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ASYMPTOTIC EXPANSIONS FOR THE MULTIPLE 
LAPLACE-MELLIN TRANSFORM OF LERCH ZETA-FUNCTIONS 

AND APPLICATIONS 

MASANORI KATSURADA, DEPT. MATH., FAC. ECON., KEIO UNIV. 
(.!l~~Utl::k"F · ;f\l;',lf"F~~ · ~"F~'¥'. · ttEB ~ml) 

ABSTRACT. Lets E IC be variable, a, A E lR parameters with a> 0, cp(s, a,.\) the Lerch 
zeta-function defined below, and cp*(s, a,.\) its slight modification obtained by extracting 
the only singularity at s = 1 (if A E Z) of the Hurwitz zeta-function ((s, a). We denote 
by (cp*)(m)(s,a,>-) for any m E Z the m-th derivative (with respect to s) if m 2'. 0, 
while the lml-th primitive (with its initial point at s + oo) if m S 0. It is shown in 
the present article that complete asymptotic expansions exist for the multiple Laplace
Mellin transform (with respect to s) of ( cp*)(m) (s, a,.\) for any m E Z if a > 1, when the 
multivariate pivotal parameter z = (z1 , ... , zd) E ICd (of the transforms) becomes both 
small and large through an appropriate poly-sector (Theorems 5 and 6), which extends 
our previous results on one dimensional case (Theorems 1 and 2). Further consideration 
on the excluded singular part of ((s, a) at s = 1 is supplemented to establish complete 
asymptotic expansions for the Lapalce-Mellin transform of ((m)(s, a) (Theorems 7 and 8). 
A topic on complete asymptotic expansions for certain mean values of multiple zeta
functions, which is positioned on a sligntly different direction of research, is discussed in 
the final section (Theorems 9-13). Several open problems, relevant to the present study, 
are to be posed along with the presentation of our results (Problems 1-5). 

1. INTRODUCTION 

Let s = a+ it be a complex variable, z = x + iy complex parameter, a and >. real 
parameters with a > 0, and write e(s) = e21ris throughout the article. The Lerch zeta
function cp(s, a,>.) is defined by the Dirichlet series 

00 

(1.1) cp(s, a,>.) = L e(>.l)(a + l)-s (a= Res> 1) 
l=O 

and its meromorphic continuation over the whole s-plane (cf. [14][15]); this reduces to 
the exponential zeta-function (A(s) = e(>.)cp(s, 1, >.) if a= 1, to the Hurwitz zeta-function 
((s, a) if>. E Z, and hence to the Riemann zeta-function ((s) = (A(s) = ((s, 1) for>. E Z. 
Let Oz(x) be the symbol which equals 1 or O according to x E Z or otherwise, and set 

(1.2) 
al-s 

'l/J(s,a) = -. 
s-1 
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The main object of study is a slight modification cp*( s, a, .X) of cp( s, a,>.), defined by 

{
((s, a) - aI-s if A E Z, 

cp*(s, a, .X) = cp(s, a, .X) - J2 (.X)'l/J(s, a)= 8 - 1 

cp(s, a, .X) if otherwise, 

(1.3) 

which removes the only (possible) singularity at s = 1. Let (cp*)(ml(s, a, .X) for any m E Z 
denote the m-th derivative (with respect to s) if m 2". 0, while the lml-th primitive (with 
its initial point at s+oo; see (2.3) below) ifm::; 0. We have shown in our previous study 
[7] [8] that complete asymptotic expansions exist for the Laplace-Mellin and Riemann
Liouville transforms (with respect to the variables) of (cp•)(ml(s,a,.X) for any m E Z if 
a > 1, when the pivotal parameter z E C (of the transforms) tends both to O and oo 
through appropriate sectors (see Theorems 1-4). The principal aim of the present article 
is to show that similar expansions still exist for the multiple Laplace-Mellin transform 
of (cp*)(ml(s, a, .X) for any m E Z if a > 1, when the (multivariate) pivotal parameter 
z = (z1 , ... , zd) E (Cd becomes both small and large through an appropriate poly-sector 
(Theorems 5 and 6). 

