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ASYMPTOTIC EXPANSIONS FOR THE MULTIPLE 
LAPLACE-MELLIN TRANSFORM OF LERCH ZETA-FUNCTIONS 

AND APPLICATIONS 

MASANORI KATSURADA, DEPT. MATH., FAC. ECON., KEIO UNIV. 
(.!l~~Utl::k"F · ;f\l;',lf"F~~ · ~"F~'¥'. · ttEB ~ml) 

ABSTRACT. Lets E IC be variable, a, A E lR parameters with a> 0, cp(s, a,.\) the Lerch 
zeta-function defined below, and cp*(s, a,.\) its slight modification obtained by extracting 
the only singularity at s = 1 (if A E Z) of the Hurwitz zeta-function ((s, a). We denote 
by (cp*)(m)(s,a,>-) for any m E Z the m-th derivative (with respect to s) if m 2'. 0, 
while the lml-th primitive (with its initial point at s + oo) if m S 0. It is shown in 
the present article that complete asymptotic expansions exist for the multiple Laplace­
Mellin transform (with respect to s) of ( cp*)(m) (s, a,.\) for any m E Z if a > 1, when the 
multivariate pivotal parameter z = (z1 , ... , zd) E ICd (of the transforms) becomes both 
small and large through an appropriate poly-sector (Theorems 5 and 6), which extends 
our previous results on one dimensional case (Theorems 1 and 2). Further consideration 
on the excluded singular part of ((s, a) at s = 1 is supplemented to establish complete 
asymptotic expansions for the Lapalce-Mellin transform of ((m)(s, a) (Theorems 7 and 8). 
A topic on complete asymptotic expansions for certain mean values of multiple zeta­
functions, which is positioned on a sligntly different direction of research, is discussed in 
the final section (Theorems 9-13). Several open problems, relevant to the present study, 
are to be posed along with the presentation of our results (Problems 1-5). 

1. INTRODUCTION 

Let s = a+ it be a complex variable, z = x + iy complex parameter, a and >. real 
parameters with a > 0, and write e(s) = e21ris throughout the article. The Lerch zeta­
function cp(s, a,>.) is defined by the Dirichlet series 

00 

(1.1) cp(s, a,>.) = L e(>.l)(a + l)-s (a= Res> 1) 
l=O 

and its meromorphic continuation over the whole s-plane (cf. [14][15]); this reduces to 
the exponential zeta-function (A(s) = e(>.)cp(s, 1, >.) if a= 1, to the Hurwitz zeta-function 
((s, a) if>. E Z, and hence to the Riemann zeta-function ((s) = (A(s) = ((s, 1) for>. E Z. 
Let Oz(x) be the symbol which equals 1 or O according to x E Z or otherwise, and set 

(1.2) 
al-s 

'l/J(s,a) = -. 
s-1 
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The main object of study is a slight modification cp*( s, a, .X) of cp( s, a,>.), defined by 

{
((s, a) - aI-s if A E Z, 

cp*(s, a, .X) = cp(s, a, .X) - J2 (.X)'l/J(s, a)= 8 - 1 

cp(s, a, .X) if otherwise, 

(1.3) 

which removes the only (possible) singularity at s = 1. Let (cp*)(ml(s, a, .X) for any m E Z 
denote the m-th derivative (with respect to s) if m 2". 0, while the lml-th primitive (with 
its initial point at s+oo; see (2.3) below) ifm::; 0. We have shown in our previous study 
[7] [8] that complete asymptotic expansions exist for the Laplace-Mellin and Riemann­
Liouville transforms (with respect to the variables) of (cp•)(ml(s,a,.X) for any m E Z if 
a > 1, when the pivotal parameter z E C (of the transforms) tends both to O and oo 
through appropriate sectors (see Theorems 1-4). The principal aim of the present article 
is to show that similar expansions still exist for the multiple Laplace-Mellin transform 
of (cp*)(ml(s, a, .X) for any m E Z if a > 1, when the (multivariate) pivotal parameter 
z = (z1 , ... , zd) E (Cd becomes both small and large through an appropriate poly-sector 
(Theorems 5 and 6). 

It is seen from (1.3) that the original Hurwitz zeta-function ((s, a) = (*(s, a)+ 'l/J(s, a) 
(including the singularity at s = 1) is excluded from our initial consideration. It is in fact 
possible to modify our method to study asymptics for the Laplace-Mellin transform of 
the (excluded) singular term 'l/J(s, a); this makes up for establishing complete asymptotic 
expansions for (the restored) ((ml(s,a) (a> 1) and for {((s) - l}(m) with any m E Z 
(Theorem 7 and 8). 

