbk+ll < C1(k + 1)1/n imply 
lbk+2I:::; C1(k + 2)1/n for large k. We observe 

lbk+2ln = lbk + k ! 1 bk+lln ::;Cf(k¼ + 2(k + 1)¼-2r 
::;Cf(k + 1)(1 + (k: l) 2 t. 

Thus, to prove lbk+21 :::; C1(k + 2)1/n, we only need to prove 

l n k+2 l 
(l+ (k+1) 2 ) :::; k+l =l+ k+l· (5.4) 

Since the left hand side is 1 + 0( (k:1)2 ) as k --too, the inequality (5.4) holds for large k. 

Thus we have lbk+2 1:::; C1(k + 2)1/n for large k. 
Next, we prove lbkl = 0(1) as k --t oo. Set rk = 2bk+i/(k + 1)2. Using (5.3) with 

n = 1/2, we have L~i lrkl < oo. This implies 

k=l k=l k=2 k=l 

form~ 2. Consequently, we obtain lbkl = 0(1) and lakl = 0(1/k) ask --too. □ 

Now we take a sequence {ak}k=-oo satisfying a1 = a2 = 1. Then the function u(x) = 

L~-oo akeikx satisfies u E H½-0 ('l!')\{0} and (P-i)u = 0. Moreover, we have (P+i)u = 0 
with u =/- 0. This completes the proof of Theorem 1.1. 
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6 Fourth proof, via integration by parts 

In this section, we prove 1.1 just by using integration by parts. 

Proof of Theorem 1.1. Since the maximal domain of P is {u E L2 (11') I Pu E L2 (11')}, it 
suffices to find u, v E L 2 (11') with Pu, Pv E L 2 (11') satisfying 

(Pu, v)L2('ll') -=/- (u, Pv)L2('ll')· 

Let u(x) = log lxlx(x) and v(x) = (H(x) + 2H(-x))x(x) where x E Ci'."'((-~, ~)) is a real 
valued function which is x(x) = 1 on lxl ::; ;f. Note that u, v E L 2 (11') and Pu, Pv E L 2 (11'). 
Then, a direct calculation gives (Pu,v)L2('ll') -(u,Pv)L2('ll') = -v(+O) +v(-0) = -3-=/-
0. □ 

Remark 6.1. Using the technique in the the proof above, we can easily prove that P = 
-8x(x8x) is not essential self-adjoint on Ci'."'(IR). 

A Anisotropic Sobolev space 

In this appendix, we recall the definition and some standard properties of variable order 
Sobolev spaces, which are described in [2, Appendix]. 

Let ( M, g) be a closed Riemannian manifold. For a real valued symbol m E S 0 and 
p E (½, 1), we set 

Then it follows that am E s;(x,f;) is elliptic in the sense of [2, Definition 8]. From [2, 
Corollary 4], we deduce that there exists an operator Am E OpS;'(x,f;) satisfying 

Am - Op( am) E OpS;'(x,/;)-(2p-l). 

Moreover, the operator Am is formally self-adjoint and invertible in C00 (M) --+ C00 (M) 
(hence, also in '.D'(M) --+ '.D'(M)). If M admits the quantization Op such that Op(a) is 
formally self-adjoint for any real-valued sybbol a (for example, M = 11', see [7, §5.3]), then 
[2, Lemma 12] implies that we can take Am as 

(A.l) 

Now we define the anisotropic Sobolev space. 

Definition 1. For a real-valued symbol m E S0 , we define 

The Hilbert space Hm(x,f;) with the inner metric (·, •)Hm is called the anisotropic Sobolev 
space of order m. 



127

References 

[1] S. Dyatlov, M. Zworski, Mathematical theory of scattering resonances, Graduate 
Studies in Mathematics 200, AMS 2019, http://math.mit.edu/ dyatlov /res/ 

[2] F. Faure, N. Roy, and J. Sjostrand. A semiclassical approach for Anosov diffeomor
phisms and Ruelle resonances. Open Math. Journal., 1:35-81, 2008. 

[3] F. Faure and J. Sjostrand, Upper bound on the density of Ruelle resonances for 
Anosov flows, Comm. Math. Phys. 308(2011), 325-364. 

[4] L. Hormander, Analysis of Linear Partial Differential Operators, Vol. I-IV. Springer 
Verlag, 1983-1985. 

[5] K. Taira, Scattering theory for repulsive Schrodinger operators and applications to 
limit circle problem, arXiv:1904.04212. 

[6] A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces 
(with an appendix by Semyon Dyatlov). Invent. Math. 194 (2013), no. 2, 381-513. 

[7] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, AMS, 
2012. 


