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Schrodinger operator with constant magnetic field and slowly 
varying perturbation on a multidimensional strip region 

1 Introduction 

Mouez Dimassi 

IMB, Universite de Bordeaux 

and 

Takuya Watanabe 
Ritsumeikan University 

In this paper we are concerned with the magnetic Schrodinger operator with slowly varying 
external electric potential : 

where x = (x1, · · · ,xd) E Ad:= IIj= 1 [-aJ,aJ], y E ~d, µ = (µ1, · · · ,µd) with E,aj,µJ > 0. 
The non-perturbed operator 

d 

H = D; +(Dy+ µx) 2 = L D;J + (DYJ + µJxJ) 2 

j=l 

is defined on 1if?d := { u E H 2 (Dd); ularid = O}, where H 2 (Dd) stands for the second order 
Sobolev space on Dd := {(x,y) E ~d x ~d;-aj :=; XJ :=; aJ} = Ad x ~d. The Fourier 
transformation with respect to y reduces the spectral problem of H to an analysis of the 
eigenvalues { e1 ( k )}~0 depending on k = ( k1 , • • • , kd) of the operator 

d 

H0 (k) = D; + (k + µx) 2 = L D;J + (kJ + µJxJ)2, 
j=l 

on Ad with Dirichlet boundary condition. 
The spectrum of His absolutely continuous, and coincides with [e0 (0), +oo[. The points 

ej(O) are thresholds in O"(H). By the Weyl criterion, the essential spectra of H(E) and H 
are the same, and discrete eigenvalues with finite multiplicities can arise in] - oo, e0 (0)[. 
Moreover, It is reasonable to expect that the electric field creates embedded eigenvalues 
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and resonances on the second sheet. The principal topic of this paper centers around 
the effect of the slowly varying decaying perturbation V(Ex, EY) on the non-perturbed 
operator H. Particular attention will be paid to the asymptotic behavior of the spectrum 
near the thresholds ej(O). 

The Schrodinger operator with magnetic and electric potentials on a domain D of ~ 2 , 

received considerable attention in the past. The spectrum of the non-perturbed Hamilto­
nian JI on a bounded domain D C ~ 2 were considered by many others. In particular the 
asymptotic behavior of the bottom of the spectrum of H as µ tends to infinity has been 
treated for different geometry of D (see [23] and the references cited therein). In the case 
where D is the semi-infinite plane or the disk, the WKB approximations of the energies 
and the eigenfunctions are obtained in [8, 3]. In the case D = ~ 2 , the literature is so vo­
luminous that we cannot possibly describe individual references and hence we primarily 
refer to the monographs [21, 23] and the references given there. 

S. De Bievre and J. F. Pule [2] studied the perturbed operator H(l) on the half plane 
with Dirichlet boundary condition. They showed that the spectrum of H(l) is purely 
absolutely continuous in a spectral interval of size 1µ (for some 1 < 1) between the 
Landau levels of the operator H0 . A similar problem has been considered in [5, 6, 7] for 
H(l) on a strip D1 of ~ 2 . Moreover, Mourre's theory and the spectral shift function near 
the thresholds ej ( 0) were considered in [5]. 

In [11], the first author uses WKB approximations to study the dynamics and the 
bottom of the spectrum of the operator H(E) on D1 . With this method it is difficult to 
recover all the spectrum of H(E). On the other hand, the multi-dimensional case (i.e., 
Dd with d > 1) is more complicated, since the thresholds ej(O) are in general degenerates 
when d > 1. Our goal in this paper is to give a rigorous way to recover the spectrum of 
H(E) on Dd, (d?: 1) near any energy level A, by studying systems of pseudodifferential 
operators which have a principal symbol quite close to one of ej(EDy) + V(O, y) - z, where 
z is the spectral parameter. First, we give a complete asymptotic expansion in powers of E 
of tr(w f(H(E))) where f E C0 (~) and W is a multiplication operator by a real integrable 
function w(y) E L1(~d). In particular, we obtain a Weyl type asymptotics with optimal 
remainder estimates of the counting function of eigenvalues of H ( E) in any closed interval 
in] - oo, e0(0)[. To investigate the effect of the perturbation on the continuous spectrum 
of H, it is natural to study the spectral shift function (SSF for short). When V vanishes 
as IIYII -+ oo (see (12)), the SSF l(µ; E) related to H(c) and His well defined in the sense 
of distribution : 

tr[f(H(c))-f(H)] = -(((·;E),f(·)) = l t(µ;E)j'(µ)dµ, f E Co(~)- (1) 

The function l(µ; E) is fixed up to a constant by the formula (1), and we normalize l(µ; E) so 
that l(µ; E) = 0 forµ< inf(<T(H(E)). The operator H(E) could have embedded eigenvalues 
and then the derivative of the SSF could be locally a Dirac distribution. The spectral 
shift function may be considered as a generalization of the eigenvalues counting function. 
It is one of important physical quantities in scattering theory, and it plays an important 
role in the study of the location of resonances in various scattering problems. We refer to 
[28] and references cited there for comprehensive information on related subjects. 

Under the assumption (12), we give a complete asymptotic expansion in powers of E 
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of the left hand side of (1) in Theorem 3.3 and moreover in Theorem 3.4, we establish a 
complete asymptotic expansions in powers of E for f(µ; E). 

The paper is organized as follows: Section 2 is devoted to the study of the fibered 
operator H0 (k) on Ad. In Section 3 (respectively section 6), we give the main results 
(respectively the proofs) of this paper. In sections 4 and 5 we describe general mainly 
well-known results on the effective Hamiltonian and on the t-pseudodifferential operators 
with operator-valued symbol. 