The article is organized as follows. After preparing several necessary notations, we 
review our previous results in the next section. Section 3 is devoted to presenting our 
results on the asymptotics for the multiple Laplace-Mellin transform of (cp*)(ml(s,a,.X), 
while those for the ((ml(s, a) and {((s)- l}(m) are given in Section 4. In the final section, 
we discuss some results on complete asymptotic expansions for certain mean values of 
multiple zeta-functions. Several open problems, which are relevant to the present study, 
are to be posed along with the statement of our results (Problems 1-5). 

2. NOTATION AND PREVIOUS RESULTS 

Let I'(s) denote the gamma function, a and /3 complex numbers with positive real 
parts, f(z) a function holomorphic in the sector I arg zl < 1r, and write X+ = max(O, X) 
for any X E R We introduce the Laplace-Mellin and Riemann-Liouville (or Erdelyi­
Ki:iber) transforms of f(z), in the forms 

(2.1) 
1 {00 

,CM~;Tf(T) = I'(a) lo J(zT)T"'-1e-T dT, 

(2.2) ,Ca,/3 ( ) _ I'( a+ /3) {00 ( ) a-1 ( )/3-1 
R z;Tf T - I'(a)I'(/3) lo f ZT T 1-T + dT 

with the normalization gamma multiples, provided that the integrals converge; the factor 
Ta-I secures the convergence of the integrals as T ➔ o+, while e-T and (1 - T)!-1 have 
effects to extract the portions of f(z) corresponding to T = O(z). It is to be remarked 
here that an overview of asymptotic results on the integral transforms of various zeta­
functions is given in [7, Sect. 1][8, Sect. 1]. Next let f(ml(s) (m E Z) for any entire 
function f(s) denote its m-th derivative if m 2". 0, while its lml-th primitive if m :S 0, 
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defined inductively by 

1s 1+00 Jtml(s) = Jtm+1l(w)dw = - Jtm+il(s + u)du, 
s+oo 0 

(2.3) 

subject to convergence, where the path of integration is the horizontal half-line. 
It has been shown in our previous study [7] [8] that complete asymptotic expansions 

exist for 

(2.4) £M~;Ac/J*)(m)(s+T,a,>.) = rta) fo 00
(cp*)(ml(s+zT,a,>.) 

X Ta-Ie-T dT, 

(2.5) -n ra,/3(,1,*)(m)( + ') _ I'(a + /3) {00 (,1,*)(m)( + ') 
,u..,z;T 'f' s T, a," - I'(a)I'(/3) Jo 'f' s ZT, a," 

X Ta-l(l - T)!-1dT 

with any m E Z if a > l, together with those for their iterations, when both z ---+ 0 and 
z ---+ oo through appropriate sectors. We introduce here the Hadamard type operator 
with the initial point at s + oo, defined for any (r, s) E (C2 by 

1 1(0+) 
(2.6) I:O,J(s) = I'(r){e(r) _ l} 00 f(s + z)zr- 1dz, 

if f(s + x) belongs to the class xl-Rer L;,[O, +oo[ (as a function of x). Here the path of 
integration is a contour which starts from oo, proceeds along the real axis to a sufficiently 
small J > 0, encircles the origin counter-clockwise, and returns to oo; arg z varies from 0 to 
21r along the contour. The auxiliary zeta-function cp;(s, a,>.) is defined for any (r, s) E (C2 

and for any a, >. E ffi; with a > l by 

(2.7) 

which is crucial in describing our results, and also of some interests in itself, since it 
interpolates the generalized Euler-Stieltjes constants rm(a, >.) (associated with the Lerch 
zeta-function), defined by 

(X) 

(o < is - 11 < 1) 
m=O 

(cf. [3, p.41, 1.8(1.123)]), when a> l as 

rm(a, >.) = (-lr { c/J*_m(l, a,>.)+ logm a} 
m. 

(m = 0, 1, ... ). 

Theorem 1 ([8, Theorem 1]). Let a be any complex number with Re a > 0, a and >. 
real parameters with a > l, and m any integer. Then for any complex s and any integer 
N :::=: 0, in the sector I arg zl < 1r we have 

(2.8) £M~;Ac/J*)(m)(s + T, a,>.)= (-1r ~ (-lt/a)n c/J*-n-m(s, a, >.)zn 
n. 

n=O 

+ R~jv(s, a,>.; z). 

Here the reminder R~;N(s, a,>.; z) satisfies the estimate 

(2.9) 
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as z --+ 0 through I arg zl ::; 1r - T/ with any small T/ > 0, where the implied O-constant 
depend at most on a, a, a, m, N and T/· 

Theorem 2 ([8, Theorem 2]). Let a, >.. and m be as in Theorem 1, and (3 any complex 
number with Re (3 > 0. Then for any complex s and any integer N 2'. 0, in the sector 
I arg zl < 7r we have 

(2.10) L'.M~;Ac/>*)(ml(s + T, a,>..)= (-1r ~ (-1~/a)n 1:+n-m(s, a, >..)z-a-n 
n=0 

+ R;;,~(s, a,>.; z). 