It is seen from (1.3) that the original Hurwitz zeta-function ((s, a) = (*(s, a)+ 'l/J(s, a) 
(including the singularity at s = 1) is excluded from our initial consideration. It is in fact 
possible to modify our method to study asymptics for the Laplace-Mellin transform of 
the (excluded) singular term 'l/J(s, a); this makes up for establishing complete asymptotic 
expansions for (the restored) ((ml(s,a) (a> 1) and for {((s) - l}(m) with any m E Z 
(Theorem 7 and 8). 

The article is organized as follows. After preparing several necessary notations, we 
review our previous results in the next section. Section 3 is devoted to presenting our 
results on the asymptotics for the multiple Laplace-Mellin transform of (cp*)(ml(s,a,.X), 
while those for the ((ml(s, a) and {((s)- l}(m) are given in Section 4. In the final section, 
we discuss some results on complete asymptotic expansions for certain mean values of 
multiple zeta-functions. Several open problems, which are relevant to the present study, 
are to be posed along with the statement of our results (Problems 1-5). 

2. NOTATION AND PREVIOUS RESULTS 

Let I'(s) denote the gamma function, a and /3 complex numbers with positive real 
parts, f(z) a function holomorphic in the sector I arg zl < 1r, and write X+ = max(O, X) 
for any X E R We introduce the Laplace-Mellin and Riemann-Liouville (or Erdelyi
Ki:iber) transforms of f(z), in the forms 

(2.1) 
1 {00 

,CM~;Tf(T) = I'(a) lo J(zT)T"'-1e-T dT, 

(2.2) ,Ca,/3 ( ) _ I'( a+ /3) {00 ( ) a-1 ( )/3-1 
R z;Tf T - I'(a)I'(/3) lo f ZT T 1-T + dT 

with the normalization gamma multiples, provided that the integrals converge; the factor 
Ta-I secures the convergence of the integrals as T ➔ o+, while e-T and (1 - T)!-1 have 
effects to extract the portions of f(z) corresponding to T = O(z). It is to be remarked 
here that an overview of asymptotic results on the integral transforms of various zeta
functions is given in [7, Sect. 1][8, Sect. 1]. Next let f(ml(s) (m E Z) for any entire 
function f(s) denote its m-th derivative if m 2". 0, while its lml-th primitive if m :S 0, 
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defined inductively by 

1s 1+00 Jtml(s) = Jtm+1l(w)dw = - Jtm+il(s + u)du, 
s+oo 0 

(2.3) 

subject to convergence, where the path of integration is the horizontal half-line. 
It has been shown in our previous study [7] [8] that complete asymptotic expansions 

exist for 

(2.4) £M~;Ac/J*)(m)(s+T,a,>.) = rta) fo 00
(cp*)(ml(s+zT,a,>.) 

X Ta-Ie-T dT, 

(2.5) -n ra,/3(,1,*)(m)( + ') _ I'(a + /3) {00 (,1,*)(m)( + ') 
,u..,z;T 'f' s T, a," - I'(a)I'(/3) Jo 'f' s ZT, a," 

X Ta-l(l - T)!-1dT 

with any m E Z if a > l, together with those for their iterations, when both z ---+ 0 and 
z ---+ oo through appropriate sectors. We introduce here the Hadamard type operator 
with the initial point at s + oo, defined for any (r, s) E (C2 by 

1 1(0+) 
(2.6) I:O,J(s) = I'(r){e(r) _ l} 00 f(s + z)zr- 1dz, 

if f(s + x) belongs to the class xl-Rer L;,[O, +oo[ (as a function of x). Here the path of 
integration is a contour which starts from oo, proceeds along the real axis to a sufficiently 
small J > 0, encircles the origin counter-clockwise, and returns to oo; arg z varies from 0 to 
21r along the contour. The auxiliary zeta-function cp;(s, a,>.) is defined for any (r, s) E (C2 

and for any a, >. E ffi; with a > l by 

(2.7) 

which is crucial in describing our results, and also of some interests in itself, since it 
interpolates the generalized Euler-Stieltjes constants rm(a, >.) (associated with the Lerch 
zeta-function), defined by 

(X) 

(o < is - 11 < 1) 
m=O 

(cf. [3, p.41, 1.8(1.123)]), when a> l as 

rm(a, >.) = (-lr { c/J*_m(l, a,>.)+ logm a} 
m. 

(m = 0, 1, ... ). 