Notations : We shall employ the following standard notations. Given a complex function 
fh depending on a small positive parameter h, the relation fh = O(hN) means that there 
exist CN, hN > 0 such that lfhl :::; CNhN for all h E]O, hN[- The relation fh = O(h00 ) 

means that, for all NE N := {O, 1, 2, ... }, we have fh = O(hN). We write fh ~ I:;:0 ajhi 

if, for each NE N, we have fh - L~oaihi = O(hN+1). We adopt the notation N* := 

N \ {O}. 
Let 1-l be a Hilbert space. The scalar product in 1-l will be denoted by (·, ·). The set 

of linear bounded operators from 1-l1 to 1-l2 is denoted by £(1-l1, 1-l2) and ,C (1-l1) in the 
case where 1-l1 = 1-l2. 

2 The non-perturbed Hamiltonian H 

In this section we establish the basic spectral properties for the non-perturbed operator H. 
We focus on a diagonalization of H0 (k) and the corresponding generalized eigenfunction. 
Moreover, we introduce an integrated density of states, p, corresponding to H. 

The operator H is unitarily equivalent to 

FHF* = {fB H0 (k)dk, 
}]Rd 

where F is the partial Fourier transform with respect to y given by 

(Fu)(:r, k) = ( l)d/2 f e-iyku(x, y)dy, 
27!" }]Rd 

and 
H0 (k) = D; + (k + µx)2, 

(2) 

(3) 

is the operator defined on 1-lAd := { u E H 2 (Ad); ulaAd = O}. In what follows, we will 
consider 1-lAd as a Hilbert space equipped with the standard scalar product of H 2 (Ad)-

We first examine the two dimensional case (i.e, d = 1, 0 1 = [-a, a] x IR). From the 
Sturm-Liouville theory (see for instance [25]), it is well-known that H0 (k) has a simple 
discrete spectrum : e0 (k) < e1(k) < · · ·. The change of variable x c-+ -x implies that 
e1(k) = e1(-k). Since the eigenvalues are simple, an ordinary analytic perturbation theory 
shows that e1(k) (and the corresponding eigenfunction) are analytic functions in k (see 
[22, 27]). 
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Theorem 2.1. The eigenvalue ej(k) satisfies : 

ke;(k) > 0 (k =J 0), and e;(o) = 0, eJ(0) > 0. (4) 

Moreover, for every fixed j E N and any a,µ > 0, the following properties hold : 

00 

ej(k) = ej(0) + L°'j,1k21 (k--+ 0), aj,I > 0, (5) 
l=l 

(6) 

where O < v0 < v1 < • • • < llj < • • • are the eigenvalues of the operator D; + x on JR+. 
The normalized eigenfunctions W n ( ·, k) corresponding to en ( k) can be chosen real-valued 
and analytic with respect to k satisfying : 

(7) 

Proof. (4) is proved in [15] (see Theorem 2 in [15]). Formula (5) follows from the fact 
that ej(k) is an even real analytic function with eJ(0) > 0. 

To prove (6), consider the operator H(k) = D;+2µxk+k 2. Replacing x by t = µ(x+a) 
and rescaling t ,-+ >.t/µ (with>..= (2µk) 113 ) we transform H(k) into >..2G - 2aµk + 2k2, 

where 
G = D; + t: L2 ([0, b])--+ L2 ([0, b]), b = 2>.a, 

is the Airy operator with Dirichlet boundary condition. The general solution of the 
equation D;u(t) + tu(t) = 0 can be written as a linear combination of the Airy functions: 

u(t) = C+Ai(t) + C_Bi(t). 

We recall that Bi(t) = Ai(e21ri/3x). Thus, the eigenvalues Vj of the operator G are the 
roots of the equation 

. . Ai(-vj + b) 
A1(-vj) = B1(-vj) .( b). 

B1 -llj + 
Since the right-hand side of the above equality tends to zero as b tends to +oo, -vj are 
approximated (when k--+ +oo) by the zeros of the Airy function Ai(x). Consequently, 
the eigenvalues >..0 (k) < >..1(k) < · · · of H(k) satisfies 

>.j(k) = k2 - 2aµk + vj(2µk)2l 3 (1 + o(l)) (k--+ +oo). (8) 

On the other hand, since -a :S: x :S: a, it follows that 1 

H 0 (k) - µ 2a2 :S: H(k) = H 0 (k) - µ 2x2 :S: H 0 (k). 

which together with Theorem XIII.I in [27] yields 

ej(k) - µ 2a2 :S: >..j(k) :S: ej(k). 
-------------

1 Let A and B be selfadjoint operators that are bounded from below. We write A '.'o B if and only if D(B) C D(A) and 

(Au,u) '.'o (Bu,u) Vu E D(B). 
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Thus (6) follows from (8) and the above inequality. 
The only point remaining concerns the estimate (7). Let Wn(·, k) be the normalized 

real-valued analytic function corresponding to en(k). Since Wn is real and llllin(·, k)II = 1, 
it follows that 

(9) 

Put ii ( k) = H0 ( k) - k2 , and let r n be a simple closed contour around en ( k) - k2 such 
that dist(rn,a(H(k))) ~ C > 0 uniformly on k. Let Pn(k) be the orthogonal projection 
onto the eigenspace spanned by Wn(·, k), that is for u(x) E 1lA2 

(10) 

From (9) we deduce that Pn(k)okllin(·, k) = 0. Combining this with the fact that 
Pn(k)llin(·, k) = Wn(·, k) and using (10) as well as the fact that okH(k) = 2µx, we get 

akwn(x, k) = okPn(k)wn(X, k) = -l_ { (H(k) - z)-12µx(H(k) - z)-1dzwn(x, k), (11) 
21ri lrn 

which yields 
IIEJk\Jin(·, k)II = O(l)llllin(·, k)II = 0(1). 