Here the reminder R~-N(s, a,>..; z) satisfies the estimate 

(2.11) 

as z --+ oo through the sector I arg zl ::; 7r - T/ with any small T/ > 0, where the implied 
O-constant depends at most on a, a, a, m, N and T/· 

The case (s, z) = (a, it) E ~ x i~ of Theorem 2 yields the following result. 

Corollary 2.1 ([8, Corollary 2.1]). Let a, a, ,.\ and m be as in Theorem 1. Then for any 
real a and for any N 2'. 0 we have the asymptotic expansion, as t --+ ±oo, 

(2.12) L'.Mf;Ac/>*/ml(a + iT, a,..\) 

= (-1r ~ (-l)n/a)n 1:+n-m(a, a, ..\)(etsgnt)1ri/21t1)-c,-n + O(ltl-Rea-N)' 
n. n=0 

where the implied O-constant depends at most on a, a, ..\, a, m and N. 

The following Theorems 3 and 4 give the complete asymptotic expansions for the 
Riemann-Liouville transform RL'.~;'!(c/>*)(m) (s + T, a,..\) as z --+ 0 and z --+ oo respectively. 

Theorem 3 ([8, Theorem 3]). Let a, ,.\ and m be as in Theorem 1, and (3 complex number 
with Re (3 > 0. Then for any complex s and any integer N 2'. 0, in the sector I arg zl < 1r 

we have 

RL'."',(3(,-1..*)(m)(s+T a..\)= (-l)m~ (-lt(a)n,-1..* (s a >..)zn 
z;T 'I' , , L...., (a+ f3)nn! 'l'-n-m , , 

n=0 
(2.13) 

+ R';;,;N(s, a,..\; z). 

Here the reminder R;;,;N(s, a,>..; z) satisfies the estimate 

(2.14) 

as z --+ 0 through the sector I arg zl ::; 1r - T/ with any small T/ > 0, where the implied 
O-constant depends at most on a, a, a, m, N and T/· 

We write, for ah, (3k E IC (k = 1, ... , m; k = 1, ... , n), 

r(al, ···,am) = TI;:1=1 I'(ah) 
/31, · · ·, f3n n;=l I'({Jk) ' 

and set c:(z) = sgn(argz) for any z E IC in the sectors I argzl > 0. 
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Theorem 4 ([8, Theorem 4]). Let a, /3, a, >. and m be as in Theorem 3. Then for any 
complex s, and any integers Ni (j = 1, 2) with N 1 2". l Re /3 J and N 2 2". l Re a J, in the 
sectors O < I arg zl < 1r we have 

(2.15) R.C~;'!(efJ*)(ml(s + T, a,>.) 

= (-1r r(°'; /3) e-E(z)1ria ftl (-lr(a:i(l - f3)n 

X c/J:+n-m(s, a, >.)(e-E(z)1riz)-a-n + Ri::,N, (s, a,>.; z)} 
+ (-lrr(°' ! /3)ec(z)1ri{,ft1 (-lr(/3:i(l - a)n 

X c/J;+n-m(s + z, a, >.)z-{,-n + R;:-;;.,N2 (s, a,>.; z)} · 

Here the reminder RJ2 •-;;, N (s, a,>.; z) (j = 1, 2) satisfy the estimates 
, , J 

(2.16) 
Ri::,N, (s, a,>.; z) = O{ (ltl + 1rax(O,l2-crJ)lzl-Rea-N1 }, 

R;::,N2(s, a,>.; z) = o{ (It+ YI+ 1rax(O,l2-cr-xJ)1z1-Re{,-N2} 

as z---+ oo through the sector TJ :S: I arg zl :S: 7r -TJ with any small TJ > 0, where the constant 
implied in the first O-symbol depends at most on O", a, /3, a, m, N1 and TJ, while that in 
the second at most on O", x, a, /3, a, m, N2 and TJ. 

Remark. Let 1F1( i; Z) and U(K,; v; Z) denote Kummer's confluent hypergeometric func­
tions of the first and second kind defined by (4.1) and (4.2) below respectively. Then 
Stokes' phenomenon for confluent hypergeometric functions, which is revealed in the con­
nection formula 

(2.17) 

for I arg ZI > 0 ( cf. [2, p.259, 6. 7(7)][13, p.265, (10.5)]), in fact effects splitting the shape 
of the asymptotic expansions into the two sectors O < I arg zl < 1r. 

The case (s, z) = (O", it) E lR x ilR of Theorem 4 yields the following result. 

Corollary 4.1 ([8, Corollary 4.1]). Let a, >., a, /3, m be as in Theorem 4. Then for any 
real O", and for any integers Ni (j = 1, 2) with N1 2". l Re /3 J and N2 2". l Re a J, we have 



84

MASANORI KATSURADA 

the asymptotic expansion, as t --+ ±oo, 

(2.18) R£ff (cp*/ml(a + iT, a,>.) 