Theorem 1 ([8, Theorem 1]). Let a be any complex number with Re a > 0, a and >. 
real parameters with a > l, and m any integer. Then for any complex s and any integer 
N :::=: 0, in the sector I arg zl < 1r we have 

(2.8) £M~;Ac/J*)(m)(s + T, a,>.)= (-1r ~ (-lt/a)n c/J*-n-m(s, a, >.)zn 
n. 

n=O 

+ R~jv(s, a,>.; z). 

Here the reminder R~;N(s, a,>.; z) satisfies the estimate 

(2.9) 
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as z --+ 0 through I arg zl ::; 1r - T/ with any small T/ > 0, where the implied O-constant 
depend at most on a, a, a, m, N and T/· 

Theorem 2 ([8, Theorem 2]). Let a, >.. and m be as in Theorem 1, and (3 any complex 
number with Re (3 > 0. Then for any complex s and any integer N 2'. 0, in the sector 
I arg zl < 7r we have 

(2.10) L'.M~;Ac/>*)(ml(s + T, a,>..)= (-1r ~ (-1~/a)n 1:+n-m(s, a, >..)z-a-n 
n=0 

+ R;;,~(s, a,>.; z). 

Here the reminder R~-N(s, a,>..; z) satisfies the estimate 

(2.11) 

as z --+ oo through the sector I arg zl ::; 7r - T/ with any small T/ > 0, where the implied 
O-constant depends at most on a, a, a, m, N and T/· 

The case (s, z) = (a, it) E ~ x i~ of Theorem 2 yields the following result. 

Corollary 2.1 ([8, Corollary 2.1]). Let a, a, ,.\ and m be as in Theorem 1. Then for any 
real a and for any N 2'. 0 we have the asymptotic expansion, as t --+ ±oo, 

(2.12) L'.Mf;Ac/>*/ml(a + iT, a,..\) 

= (-1r ~ (-l)n/a)n 1:+n-m(a, a, ..\)(etsgnt)1ri/21t1)-c,-n + O(ltl-Rea-N)' 
n. n=0 

where the implied O-constant depends at most on a, a, ..\, a, m and N. 

The following Theorems 3 and 4 give the complete asymptotic expansions for the 
Riemann-Liouville transform RL'.~;'!(c/>*)(m) (s + T, a,..\) as z --+ 0 and z --+ oo respectively. 

Theorem 3 ([8, Theorem 3]). Let a, ,.\ and m be as in Theorem 1, and (3 complex number 
with Re (3 > 0. Then for any complex s and any integer N 2'. 0, in the sector I arg zl < 1r 

we have 

RL'."',(3(,-1..*)(m)(s+T a..\)= (-l)m~ (-lt(a)n,-1..* (s a >..)zn 
z;T 'I' , , L...., (a+ f3)nn! 'l'-n-m , , 

n=0 
(2.13) 

+ R';;,;N(s, a,..\; z). 

Here the reminder R;;,;N(s, a,>..; z) satisfies the estimate 

(2.14) 

as z --+ 0 through the sector I arg zl ::; 1r - T/ with any small T/ > 0, where the implied 
O-constant depends at most on a, a, a, m, N and T/· 

We write, for ah, (3k E IC (k = 1, ... , m; k = 1, ... , n), 

r(al, ···,am) = TI;:1=1 I'(ah) 
/31, · · ·, f3n n;=l I'({Jk) ' 

and set c:(z) = sgn(argz) for any z E IC in the sectors I argzl > 0. 
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Theorem 4 ([8, Theorem 4]). Let a, /3, a, >. and m be as in Theorem 3. Then for any 
complex s, and any integers Ni (j = 1, 2) with N 1 2". l Re /3 J and N 2 2". l Re a J, in the 
sectors O < I arg zl < 1r we have 

(2.15) R.C~;'!(efJ*)(ml(s + T, a,>.) 