We now proceed by induction using (11). □ 

Let ( e{ ( k1)) lEN and ( w{ ( x 1, k1)) lEN be the eigenvalues and eigenvectors of the operator 
D~1 +(k1+µ1x1)2 given by Theorem 2.1. For J = (j1 , · · · ,jd) E Nd and k = (k1 , · · · , kd) E 

~d, we denote 

By Theorem 2.1, we have 

Corollary 2.2. The spectrum of the operator H0 (k) on { u E H 2 (Ad); ulaAd = O} is 
discrete and coincides with { eJ(k); J E Nd}. The family (w J(·, k))JENd is an orthonormal 
basis in L2 (Ad)-

Now let us return to the non-perturbed operator H = D~ + (Dy+ µx) 2 as an un­
bounded operator on 1l{fd. According to Theorem 2.1, Corollary 2.2, and the theory of 
decomposable operators (see Theorem XIII. 85 in [27]) the spectrum of H is absolutely 
continuous, and given by 

a(H) = LJ LJ eJ(k) = [e0 (0), +oo[. 
JENd kEID?.d 

The points eJ(O) are thresholds in a(H). From now on we denote this set by 

~ := LJ eJ(O) = a(H0 (0)). 
jENd 
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For to E I;, we let St0 := { J E Nd; eJ(O) = to} and mt0 := #St0 be its multiplicity. To end 
this section, let us introduce the function p: ~-+ ~ related to the non-perturbed H by 

p(t) = L r ( dk)d. 
JEl'ld }{eJ(k)Sct} 27r 

Obviously, p(t) = 0 for t < e0 (0) = info(H). In an appendix, we shall prove that the 
function p(t) is analytic except near I;_ More precisely, we have 

Theorem 2.3. The function p is analytic except at I;_ Moreover, near any point t0 = 
eJ(O) E I;, there exists analytic functions f and g such that : 

p(t) = f(t - to)+ Y(t - to)g(t - to), 

for It - to I small enough with 

() " vol(sd-l) d 
g t ~t➔o L..,, -,======t . 

JES,0 d✓ det(v2 e{(O)) 

Here Y(t) is the Heaviside function and sd-I stands for the unit sphere in ~d-

3 Perturbed Hamiltonian 

In this section, we investigate the effect of the slowly varying potential on the spectrum of 
the non-perturbed operator H0 . First, we give a complete asymptotic expansion in powers 
of E of tr(\JJ f(H(E))) where f E C0 (~) and \JI is an L1(~t)-function. In particular, we 
obtain a Weyl type asymptotics with optimal remainder estimates of the counting function 
of eigenvalues of H(E) below the essential spectra. Finally, we give a complete asymptotic 
expansion in powers of E of the spectral shift function corresponding to ( H ( E), H). 

We suppose that V is regular, and there exists 6 ~ 0 such that : 

Va,/3 E Nd, :3Ca,/3 s.t SUPxEA)afa;v(x,y)I ~ Ca,;3(y)-0 • 

First, we derive a local trace formula. 

(12) 

Theorem 3.1. Assume (12) with 6 ~ 0, and let \JI be a regular function such that a;w E 

L1 (~t) for lal ~ 2d + 1 . Then for all f E Co(~), the operator (\JI f(H(E))) is trace class 
and the following asymptotics holds : 

with 

00 

tr (\JI f(H(E))) ~ L ajE-d+i, 
j=O 

a0 = -!" { \JJ(y)J'(t)p(t - V(O, y))dydt. 
JJRdxJR, 

(13) 

(14) 

Let N([a,bj;E) be the number of eigenvalues of H(E) in [a,b] c] - oo,e0 (0)[ counted 
with their multiplicities. 
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Corollary 3.2. Assume that V tends to zero at infinity, and let f E C0 (]-oo, e0 (0)[; IR). 
We have 

with 

In particular, 

00 

tr(f(H)) ~ Lbicd+i, 
j=O 

b0 = -!" { J'(t)p(t - V(O, y))dydt. 
Jffi.dxJR, 

(15) 

(16) 

~~[EdN([a,b];E)] = id [p(b-V(O,y))-p(a-V(O,y))]dy. (17) 

Theorem 3.3. Assume (12) with 6 > d. For f E C0 (IR) the operator f(H(E)) - f(H) is 
trace class. Moreover, the following asymptotics holds 

00 

tr(f(H(E)) - f(H)) ~ L CjE-d+j (18) 
j=O 

with 

c0 = fr { f'(t)(p(t) - p(t - V(O, y))) dydt. 
Jffi.dXJRt 

(19) 

The above theorem, enables us to define the spectral shift function f(·, E) E V'(IR), 
related to the operators H(E) and H (see (1)). Theorem 3.3 tells us that f(·, E) converges 
to f (p(t) - p(t- V(O, y))dy in the sense of distribution. Under a non-trapping condition, 
the following result gives a pointwise asymptotic expansion in powers of E oft(·; E). 