= (-l)mr(o: + (3)e-(sgnt)nio:{~1 (-lt(o:)n(l -f3)n,1_, ( a,\) 
(3 L.....,, I 'l'a+n-m a, , 

n=O n. 

X (e-(sgnt)ni/21t1)-o:-n + O(ltl-Reo:-N,)} 

+ (-lr r(a ! (3) e(sgnt)ni/3 rtl (-lt(f3~(1 - a)n c/>~+n-m(a + it, a,,\) 

X (e(sgnt)ni/21t1)-f3-n + O(ltlmax(O,l2-o-J)-Ref3-N2 ) }, 

where the constant implied in the first O-symbol depends at most on a, a, (3, a, m and 
N1, while that in the second at most on a, a, (3, a, m and N2. 

We pose here the first problem on the Laplace-Mellin and the Riemann-Liouville trans­
forms of Lerch zeta-functions. 

Problem 1. Deduce the asymptotics for lcJ>(ml(a + iT, a, >.)1 2 (m = 0, 1, ... ), under ap­
plication of the operators £Mf.7 and R,Cff, as t --+ ±oo, and further for the product 
cp(mil(s1 + T, a, >.)cp(m2 ) (s2 - T, a',-,\) (m1 , :n2 = 0, 1, ... ) apart from the poles, under ap­
plication of ,CM~;T and R,C~;'f, as both z --+ 0 and z --+ oo through appropriate sectors. 

3. ASYMPTOTICS FOR THE MULTIPLE LAPLACE-MELLIN TRANSFORM 

To describe our results, several notations are prepared in what follows. 
We set 1 = (1, ... , 1), for any d-dimensional complex vectors x = (x1 , ... , xd), y = 

(Y1, ···,Yd), 

and (x) = (x, 1) = X1 + ... + Xd, 

and write Xd-l = (.1:1, ... 'Xd-1) E ccd-l and further if xd =I= 0, 

Xd-1 = (Xl Xd-1) ' ... ' . 
Xd Xd Xd 

Let o:, (3 = ((31 , ... , (3d) and 'r be complex parameters. The (fourth) Lauricella hypergeo­
metric function of d-variables Xj (j = 1, ... , d) is defined by the multiple series 

00 

for all o:, (3j E (('. (j = 1, ... , d) and 'r E (('. \ Z:c;o, where the series converges absolutely 
in the poly-disk lxjl < 1 (j = 1, ... , d) (cf. [16, p.228, 8.6(8.6.4)]); this is continued to a 
one-valued holomorphic function of ( o:, (3, 'r, x) for all ( o:, (3, 'r) E (Cd+l x (CC\ Z<o) and in 
the sector I arg(l - Xj) - 'Pol< Ir/2 (j = 1, ... ,d) with any fixed 'Po E [-Ir/2,;./2]. The 
notations 

and 
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for k = (k1, ... , kd) E (Z:,:o)d and x = (x1, ... , xd) E Cd allows us to rewrite FiJd) in a 
more concise form 

F (d)(a,{3_ ) =" (a)(k)(f3)k k 
D 'X L.., ( ) kl X . 

"( k:0:0 "( (k) . 

Our chief concern in this section is a multiple extension of the Laplace-Mellin transform 
of (cp*)(ml(s + (T), a,..\), in the form 

(3.1) LM~;r(cp*)(m)(s+(T),a,..\)=r() 1 I'() f"°. .. f'xo(cp*)(m)(s+(z,T),a,..\) 
a1 · · · ad lo lo 
0:1-l °'d-1 -T1-···-Tdd d 

X T1 · · · Td e T1 · · · Td, 

where a= (a1, ... ,ad) E cd with Reaj > 0 (j = 1, ... ,d) and z = (z1, ... ,zd) E ed. 
Let (u) for any u E ~ denote the vertical straight path from u - ioo to u + ioo. The 

following Theorem 5 gives a complete asymptotic expansion in the ascending order of Zd 
as Zd ---+ 0 through the sector I arg Zd - Bo I < 7f /2 with any fixed Bo E [-1r /2, 7f /2], while 
the remaining parameter zd-l moves within the poly-sector I arg Zj - Bo I < 1r /2 upon 
satisfying Zj ::c:: zd (j = 1, ... , d - 1). 

Theorem 5. Let a, ..\ and m be as in Theorem 1, a = (a1 , ... , ad) any complex vector 
with Reai > 0 (j = 1, ... , d), and B0 any angle fixed with B0 E [-1r/2, 1r/2]. Then for any 
complex s and any integer N 2 0, in the poly-sector I arg Zj - Bal < 1r /2 (j = 1, ... , d) we 
have 

(3.2) LM~;Ac/J*)(ml(s + (T), a,..\) 

= (-l)m ~ (-lr((a))n p(d-1) (-n, O'.d-1. 1 _ Zd-l),1.• ( ..\) n 
L.., I D ( ) ' '1'-n-m s,a, zd 
n=O n. a Zd 

+ R";;,,N(s, a,..\; z). 