= (-1r r(°'; /3) e-E(z)1ria ftl (-lr(a:i(l - f3)n 

X c/J:+n-m(s, a, >.)(e-E(z)1riz)-a-n + Ri::,N, (s, a,>.; z)} 
+ (-lrr(°' ! /3)ec(z)1ri{,ft1 (-lr(/3:i(l - a)n 

X c/J;+n-m(s + z, a, >.)z-{,-n + R;:-;;.,N2 (s, a,>.; z)} · 

Here the reminder RJ2 •-;;, N (s, a,>.; z) (j = 1, 2) satisfy the estimates 
, , J 

(2.16) 
Ri::,N, (s, a,>.; z) = O{ (ltl + 1rax(O,l2-crJ)lzl-Rea-N1 }, 

R;::,N2(s, a,>.; z) = o{ (It+ YI+ 1rax(O,l2-cr-xJ)1z1-Re{,-N2} 

as z---+ oo through the sector TJ :S: I arg zl :S: 7r -TJ with any small TJ > 0, where the constant 
implied in the first O-symbol depends at most on O", a, /3, a, m, N1 and TJ, while that in 
the second at most on O", x, a, /3, a, m, N2 and TJ. 

Remark. Let 1F1( i; Z) and U(K,; v; Z) denote Kummer's confluent hypergeometric func
tions of the first and second kind defined by (4.1) and (4.2) below respectively. Then 
Stokes' phenomenon for confluent hypergeometric functions, which is revealed in the con
nection formula 

(2.17) 

for I arg ZI > 0 ( cf. [2, p.259, 6. 7(7)][13, p.265, (10.5)]), in fact effects splitting the shape 
of the asymptotic expansions into the two sectors O < I arg zl < 1r. 

The case (s, z) = (O", it) E lR x ilR of Theorem 4 yields the following result. 

Corollary 4.1 ([8, Corollary 4.1]). Let a, >., a, /3, m be as in Theorem 4. Then for any 
real O", and for any integers Ni (j = 1, 2) with N1 2". l Re /3 J and N2 2". l Re a J, we have 
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the asymptotic expansion, as t --+ ±oo, 

(2.18) R£ff (cp*/ml(a + iT, a,>.) 

= (-l)mr(o: + (3)e-(sgnt)nio:{~1 (-lt(o:)n(l -f3)n,1_, ( a,\) 
(3 L.....,, I 'l'a+n-m a, , 

n=O n. 

X (e-(sgnt)ni/21t1)-o:-n + O(ltl-Reo:-N,)} 

+ (-lr r(a ! (3) e(sgnt)ni/3 rtl (-lt(f3~(1 - a)n c/>~+n-m(a + it, a,,\) 

X (e(sgnt)ni/21t1)-f3-n + O(ltlmax(O,l2-o-J)-Ref3-N2 ) }, 

where the constant implied in the first O-symbol depends at most on a, a, (3, a, m and 
N1, while that in the second at most on a, a, (3, a, m and N2. 

We pose here the first problem on the Laplace-Mellin and the Riemann-Liouville trans
forms of Lerch zeta-functions. 

Problem 1. Deduce the asymptotics for lcJ>(ml(a + iT, a, >.)1 2 (m = 0, 1, ... ), under ap
plication of the operators £Mf.7 and R,Cff, as t --+ ±oo, and further for the product 
cp(mil(s1 + T, a, >.)cp(m2 ) (s2 - T, a',-,\) (m1 , :n2 = 0, 1, ... ) apart from the poles, under ap
plication of ,CM~;T and R,C~;'f, as both z --+ 0 and z --+ oo through appropriate sectors. 

3. ASYMPTOTICS FOR THE MULTIPLE LAPLACE-MELLIN TRANSFORM 

To describe our results, several notations are prepared in what follows. 
We set 1 = (1, ... , 1), for any d-dimensional complex vectors x = (x1 , ... , xd), y = 

(Y1, ···,Yd), 

and (x) = (x, 1) = X1 + ... + Xd, 

and write Xd-l = (.1:1, ... 'Xd-1) E ccd-l and further if xd =I= 0, 

Xd-1 = (Xl Xd-1) ' ... ' . 
Xd Xd Xd 

Let o:, (3 = ((31 , ... , (3d) and 'r be complex parameters. The (fourth) Lauricella hypergeo
metric function of d-variables Xj (j = 1, ... , d) is defined by the multiple series 

00 

for all o:, (3j E (('. (j = 1, ... , d) and 'r E (('. \ Z:c;o, where the series converges absolutely 
in the poly-disk lxjl < 1 (j = 1, ... , d) (cf. [16, p.228, 8.6(8.6.4)]); this is continued to a 
one-valued holomorphic function of ( o:, (3, 'r, x) for all ( o:, (3, 'r) E (Cd+l x (CC\ Z<o) and in 
the sector I arg(l - Xj) - 'Pol< Ir/2 (j = 1, ... ,d) with any fixed 'Po E [-Ir/2,;./2]. The 
notations 

and 
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for k = (k1, ... , kd) E (Z:,:o)d and x = (x1, ... , xd) E Cd allows us to rewrite FiJd) in a 
more concise form 

F (d)(a,{3_ ) =" (a)(k)(f3)k k 
D 'X L.., ( ) kl X . 