Theorem 3.4. Fix>.> e0 (0) with>.(/. {e1(0), e2 (0), ... }, and assume that 2 

k · '\lej(k)-y · '1yV(O,y) 2". c > 0 in {(y,k) E IR2d;ej(k) + V(O,y) = >.}. (20) 

There exists TJ > 0 such that the fallowing complete asymptotic expansion holds uniformly 
on>. E]>. - TJ, >. + TJ[: 

with 

00 

((t,E) ~ LKj(t)E-d+j, 
j=O 

Ko(t) = J (p'(t) - p'(t - V(O, y)))dy. 

4 Effective Hamiltonian 

(21) 

We need some basic result about pseudo-differential operators with operator-valued sym­
bol (see [14] and the references cited therein). We shall consider a family of Hilbert space 
Ax, X = JR2d satisfying : 

Ax= Ay, 1::/X, YE IR2d, (22) 
-------------

2 By (4), this assumption is satisfied under the assumption : -y • v'yV(O,y) 2:: 0 and -y • v'yV(O,y) > 0, on {y E 
JRd; V(O, y) = >. - e1 (0)}. 
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there exist NE N and C > 0 such that for all u E Ao and all X, YE JR2d we have 

(23) 

Notice that (47) means that only the norm of Ax depends on X, not on the space itself. 
Let Bx be a second family with the same properties. We say that p E C00 (JR2d; £(Ao, B0 )) 

belongs to the symbol class S0 (JR2d; £(Ax, Bx)) if for every a E N2d there exists Ca such 
that 

(24) 

If p depends on a semiclassical parameter c and possibly on other parameters as well, we 
require (24) to hold uniformly with respect to these parameters. For £-dependent symbols, 
we say that p(y, k; £) has an asymptotic expansion in powers of£ , and we write 

p(y, k; E) ~ LPi(Y, k)Ej in s0 (JR2d; £(Ax, Bx)) 
j 

if for every NE N, cN-l (p(y, k; £) - "5:,f=oPi(Y, k)£i) E S0 (JR2d; £(Ax, Bx)). 
We can then associate to p an E-pseudodifferential operator 

w( . ) ( ) _ ff ~(y-t)k (y + t . ) ( ) dtdk p y,EDy,E u y - e p 2 ,k,E u t (21rE)d' u E Ao. 

Here we use the Weyl quantization. Similarly to the scalar case, the following results 
hold. 

Theorem 4.1. Let p E S 0 (JR2d;£(Ax,Bx)) where Ax,Bx satisfy (47) and (48) then 
pw(y, EDy, E) is uniformly continuous from S(JRd; Ao) into S(JRd; B0 ). 

Theorem4.2. Assume Ax= Ao andBx = B0 forallX E JR2d. Ifp E S 0 (JR2d;£(A0 ,B0 )) 

then pw(y, EDy; E) is bounded from L 2(JRd, Ao) into L 2(JRd, B0 ). 

Let Cx be a third Hilbert space which satisfies (47), (48). 

Theorem 4.3. Letp E S0 (JR2d;£(Bx,Cx)), q E S 0 (JR2d;£(Ax,Bx)). Then 

pw(y, EDy) o qw(y, EDy) = rw(y, EDy; E), 

where r is given by 

4.1 Grushin problem: brief description 

(25) 

In this paragraph we recall the basic results about Grushin problem. Let 1i1, 1i2 and H,3 
be three Hilbert spaces, and let P E £(1i1, 1i3 ) be self-adjoint. Assume that there exist 
R+ E £(1i1, 1i2) and R_ E £(1i2, 1i3 ) such that the following operator 

( P-z R_) 
P(z)= R+ 0 :1i1X1i2 ➔ 1i3X1i2 
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is bijective for z E n. Here n is an open bounded set in C. Let 

be its inverse. We refer to the problem P(z) as a Grushin problem and the operator Eetr(z) 
is called effective Hamiltonian. Notice that, an effective Hamiltonian is a Hamiltonian 
that acts in a reduced space and only describes a part of the eigenvalue spectrum of 
the true Hamiltonian P. Morally, effective Hamiltonians are much simpler than the true 
Hamiltonian and hence their eigensystems can often be determined analytically or with 
little effort numerically. 

The following useful properties (relating the operator P and its effective Hamiltonian) 
are consequences of the identities£ o P = I and Po£=/: 

(P - z) is invertible if and only if Ectr(z) is invertible, 

dimker(P - z) = dimker(Eerr(z)), 

(P - z)-1 = E(z) - E+(z)E;rl(z)E_(z), 

E;;i/(z) = -R+(P - z)-1 R_. 

(26) 

(27) 

(28) 

(29) 

The last two equalities hold for all ';sz =/= 0. On the other hand, since z f--t (P - z) is 
holomorphic, it follows that the operators E(z), E±(z) and Eetr(z) are also holomorphic 
in z En. Moreover, we have 

(30) 

This identity comes from the fact that R± are independent of z. 

5 Spectral Reduction to an E-pseudodifferential operator 

Throughout this section we assume that Vis independent on x. The proof of the general 
case is quite similar with minor modifications (see Remark 6.2). Fix an interval I= [a, ,8], 
and set 

1[J = { J E Nd; eJ(k) :=:; ,8 + IIVlloo}-

According to Theorem 2.1 and Corollary 2.2, eJ(0) (respectively eJ(k)) tends to in­
finity as III -t oo (respectively lkl -t oo). Therefore 1[J is finite. In what follows, 
(W 1 (·, k), · · · , \_{IN(·, k)) denotes the family (W J(·, k))JEU, where N = #1U. 