Here the reminder R";;,,N(s, a,..\; z) is expressed as 

(3.3) R+ (s,a,..\;z)= (-l)_m { r((a)+w,-w)p(d-1)(-w,ad-l;l-Zd-1) 
m,N 21ri l(ut) (a) D (a) Zd 

X c/J*_w-m(s, a, ..\)z'£dw 

with a constant ut satisfying max(- Re(a), N - l) < ut < N. Further if z is in the 
poly-sector I arg Zj - Bo I :S 7f /2 - 77 (j = 1, ... , d) with any small 77 > 0, and satisfies 

c1lzdl :S lzil :S c2lzdl (j = 1, ... , d - l) 

for some constants ck> 0 (k = 1, 2), then the estimates 

(3.4) 
p(d-1) (-n, ad-1.1 - Zd-1) = 0(1) 

D (a) ' Zd ' 

R";;,,N(s, a,..\; z) = O{ (ltl + 1rax(O,l2-o-J)lzdlN} 

follow for all N > n 2 0 as zd ---+ 0 through the sector I arg zd - B0 I :S 1r /2 - 77 with any 
small 77 > 0, where the implied 0-constants depend at most on a, a, a, m, N, c1, c2 and 
77; this shows that (3.2) gives a complete asymptotic expansion in the ascending order of 
Zd as Zd---+ 0 through I argzd - Bal< 1r/2. 
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The following Theorem 6 gives a complete asymptotic expansion in the descending order 
of Zd as Zd ➔ oo through the sector I argzd - 0ol < 1r/2 with any fixed 0o E [-1r/2,1r/2], 
while the remainig parameter Zd-l moves within the poly-sector I arg Zj - 00 1 < 7r /2 upon 
satisfying Zj:::: zd (j = 1, ... , d - 1). 

Theorem 6. Let a, >., m, a = (a1 , ... , ad) and 00 be as in Theorem 5. Then for any 
complex s and any integer N ~ 0, in the poly-sector I arg Zj - 00 1 < 7r /2 (j = 1, ... , d) we 
have 

(3.5) .CM':;-r(cp*/ml(s + (r), a,>.) 

= ~ (-l)n+m( (a) )n p(d-1) ((o:) + n, ad-1. 1 _ Zd-1) 

L.., n! D (a) ' Zd 
n=O 

X c/J(a)+n-m(s, a, >.)zi(a)-n + R:;;,,N(s, a,>.; z). 

Here the reminder R;;,,N(s, a,>.; z) is expressed as 

(3.6) R- ( ,. )=(-lr1 r((o:)+w,-w)p(d-1)(-w,o:d-1. 1 _zd-1) 
m,N s, a, A, z 2 . (o:) D (o:) ' 

7rZ (uN) Zd 

X cp':_w-m(s, a, >.)z',f dw 

with a constant uN satisfying - Re(o:) - N < uN < min(- Re(o:) - N + 1, 0). Further if 
z is in the poly-sector I arg Zj - 00 1 :S 7r /2 - 77 (j = 1, ... , d) with any small 17 > 0, and 
satisfies 

c1lzdl S lzil S c2lzdl (j = 1, ... , d - 1) 

for some constants Ck> 0 (k = 1, 2), then the estimates 

(3.7) 
p(d-1) ((0:/ + n, 0:d-1. 1 _ Zd-1) = 0(1) 

D (o:) ' Zd ' 

R:;;,,N(s, a,>.; z) = o{ (ltl + 1rax(O,l2-aj)lzdl-Re(a)-N} 

follow for all N > n ~ 0 as zd ➔ oo through the sector I arg zd - 00 I S 1r /2 - 77 with any 
small 17 > 0, where the implied 0-constants depend at most on a, u, a, m, N, c1, c2 and 
17; this shows that (3.5) gives a complete asymptotic expansion in the descending order of 
zd as zd ➔ oo through I argzd - 00 1 < 1r/2. 

The case (s,z) = (u,it) E lR x (iJR)d with t = (t1, ... ,td) and 00 = (sgntd)1r/2 of 
Theorem 6 implies the complete asymptotic expansion in the descending order of td as 
td-+ ±oo. 

Corollary 6.1. Let a, >., m, a = (a1 , ... , ad) and 00 be as in Theorem 6, and t = 
(t1, ... , td) E JRd. Then for any integer N ~ 0 we have the asymptotic expansion, as 
td-+ ±oo, 

(3.8) .CM~-r(cp*)(ml(u + i(r), a,>.) 

= ~ (-1r+m( (o:) )n p(d-1) ((a) + n, 0:d-1. l _ td-1) 
L.., n! D (o:) ' td 
n=O 

X c/J(a)+n-m(u, a, >.)(e(sgnt)1ri/21td1)-(a)-n + O(ltdl-Re(a)-N), 
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while the other parameter td-l moves as t1 -+ ±oo upon satisfying 

c1td<:::t1 <:::c2td (j=l, ... ,d-1) 

for some constants ck > 0 (k = 1, 2), where the implied O-constant depends at most on 
a, a, a, m, N, c1 and c2 . 