"( k:0:0 "( (k) . 

Our chief concern in this section is a multiple extension of the Laplace-Mellin transform 
of (cp*)(ml(s + (T), a,..\), in the form 

(3.1) LM~;r(cp*)(m)(s+(T),a,..\)=r() 1 I'() f"°. .. f'xo(cp*)(m)(s+(z,T),a,..\) 
a1 · · · ad lo lo 
0:1-l °'d-1 -T1-···-Tdd d 

X T1 · · · Td e T1 · · · Td, 

where a= (a1, ... ,ad) E cd with Reaj > 0 (j = 1, ... ,d) and z = (z1, ... ,zd) E ed. 
Let (u) for any u E ~ denote the vertical straight path from u - ioo to u + ioo. The 

following Theorem 5 gives a complete asymptotic expansion in the ascending order of Zd 
as Zd ---+ 0 through the sector I arg Zd - Bo I < 7f /2 with any fixed Bo E [-1r /2, 7f /2], while 
the remaining parameter zd-l moves within the poly-sector I arg Zj - Bo I < 1r /2 upon 
satisfying Zj ::c:: zd (j = 1, ... , d - 1). 

Theorem 5. Let a, ..\ and m be as in Theorem 1, a = (a1 , ... , ad) any complex vector 
with Reai > 0 (j = 1, ... , d), and B0 any angle fixed with B0 E [-1r/2, 1r/2]. Then for any 
complex s and any integer N 2 0, in the poly-sector I arg Zj - Bal < 1r /2 (j = 1, ... , d) we 
have 

(3.2) LM~;Ac/J*)(ml(s + (T), a,..\) 

= (-l)m ~ (-lr((a))n p(d-1) (-n, O'.d-1. 1 _ Zd-l),1.• ( ..\) n 
L.., I D ( ) ' '1'-n-m s,a, zd 
n=O n. a Zd 

+ R";;,,N(s, a,..\; z). 

Here the reminder R";;,,N(s, a,..\; z) is expressed as 

(3.3) R+ (s,a,..\;z)= (-l)_m { r((a)+w,-w)p(d-1)(-w,ad-l;l-Zd-1) 
m,N 21ri l(ut) (a) D (a) Zd 

X c/J*_w-m(s, a, ..\)z'£dw 

with a constant ut satisfying max(- Re(a), N - l) < ut < N. Further if z is in the 
poly-sector I arg Zj - Bo I :S 7f /2 - 77 (j = 1, ... , d) with any small 77 > 0, and satisfies 

c1lzdl :S lzil :S c2lzdl (j = 1, ... , d - l) 

for some constants ck> 0 (k = 1, 2), then the estimates 

(3.4) 
p(d-1) (-n, ad-1.1 - Zd-1) = 0(1) 

D (a) ' Zd ' 

R";;,,N(s, a,..\; z) = O{ (ltl + 1rax(O,l2-o-J)lzdlN} 

follow for all N > n 2 0 as zd ---+ 0 through the sector I arg zd - B0 I :S 1r /2 - 77 with any 
small 77 > 0, where the implied 0-constants depend at most on a, a, a, m, N, c1, c2 and 
77; this shows that (3.2) gives a complete asymptotic expansion in the ascending order of 
Zd as Zd---+ 0 through I argzd - Bal< 1r/2. 



86

MASANORI KATSURADA 

The following Theorem 6 gives a complete asymptotic expansion in the descending order 
of Zd as Zd ➔ oo through the sector I argzd - 0ol < 1r/2 with any fixed 0o E [-1r/2,1r/2], 
while the remainig parameter Zd-l moves within the poly-sector I arg Zj - 00 1 < 7r /2 upon 
satisfying Zj:::: zd (j = 1, ... , d - 1). 

Theorem 6. Let a, >., m, a = (a1 , ... , ad) and 00 be as in Theorem 5. Then for any 
complex s and any integer N ~ 0, in the poly-sector I arg Zj - 00 1 < 7r /2 (j = 1, ... , d) we 
have 

(3.5) .CM':;-r(cp*/ml(s + (r), a,>.) 