To shorten notation, we omit the index din nd and Ad. For k E JR:.d, let 1l11.,k = 1l11. be 
the Hilbert space with k-dependent norm: llull;..,k = llull1-2(11.) + lkl 4 llull;,2(11.)· We denote 
by Cf: the space CN equipped with norm (1 + lkl 2)1 · lcN-

By the change of variable y f--t y/E, the operator H(E) is unitarily equivalent to 

where 
d 

H1,o := L D;; + (EDy; + µjxj)2. 
j=l 

(31) 
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Let G(y, k) = H0(k) + V(y) be the linear bounded operator from 1-iA into L2 (A), where 
H0(k) is given by (3). Obviously, GE S0 (IB.2d; .C(1iA,k, L2 (A)). Thus, by quantizing G we 
have 

G(y, EDy) = H1. 

More precisely, H 1 can be viewed as an E-pseudodifferential operator on y with operator 
valued symbol G(y, k). 

Fork E IB.d, and NE N*, define R+(k) : L2 (A) ➔ CN, R_(k) = Rt(k) : CN ➔ L2 (A) 
by 

N 

R_(k)(c1,··· ,cN) = I:c/Jfi(·,k). 
j=l 

According to Corollary 2.2 the family (\Jf J(·, k))JENd is an orthonormal basis in L2 (A). 
Hence, a simple computation yields 

R+(k)R_(k) = h:F, 
N 

R_(k)R+(k)u = I:(u, \Jfi(·, k))\Jfi(·, k) =: IINu, \/u E L2 (A). 
j=l 

(32) 

The following proposition reduces the spectral study of the operator G(y, k) : 1-iA,k ➔ 
L2 (A) near the energy z, to the study of an N x N-square matrix Eeff(Y, k, z). 

Proposition 5.1. Fix a bounded interval I. There exists NE N* such that for all z E J 
the operator 

( ) __ (G(y, k) - z R_(k)) . N 2(A) N 
Py, k .- R+(k) 0 . 1-iA,k x c -+ L x ck, (33) 

is bijective with bounded two-sided inverse 

(34) 

Here cf;;(y, k, z) = (G(y, k) - z)-1(1-IIN) and Eeff(Y, k, z) is the square diagonal matrix 
(z - ej(k) - V(O,y))l\j)i'.:'.i,j'.:'.N· Moreover 

PE s0 (IB.2d; .C(1iA,k x cN; L2(A) x cf)). (35) 

Proof. By construction, we have 

eJ(k) + V(y) - z 2='. c > 0, 

uniformly for (z, k,y) E J x IB.2d and J (j.1U. Thus, the operator 

(G(y,k)-z)-1(1-IIN): L2 (A) ➔ 1-iA,Y, 

(36) 
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is well-defined and uniformly bounded on (z, y, k) E J x ~ 2d. Using (32), an easy compu­
tation shows that P(y, k) o E(y, k, z) = I and E(y, k, z) o P(y, k) = I. On the other hand, 
it follows from (7) that (y, k) ---+ R_(k) E S0 (~2d; .C(CN; L2 (A)) and (y, k) ---+ R+(k) E 
50(~2d; £(11,A,k; c_N)) 

□ 

Proposition 5.2. The operator 

is bijective with an inverse 

uniformly bounded with respect to z E J and E small enough. Moreover, E(z; E) depend 
holomorphically on z, and E(y, k, z; E) has an asymptotic expansion in S0 (~2d; £(L2 (A) x 
Cf; HA,k x CN)), i.e., 

E( kz·E)=(E(y,k,z;E) E+(Y,k,z;E))~~E( kz)Ej 
Y, ' ' E (y k z· E) E (y k z· E) ~ 1 Y, ' · - , , , eff , , , j=O 

(38) 

In particular Eeff(y,k,z;E) ~ "£~0 Eeff,j(y,k,z)Ei in S0 (~2d;,C(Cf;CN)). The leading 
terms Ea(Y, k, z) and Eeff,o(Y, k, z) are given by Proposition 5.1, i.e., 

Ea(Y, k, z) = E(y, k, z; 0) and Eeff,o(Y, k, z) = Eeff(Y, k, z; 0). 

Proof. The fact that P can be viewed as an E-pseudodifferential operator valued symbol 
P(y, k) and Theorem 4.3 show that 

(39) 

where R(y, k, z; E) ~ "£~0 Ri(Y, k, z)r) in s0 (~2d; £(L2 (A) x c_N; L2 (A) x CN)). It follows 
from Theorem 4.2 that Rw(y, EDy, z; E) is uniformly bounded for z E J and IEI ~ 1. Thus, 
for E small enough the right hand side of (39) is invertible. On the other hand we know 
that if P = pw(y, k, E) is an invertible E-pseudodifferential with p(y, k; E) ~ L~oPi(Y, k)Ei 
then its inverse qw is also an E-pseudodifferential operator with q(y, k; E) ~ "£~0 qi(Y, k)Ei. 
Consequently, Ew(y, EDy, z; E) := Ew(y, EDy, z) o (I+ ERw(y, EDy, z; E))-1 satisfies all the 
desired properties. □ 

Remark 5.3. Let E0 (z) be the operator given by Proposition 5.2 corresponding to the 
non-perturbed operator H0 (i.e., V = 0). Since P(y, k) = P(k) is y-independent, we have 

£ ( ) _ (GN(EDy, z) Ei(EDy) ) 
0 z - E9-(EDy) E2ff(EDy, z) ' 

where Ei(k) = R_(k), E9-(k) = R+(k) and E2ff(k, z) = (z - ej(k))<5ij)i<:i,j<:N 
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6 Proof of the main results 

6.1 Proof of Theorem 3.1 

In the following we fix a bounded interval I containing supp(J), and we apply Propo­
sition 5.1 and Proposition 5.2 on I. For the simplicity of the notation we ignore the 
dependence of E, E+, E_, Eeff on (y, k, z, E). We denote by E0 , Ei, E~, E2ff the operators 
given by Proposition corresponding to We shall sometimes use the same symbol for an 
E-pseudododifferential operator and for its Weyl symbol. 