Problem 2. Find the complete asymptotic expansions for the multiple Riemann-Liouville 
transform RL';:f;(cp*)(ml(s+(z, T), a,>.) when z E Cd becomes both small and large through 
appropriate poly-sectors. 

Problem 3. Find a good class of multiple zeta-functions which appropriates to apply the 
operators LM';.'T' and RL';.,f;, and further deduce the asymptotic expansions with respect 
to z E Cd unde~ applicatio~ of these operators. 

4. SUPPLEMENTED ASYMPTOTICS FOR (RESTORED) LM~;T((s + T, a) 

We recall the extraction of the singular part 'lj;(s, a) from ((s, a) as (*(s, a) = ((s, a) -
'lf;(s, a), see (1.3). Note further that our asymptotic results are obtained under the restric­
tion a> l, and hence the case of ((s) = ((s, 1) is excluded from our initial consideration. 
We supplement in this section the corresponding results on the singular part 'lf;(s, a) to 
make up for establishing the asymptotic expansions for (restored) LM~.T((s + T, a), al­
though the presentation of the resulting formulae becomes rather involv~d. 

Let 1Fi ( ~; Z) and U(K,; v; Z) denote Kummer's confluent hypergeometric function of 
the first and second kind, defined respectively by 

(4.1) ( K, ) ~ (K,)k k 
1Fi V; z = ~ (v)kk!z 

k=O 

(IZI < +oo) 

for (K,, v) EC x (C \ Z:c;o) (cf. [2, p.248, 6.1(1)]), and 

(4.2) 

for largZI < 1r/2 and for all (K,,v) E C2 (cf. [2, p.255, 6.5(2)]), where the domain of Z 
in the latter expression can be extended to I arg ZI < 31r /2 by rotating suitably the path 
of integration (cf. [2, p.273, 6.11.2(9)]). We write s = a+ it and r = p + iT with real 
coordinates throughout the following, and introduce for any (r, s) E C x (C \ {1}) the 
auxiliary function 

(4.3) I:O,s'l/J(s, a)= 'l/Jr(s, a). 

Then for any a > l the evaluation 

'l/Jr(s, a)= a1-s log1-r a· U(l; 2 - r; (s - 1) log a) 

a1-s log1-r a ( 1 ) 
= ----1F1 2 ; (s -1) log a + I'(l - r)(s - 1r-1 , 

r-l -r 

is in fact valid for all (r, s) E C2 with I arg(s - 1)1 < 1r, where the second equality follows 
from the connection formula 
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for any (K,, v) E (C x (C \ Z) (cf. [2, p.257, 6.5(7)]); this further implies the estimate 

1Jr(s, a)« (ITI + 1)-rnax(O,lJJJ)(ITI + ltl + 1rax(O,lpJ) 

+ e-1rlTl/2-rng(s-l)(ITI + 1)1/2-p(ltl + l)p-1 

in the same region of (r, s) above. 
We can show along with the lines above the following Theorems 7 and 8, which give 

complete asymptotic expansions for LM~.T((ml(s + T, a) if a > l as both z ---+ 0 and 
z---+ oo through a sector narrower than I a;g zl < 1r. 

Theorem 7. Let a, a, >,, and m be as in Theorem 1, the complex variables located in the 
sector I arg(s -1)1 < 1r, and set 0(s) = arg(s - 1) and o(s) = 1r - l0(s)I(> 0). Then for 
any integer N 2 0, in the sector 

max(-1r, - 3; + 0(s)) < arg z < min( 1r, 3; + 0(s)) 

we have 

(4.5) LM°' i(m)( ) - ( l)m ~ (-lt(a)n{1* ( ) .;, ( )} n z;T'> S + T, a - - L...., n! '>-n-m s, a + o/-n-m s, a Z 
n=O 

+ R;,,N(s, a; z). 

Here the reminder R;,,N(s, a; z) satisfies the estimate 

(4.6) 

as z ---+ 0 through the sector 

max(-1r, - 3; + 0(s)) + rJ '.S argz :S min( 1r, 3; + 0(s)) - rJ 

with any small O < rJ < o(s), where the implied O-constant depends at most on a, CJ, a, 
m, N andrJ. 

Theorem 8. Let a, a, A, m and 0(s) be as in Theorem 7. Then for any complex variable 
s with l0(s)I < 1r, and any integer N 2 0, in the sector 

max(-1r, - 3; + 0(s)) < arg z < min( 1r, 3; + 0(s)) 

we have 

(4.7) rM°' 1 (m)( + )-( l)m~(-lt(a)n{t* ( )+•/, ( )} -a-n 
1..., z;T'> S T, a - - L...., n! '>a+n-m s, a o/a+n-m s, a Z 

n=O 

+ R-.;;,,N(s, a; z). 