= ~ (-l)n+m( (a) )n p(d-1) ((o:) + n, ad-1. 1 _ Zd-1) 

L.., n! D (a) ' Zd 
n=O 

X c/J(a)+n-m(s, a, >.)zi(a)-n + R:;;,,N(s, a,>.; z). 

Here the reminder R;;,,N(s, a,>.; z) is expressed as 

(3.6) R- ( ,. )=(-lr1 r((o:)+w,-w)p(d-1)(-w,o:d-1. 1 _zd-1) 
m,N s, a, A, z 2 . (o:) D (o:) ' 

7rZ (uN) Zd 

X cp':_w-m(s, a, >.)z',f dw 

with a constant uN satisfying - Re(o:) - N < uN < min(- Re(o:) - N + 1, 0). Further if 
z is in the poly-sector I arg Zj - 00 1 :S 7r /2 - 77 (j = 1, ... , d) with any small 17 > 0, and 
satisfies 

c1lzdl S lzil S c2lzdl (j = 1, ... , d - 1) 

for some constants Ck> 0 (k = 1, 2), then the estimates 

(3.7) 
p(d-1) ((0:/ + n, 0:d-1. 1 _ Zd-1) = 0(1) 

D (o:) ' Zd ' 

R:;;,,N(s, a,>.; z) = o{ (ltl + 1rax(O,l2-aj)lzdl-Re(a)-N} 

follow for all N > n ~ 0 as zd ➔ oo through the sector I arg zd - 00 I S 1r /2 - 77 with any 
small 17 > 0, where the implied 0-constants depend at most on a, u, a, m, N, c1, c2 and 
17; this shows that (3.5) gives a complete asymptotic expansion in the descending order of 
zd as zd ➔ oo through I argzd - 00 1 < 1r/2. 

The case (s,z) = (u,it) E lR x (iJR)d with t = (t1, ... ,td) and 00 = (sgntd)1r/2 of 
Theorem 6 implies the complete asymptotic expansion in the descending order of td as 
td-+ ±oo. 

Corollary 6.1. Let a, >., m, a = (a1 , ... , ad) and 00 be as in Theorem 6, and t = 
(t1, ... , td) E JRd. Then for any integer N ~ 0 we have the asymptotic expansion, as 
td-+ ±oo, 

(3.8) .CM~-r(cp*)(ml(u + i(r), a,>.) 

= ~ (-1r+m( (o:) )n p(d-1) ((a) + n, 0:d-1. l _ td-1) 
L.., n! D (o:) ' td 
n=O 

X c/J(a)+n-m(u, a, >.)(e(sgnt)1ri/21td1)-(a)-n + O(ltdl-Re(a)-N), 
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while the other parameter td-l moves as t1 -+ ±oo upon satisfying 

c1td<:::t1 <:::c2td (j=l, ... ,d-1) 

for some constants ck > 0 (k = 1, 2), where the implied O-constant depends at most on 
a, a, a, m, N, c1 and c2 . 

Problem 2. Find the complete asymptotic expansions for the multiple Riemann-Liouville 
transform RL';:f;(cp*)(ml(s+(z, T), a,>.) when z E Cd becomes both small and large through 
appropriate poly-sectors. 

Problem 3. Find a good class of multiple zeta-functions which appropriates to apply the 
operators LM';.'T' and RL';.,f;, and further deduce the asymptotic expansions with respect 
to z E Cd unde~ applicatio~ of these operators. 

4. SUPPLEMENTED ASYMPTOTICS FOR (RESTORED) LM~;T((s + T, a) 

We recall the extraction of the singular part 'lj;(s, a) from ((s, a) as (*(s, a) = ((s, a) -
'lf;(s, a), see (1.3). Note further that our asymptotic results are obtained under the restric
tion a> l, and hence the case of ((s) = ((s, 1) is excluded from our initial consideration. 
We supplement in this section the corresponding results on the singular part 'lf;(s, a) to 
make up for establishing the asymptotic expansions for (restored) LM~.T((s + T, a), al
though the presentation of the resulting formulae becomes rather involv~d. 