Applying formulas (28) and (29) to Proposition 5.2 we obtain 

(H1 - z)-1 = E - E+EclY1 E_, 

OzEeff = E_E+. 

(40) 

(41) 

Assume that f E C0 (1R) is real-valued, we can construct an almost analytic extension 
J E C0 (C) off satisfying the following properties (see [14]) : 

](z) = f(z), 'vz E lR, 

for all N E N there exists CN such that 

Let H be any self-adjoint operator, the Dynkin-Helffer-Sjostrand formula reads [14]: 

f(H) = -~ J °!z (z)(z - H)-1 L(dz), with z = x + iy, 

which yields 

Here L(dz) is the Lebesgue measure on the complex plane <C ~ lR;,Y. 

(42) 

(43) 

(44) 

( 45) 

Inserting (40) in the right hand side of (45) and using the fact that z--+ Ew(y, EDy, z; E) 
is holomorphic, we get 

(46) 

Here and in what follows we use the fact that J?Jz](z)K(z)L(dz) = 0 provided that K(z) 
is holomorphic in a neighborhood of supp(i). We recall that the principal symbol of Eeff 
is given by 

Eeff,o(Y, k, z) = ((z - V(y) - ei(k))<5;,j)i5c;,j5cN, 

and that ei(k) ~ lkl 2 at infinity from (6) in Theorem 2.1. For j = 1, • • • , N, let ei(k) be 
a regular function such that ei(k) = ei(k) for lkl large enough and 

lz - V(y) - ei(k)I 2: ca(l + lkl 2), 'v (z, y, k) E suppj x lRd x lRd. (47) 
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Put 
Eeff(Y, k, z; E) = Eeff(Y, k, z; E) + Eeff(Y, k, z) - Eeff(Y, k, z), 

where Eeff(Y, k, z) = ((z-V(y)-ej(k))6;,j)i:c;;,j:c;N- We conclude from (47) that Eeff(Y, k, z; E) 
is elliptic for E small enough, hence that Eeff := E;:'ff(y, EDy, z; E) is invertible and holo­
morphic for z E supp(f), and finally that 

Combining the above equality with (46), we obtain 

(48) 

Let W be as in Theorem 3.1. Writing Eclf1 - Eclf1 = Eclf1(Eeff - Eeff)Eclf1 and using the 
fact that Eeff - Eeff = ((Ej(k) - Ej(k))i:c;i,j:C:N has a compact support, we deduce that the 

operator W ( E+E;;rl(Eeff - Eeff)Ecl'f1 E_) is trace class. Thus, by using the cyclicity of the 
trace we get 

tr( w f(H1)) = -¾ J :: (z)tr( E;;£l - E;;£l)E_ WE+ )L(dz), 

= tr( -¾ J ::(z)Eclf1E_WE+L(dz)). 

(49) 

In the last equality we have used the fact the operator E;;;/ E_ WE+ is holomorphic on 
z E supp(l). 

According to Proposition 5.2 and Theorem 4.3 the operator A = E_ w E+ is an E­

pseudodifferential operator on L2(JRd; CN) with A= Aw(y, EDy, z; E) where A(y, k, z; E) ~ 
L,1=o Aj(Y, k, z)Ei in S 0 (JR2d; L(CN; CN)). Moreover, from Proposition 5.1 we have A0 (y, k, z) = 
w(y). 

The proof of the following lemma is similar to the one in [10]. 

Lemma 6.1. Fix 6 E]O, 1/2[. There exists r E S0 (JR2d; L(CN, CN) such that r(y, k; E) ~ 
L,1=o ri(Y, k)Ei and 

rw(y,EDy;E) = -~ r aat(z)E;;;/E_WE+L(dz), 
7r }l"szl?.<" z 

with 

We now turn to the proof of Theorem 3.1. If we restrict the integral in the right hand 
side of (49) to the domain IS<zl ::::; E0 then we get a term 0(E00 ) in trace norm. Here 

we have used the fact that l:½(z)I = O(l<szlM) for all MEN (see (43)). If we restrict 
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our attention to the domain l8<zl 2: E0 then by Lemma 6.1 we get a complete asymptotic 
expansion in powers of E, which yields (14). To finish the proof let us compute a0 . We 
have 

~ dydk 1 of _1 dydk N ( ~ ) 
a0 = J J tr(r0 (y, k)\21r:)d = ~ J J -; J oz (z)(z - ei(k) - V(y)) L(dz) w(y\21r:)d. 

Here fr stands for the trace of square matrices. Since lDz-1- = 6(· - zo), it follows that 
7r z-zo 

-¾ J U'(z)(z - ej(k) - V(y))-1 L(dz) = f(ej(k) + V(y)). Consequently, 

N '°' ff dydk '°' ff dydk 3 a0 = ~ f(ej(k) + V(y)) (21r)d = 7 f(ej(k) + V(y)) (21r)d" 

Combining this with the obvious equality 

L J f(ej(k) + V(y)) ( dk)d = - L J f'(t) 1 dkdt = -! f'(t)p(t - V(y))dt, 
j 27r j e1(k)<:::t-V(y) 

we get (14). 