Here the reminder R-.;;,,N(s, a; z) satisfies the estimate 

(4.8) 

as z ---+ oo through the sector 

max(-1r, - 3; + 0(s)) + rJ '.S arg z '.S min( 1r, 3; + 0(s)) - 'TJ 

with any small O < 'TJ < J(s), where the implied O-constant depends at most on a, CJ, a, 
m, N andrJ. 
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One can observe for any s0 E C fixed in the sector I arg( s0 - 1) I < 7r that the vertical 
lines z = e(sgnt)1ri/21tl with all t E IR \ {O} are included in the sector 

max(-1r, - 3; + 0(s0 )) < arg z < min( 1r, 3; + 0(s0 )), 

which allows us to deduce from Theorem 8 the following corollary. 

Corollary 8.1. Let a, a, >., m and 0(s) be as in Theorem 8. Then for any complex s0 

fixed with l0(s0)1 < 1r, and for any integer N ~ 0 we have the asymptotic expansion, as 
t--+ ±oo, 

(4.9) LM"' r(m)( · ) - ( l)m ~ (-lt(a)n{r* ( ) .!, ( )} t;T'> So+ ZT, a - - L.....,, n! '>a+n-m so, a + 'l'a+n-m so, a 
n=O 

X (isgnt)1ri/21tlra-n + O(ltl-Rea-N), 

where the implied O-constant depends at most on a, a, Res0, m and N. 

The result above on ((s, a) can in fact be transferred to that below on ((s) through 
the relation ((s) = 1 + ((s,2). Note here that the primitives {((s) - l}(m) exist for all 
non-positive integers m; however ((ml(s) does not for such m, since lima-++oo ((a-+it) = 1 
with any real t. We can therefore show the following formula for {((s) - l}(m) insted for 
((ml(s) (m E Z) itself. 

Corollary 8.2. Let s0 , a, a, >. and m be as in Theorem 8. Then for any integer N ~ 0 
we have the asymptotic expansion, as t --+ ±oo, 

(4.10) LM~7 {((so + iT) - l}(m) 

= (-1r ~ (-1r/a)n { G+n-m(so, 2) + 7/Ja+n-m(so, 2) }(isgntJ1ri/2ltlr"'-n 
n. 

n=O 

+ O(IWRea-N), 

where the implied O-constant depends at most on a, a, Re s0 , m and N. 

Problem 4. Find the complete asymptotic expansions for the Riemann-Liouville trans­
form RL~;'f ((ml(s + T, a) with any m E Z as both z--+ 0 and z--+ oo through appropriate 
sectors. 

5. SOME MEAN VALUES OF DOUBLE HURWITZ ZETA-FUNCTIONS 

Let s = (s1, s 2) be complex variables, a = (a1 , a2 ) real parameters with ai > 0 (j = 

1, 2), write Sj = O"j + iti (j = 1, 2), and set e 1 = (1, 0) and e 2 = (0, 1) throughout the 
following. We here introduce the double Hurwitz zeta-function G(s; a) and the double 
Plejeri-Minak zeta-function ( 2 (s; a), defined respectively by 

(5.1) 
00 

G(s; a)= L (a1 + a2 + li + l2)-•1 (a2 + l2)-•2 

li,l,=0 

for a-1 > 1 and a-2 > 1, and 
00 

(5.2) (2(s; a)= L(a1 + a2 + l)-•1 (a2 + l)-•2 

l=O 
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for (T1 + (T2 > 1, both with their meromorphic continuations to the whole s-space (('.2. 
The following theorems can in fact be shown for the mean values with respect to the 
parameters x = (x1, x2) E (~>o)2 in G(s; a+ x). 

Theorem 9. For any integer N :::: 0, and for any complex s = (s1 , s2 ) in the region 
(T1 + (T2 > 1 - N, except the points on 

(5.3) 

where 

(5.5) 

(5.6) 

E 1 = { s E C 2 I (s) = 2 - n or s1 = 1 + n (n = 0, 1, ... )}, 

N-1 ( ) 
S ( . ) _ ~ S1 n n+l;- ( . ) 

1,N s,a - ~ (n+l)!a1 -,2 s+ne1,a, 

Here the estimates 

(5.7) 
(2(s + ne1; a)= O(atai-a2 -n), 

R (s· a) = O(a1-a1 -a2 -N) 1,N , 2 

follow for all N > n:::: 0 in the same region of s above; this shows that the formula (5.4) 
gives a complete asymptotic expansion in the descending order of a2 as a 2 ➔ +oo, while 
a1 > 0 is fixed. 