6.2 Proof of Corollary 3.2 

Let f be as in Corollary 3.2, and fix T/ > 0 small enough such that supp(f) C ]-oo, E1 (0)­
TJ]. Put w'1 := {y E JRd; ::l(j, k) EN* x ]Rd s.t. ej(k) + V(y) E supp(f)}. Since V tends to 
zero at infinity and ej(k) 2: ej(0) for all j, k, it follows that w'1 is a compact set. 

Let V be a regular function such that V(y) E [-TJ/2,rJ/2] for ally E JRd and V(y) = 
V(y) for IYI large enough. Put 

Eeff(Y, k, z; E) = Eeff(Y, k, z; E) + (V(y) - V(y))IN. 

By construction of V, we have 

lz - ej(k) - V(y)I 2: C(l + lkl 2), 

uniformly on (j, y, k) EN* x JR2d and z in small complex neighborhood of supp(l). 
Hence, the principal symbol Eeff(Y, k, z) = ((z - V(y) - ej(k))b;,j)i~i,j~N of Eeff is 

elliptic. We can now proceed analogously to the proof of ( 48), and obtain 

1 jol -1 ~-1 f(H1) = -; az(z)E+(Eeff - Eeff )E_L(dz). (50) 

Let 'I/; E C0 (JRd) be equal to one in a neighborhood of supp(V - V = Eeff - Eeff). 
Writing E+(Eclf1 - E;tl )E_ = E+Eclf1 (Eeff - Eeff )Eclf1 E_ and using the fact that supp(l -
'l/;) n supp(V - V) = 0, we deduce from (50) and (25) that 11(1 - 'l/;)f(H1)lltr = O(E'X)). 
Consequently, 

tr(f(H1)) = tr('l/;J(H1)) + O(E'X)), (51) 
------------

3 We recall that for j \t {1, ... , N} e1 (k) + V(y) \t supp(f) for (y, k) E JR.d x JR.d_ 



142

which together with Theorem 3.1 yields (3.2) and (16).4 

It remains to prove (17). For every small rJ > 0, choose fri,fri E C0 (IB.; [O, 1]) with 

l[a+r,,b-r,] :::; fri :=:; l[a,b] :::; fri :=:; l[a-r,,b+r,] · 

It then suffices to observe that 

tr [fri(H(E))]:::; N([a,b];E):::; tr [fri(H(E))], 

which yields 

lim lim ((21rE)dtr [!ri(H(E))]) :::; lim(21rE)d N([a,, b]; TJ) :::; lim lim ((21rE)dtr [!ri(H(E))]), 
r,\,O h\,O - ,\,0 r,\,O ,\,0 

and to apply Theorem 3.1. 

6.3 Proof of Theorem 3.3 

We only mention the steps in the proof of Theorem 3.3 which are the same as in the proof 
of Theorem 3.1. Fix z0 < inf(a(Hj)) (j = 0, 1), and let m > d/2+ 1. From the assumption 
(12) the operator (H1 - z0)-m - (Ho - z0)-m is trace class. Therefore, f(H1) - f(H0 ) is 
trace class for all f E C0 (IB.). In contrast to the proof of Theorem 3.1, we don't need to 
introduce the function W, since f(H1) - f(Ho) is trace class. 

As in the proof of (46), Proposition 5.2 and Remark 5.3 yield 

f(Ho) = -~ J :: (z)Et(E~ff)-1 E~L(dz), 

which together with ( 46) gives 

tr (f(H1) - f(Ho)) = tr (-~ J :: (z) [ EtEeff -l E~ - Et(E~ff)-1 E~] L(dz)) , (52) 

Next, analysis similar to that in the proof of (49) shows that 

tr (f(H1) - f(Ho)) = tr (-~ J :: (z) [Eeff -l E~Et - (E~fff1 E~Et] L(dz)) . (53) 

According to (30), Proposition 5.2 and Remark 5.3, we have 

OzEeff = E~Et, OzE~ff = E~Et. 

Combining this with (54), we obtain 

(54) 

We now apply the same arguments after Lemma 6.1, with (49) replaced by (54), to obtain 
Theorem 3.3. 

4Notice that the right hand side of (51) is independent modulo 0(,00 ) of the choice of ,j,, since ,j, = 1 near the 
characteristic set :E.,., of Eeff. 
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6.4 Proof of Theorem 3.4 

The starting point is formula (54). Let 0 and g be C 00-functions with compact support 
such that 0 = l near zero, g = l on ].\ - 7/, ,\ + rJ[ and supp(g) c].\ - 27], ,\ + 27][. We 
choose rJ > 0 small enough so that (20) holds on].\ - 27], ,\ + 27][. Applying (1) and (54) 
to the function f(x) = g(x)(F,-10)(.\ - x), we obtain 

- (((·;E),g(·)(F,-10)(.\- ·)) = tr (g(H1 )(F,-10)(.\- H1) - g(Ho)(F,-10)(.\- H0)) 

= tr (-~ J !;(z)(F,-10)(.\ - z) [Ecff -iazEcff - (E2ff)-1ozE2ff] L(dz)). 

(55) 
Here g is an almost analytic extension of g, and F,-1 is the semiclassical Fourier transform 
of 0: 

(F,- 10)(T) = -( 1 ) r e~tT0(t)dt. 
27fE }WI. 

According to Proposition 5.2, Eeff is an E-pseudodifferential operator. On the other 
hand, the assumption (20) means that the classical symbol corresponding to Eeff is non­
trapping5. The asymptotic expansion with respect to E of an integral similar to the 
right-hand side of the second equality in (55) have been studied by many authors (see 
[1, 12, 13, 14, 28] and the references given therein). In particular, under the assumption 
(20), it follows from the arguments in the proofs of Theorems 2.5 and 2.6 in [12] (see also 
[1]) that the left-hand side of has a complete asymptotic expansion in powers of E, and 

uniformly for TE].\ - 27], ,\ + 27][. This implies (21). The explicit formula of ""o(t) follows 
from (19). 

Remark 6.2. We will now show how to treat the case when V depends on x. The only 
modification to be made is the proof of Proposition 5.1. Fix m E N*. By Taylor's formula 
we have 

m Elal aa 
V(Ex, y) = V(0, y) + L aTxa fJxa V(0, y) + Em+10(1) =: V(0, y) + EW(x, y; E), (56) 

lal=l 

uniformly for (x, y) End. Let P(y, k) and [(y, k, z) be the operators given in Proposition 
5.1 corresponding to the operator V(y) = V(0,y). Now, consider the Grushin problem 
related to G(y, k, E) = G(y, k) + EW(x, y, E) : 

-( ) _ (G(y,k,E)-z R_(k)) _ ( ) (w 0). irN 2(A) irN PY, k,, E - R+(k) O - PY, k +E O O . 1iA,k x ~ --+ L x ~k, 

5 A symbol (y, k) -+ A(y, k, z) E C(CN; rcN) is non-trapping at the energy z = zo if and only if there exists a scalar 
escape function GE c=(ffi.2d;ffi.) such that 

:JC > o BG . BA - BG . BA > C V(y k) with detA(y k zo) = 0 
' By Bk Bk By - ' ' ' ' 
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Since W(·, y, E) : 1-iA,k --t L2 (A) is uniformly bounded with respect to y E ~d and 
EE [O, 1], it follows from Proposition 5.1 that, for E small enough the operator 'P(y, k,, E) 
is bijective with bounded two-sided inverse 

~ . ._ GN(Y, k, z; E) E+(k, z, E) _ W 0 (~ ) [ ( ( ))]-1 £(y, k, z, E) .- E_(k, z, t) Eetr(Y, k, z; t) - £(y, k, z) I+ EE(y, k, z) 0 0 

(57) 
From (56) and the above equality it follows that, modulo O(Em+l ), E(y, k, z; E) has an 
asymptotic expansion in powers of E in S0(~2d; L(L2 (A) x Cf; 1-iA,k x c_N)). This gives 
Proposition 5.1 when V depends on (x, y). 

We can now proceed analogously to the proof of the case V = V(y). 

7 Appendix: Proof of Theorem 2.3 

Fix J = (j1 ,j2 , · · · ,jd) E N*d, and let eJ(k) = ei,(k1) + · · · + ejJkd) be one eigenvalue of 
the operator H0 (k). Set 

K(t) = f dk. 
J{kEffi.d;eJ(k)~t} 

Lemma 7.1. The function K is analytic in a neighborhood of~\ { eJ(O)}. 

Proof. Fix t0 -=I- eJ(O), and let c be a small positive constant such that VeJ(k) -=I- 0 when 
k E I;,(t0 ) := ( 71 (]t0 - s, t0 + s[). Without any loss of generality we may assume that 
fA, eJ(k) -=I- 0 for all k E I;,(t0). By the change of variable U: k f----t k = (eJ(k), k2 , ... , kd), 
we have 

r dk = r Jac(U- 1(k))dk, 
}{kE"E,(to); eJ(k)9} }{kEU("E,(to)); k1~t} 

where Jac(U-1(k)) denotes the Jacobian determinant of u-1. Clearly the right-hand side 
of the above equality is analytic. Combining this with the fact that J{kEffi.d\"E,(to); eJ(k) 9 } dk 
is constant fort near t0 , we get the lemma. □ 

Thus, the function p is analytic in a neighborhood of I;=~\ a(H0 (0)). The remainder 
of the proof of Theorem 2.3 is a simple consequence of the following lemma. 

Lemma 7.2. There exists an analytic function g with g(s) ~s➔o dJ::~~¥) sd such that 

for It- eJ(O) I small enough. Here Y(t) is the Heaviside function, and sd-l stands for the 
unit sphere in ~d. 

Proof. By Morse Lemma there exist a neighborhood V of k = 0, E > 0 and a local analytic 
diffeomorphism V: V --t B(O, E) satisfying V(k) = k + O(k2) such that 

1 
eJ o v-1(k) = eJ(O) + 2(V2eJ(O)k, k). 
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On the other hand, for It - eJ(0) I small enough we have 

{k E lRd; eJ(k) ::;; t} = {k E V; eJ(k) ::;; t}. 

Thus making the change of variable k = v-1 (~) and using polar coordinates, we obtain 

which yields the lemma since Jac(v-1 (rw)) = 1 + O(r). □ 

We now turn to the proofofTheorern 2.3. For t0 EI;, we let St0 := {J E Nd; eJ(0) = t0 } 

and mt0 := #St0 be its multiplicity. Writing 

(1) (2) 

It follows from Theorem 2.1 that '\heJ(k) = v\(ej, (k1) + • • • + eid(kd)) =/- 0 on I;ri(t0 ) for 
T/ small enough and (j1 , · · · ,jd) ff. Sto· Combining this with Lemma, we deduce that (1) 
is analytic for It - t01 small enough. Thus applying Lemma 7.2 to each term of (2) we get 
Theorem 2.3. 
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