Theorem 10. For any integer N :::: 0 and for any complex s = (s1 , s2 ) in the region 
(T1 < 1 + N and (T2 > 1 - N, except the points on 

(5.8) E 2 = {s E C2 I (s) = 2 - nor s2 = 1 + n (n = 0, 1, ... )}, 

we have the formula 

(5.9) r1 - . (1 - S2, (s) - 1) Jo (2(s, a+ x2e2)dx2 = I' si (( (s) - 1, a1) 

- S2,N(s a) - R2,N(s; a), 

where 

(5.10) 

(5.11) 

Here the estimates 

(5.12) 
(2(s + ne1, (a))= O(at-ai-n), 

R2,N(s; a)= O(at-ai-N) 

follow for all N > n:::: 0 in the same region of s above; this shows that the formula (5.9) 
gives a complete asymptotic expansion in the descending order of a1 as a 1 ➔ +oo, while 
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a2 is fixed. Furthermore, in the same region of s above, for any integer K 2". 0, we have 
the expression 

(5.13) 

which gives a complete asymptotic expansion when Sj -t oo (j = 1, 2), so as that s E C 2 

is on any hyper-plane (s) = c E (C except the points on E 2 . 

Theorem 11. A complete asymptotic expansion similar to that in Theorem 10 exists for 
the double mean value 

(5.14) 1111 G(s; a+ x1e1 + x2e2)dx1dx2. 

Theorem 12. Complete asymptotic expansions in the descending order of q as q -t +oo 
exist for the discrete mean values 

(5.15) ~ -( a+r·e·) 
L.., (2 s; 1 1 

r;=O q 
(j = 1,2). 

Theorem 13. Complete asymptotic expansions in the descending order of q as q -t +oo 
exist for the hybrid mean values 

(5.16) 

where (i,j) = (1, 2) or (2, 1). 

Let s = (s1, ... , sd) be complex variables, and a = (a1 , ... , ad) real parameters with 
aj > 0 (j = 1, ... , d). Then the multiple Hurwitz zeta-function (d(s; a) is defined by 

(5.17) (d(s; a)= f _ lJ { i)ai + li) }-s; 
li, ... ,ld-0 J-1 i-J 

oo d 

L IT (aj + aj+l +···+ad+ lj + lj+l + • • • + ld)-s; 
li, ... ,ld=O j=l 

for L1=l Oj > d, and its meromorphic continuation to the wholes-space (Cd_ It is reason­
able from the observation of the theorems above to pose the following Problem 5. 

Problem 5. Find all the 'asymptotic phenomena' as above for mixed mean values of 
(d( s; a+ x) appropriately averaged with respect to the ( discrete or continuous) parameter 
X E [0, l]d. 
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It is to be remarked that there are 

t (~)3j = 4d -1 
j=l J 

possibilities of formulation for continuous and discrete mean values, together with their 
hybridization, for (d(s; a+ x) with respect to the parameter x E [O, l]d. 

Let L(s, x) denote the Dirichlet £-functions attached to a Dirichlet character x modulo 
q(?_ 1). We note that the direction of research above proceeds from our previous study 
of the discrete and continuous mean squares Lx(modq) IL(s,x)l 2 , L;=1 l((s,r/q)l 2 and 

f0
1 l((s, 1 + x)l2dx, given in [9], [10], [11] and [12], also of the continuous and multiple 

mean squares f0
1 l<f>(s, 1 + x, >-)l 2dx and f0

1 · · · f0
1 l<f>(s, a+ X1 + · · · + Xm, >-)l 2dx1 · · · dxm 

(m = 1, 2, ... ) in [4] and [6], and further of the higher power moments L;=1 l((s, r/q)l 2k 

(k = 2, 3, ... ) in [1]. 

6. OUTLINE OF THE PROOFS OF THEOREMS 5 AND 6 

We write w = u + iv with real coordinates u and v. A key to prove Theorems 5 and 6 
is the Mellin-Barnes type integral expression 

(6.1) .CM':;T(</>*)(ml(s + (T), a,>.) 

= ju) r((a) (a)' -w)Fbd-1) (-w,;d-1; 1 - z;:1 )<f>"-w-m(s, a, >.)z:fdw 

for any m E Z, and a constant u with - Re(a) < u < 0. The vertical estimate 

(6.2) <f>':_w-m(s, a,>-)« (lvl + ltl + 1rax(O,l2-uj) 

can in fact be shown for any (w, s) E C2 (cf. [8, Lemma 3]). It follows from (6.2) 
that the integral in (6.1) converges absolutely for all s E (C and z E (Cd in the sector 
largzj -00 1 < 1r/2 (j = 1, ... ,d) with any fixed 00 E [-1r/2,1l-/2]; this provides the 
analytic continuation of .CM':.T(</>*)(m)(s + (T), a,>.) to the same region of (s, z) above. 

Theorems 5 and 6 are established respectively by moving the path (u) to the right upon 
yielding the complete asymptotic expansion as ZJ ➔ 0 (Theorem 5), while to the left upon 
that as ZJ ➔ oo (Theorem 6). 
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