Let 1Fi ( ~; Z) and U(K,; v; Z) denote Kummer's confluent hypergeometric function of 
the first and second kind, defined respectively by 

(4.1) ( K, ) ~ (K,)k k 
1Fi V; z = ~ (v)kk!z 

k=O 

(IZI < +oo) 

for (K,, v) EC x (C \ Z:c;o) (cf. [2, p.248, 6.1(1)]), and 

(4.2) 

for largZI < 1r/2 and for all (K,,v) E C2 (cf. [2, p.255, 6.5(2)]), where the domain of Z 
in the latter expression can be extended to I arg ZI < 31r /2 by rotating suitably the path 
of integration (cf. [2, p.273, 6.11.2(9)]). We write s = a+ it and r = p + iT with real 
coordinates throughout the following, and introduce for any (r, s) E C x (C \ {1}) the 
auxiliary function 

(4.3) I:O,s'l/J(s, a)= 'l/Jr(s, a). 

Then for any a > l the evaluation 

'l/Jr(s, a)= a1-s log1-r a· U(l; 2 - r; (s - 1) log a) 

a1-s log1-r a ( 1 ) 
= ----1F1 2 ; (s -1) log a + I'(l - r)(s - 1r-1 , 

r-l -r 

is in fact valid for all (r, s) E C2 with I arg(s - 1)1 < 1r, where the second equality follows 
from the connection formula 
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for any (K,, v) E (C x (C \ Z) (cf. [2, p.257, 6.5(7)]); this further implies the estimate 

1Jr(s, a)« (ITI + 1)-rnax(O,lJJJ)(ITI + ltl + 1rax(O,lpJ) 

+ e-1rlTl/2-rng(s-l)(ITI + 1)1/2-p(ltl + l)p-1 

in the same region of (r, s) above. 
We can show along with the lines above the following Theorems 7 and 8, which give 

complete asymptotic expansions for LM~.T((ml(s + T, a) if a > l as both z ---+ 0 and 
z---+ oo through a sector narrower than I a;g zl < 1r. 

Theorem 7. Let a, a, >,, and m be as in Theorem 1, the complex variables located in the 
sector I arg(s -1)1 < 1r, and set 0(s) = arg(s - 1) and o(s) = 1r - l0(s)I(> 0). Then for 
any integer N 2 0, in the sector 

max(-1r, - 3; + 0(s)) < arg z < min( 1r, 3; + 0(s)) 

we have 

(4.5) LM°' i(m)( ) - ( l)m ~ (-lt(a)n{1* ( ) .;, ( )} n z;T'> S + T, a - - L...., n! '>-n-m s, a + o/-n-m s, a Z 
n=O 

+ R;,,N(s, a; z). 

Here the reminder R;,,N(s, a; z) satisfies the estimate 

(4.6) 

as z ---+ 0 through the sector 

max(-1r, - 3; + 0(s)) + rJ '.S argz :S min( 1r, 3; + 0(s)) - rJ 

with any small O < rJ < o(s), where the implied O-constant depends at most on a, CJ, a, 
m, N andrJ. 

Theorem 8. Let a, a, A, m and 0(s) be as in Theorem 7. Then for any complex variable 
s with l0(s)I < 1r, and any integer N 2 0, in the sector 

max(-1r, - 3; + 0(s)) < arg z < min( 1r, 3; + 0(s)) 

we have 

(4.7) rM°' 1 (m)( + )-( l)m~(-lt(a)n{t* ( )+•/, ( )} -a-n 
1..., z;T'> S T, a - - L...., n! '>a+n-m s, a o/a+n-m s, a Z 

n=O 

+ R-.;;,,N(s, a; z). 

Here the reminder R-.;;,,N(s, a; z) satisfies the estimate 

(4.8) 

as z ---+ oo through the sector 

max(-1r, - 3; + 0(s)) + rJ '.S arg z '.S min( 1r, 3; + 0(s)) - 'TJ 

with any small O < 'TJ < J(s), where the implied O-constant depends at most on a, CJ, a, 
m, N andrJ. 
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One can observe for any s0 E C fixed in the sector I arg( s0 - 1) I < 7r that the vertical 
lines z = e(sgnt)1ri/21tl with all t E IR \ {O} are included in the sector 

max(-1r, - 3; + 0(s0 )) < arg z < min( 1r, 3; + 0(s0 )), 

which allows us to deduce from Theorem 8 the following corollary. 

Corollary 8.1. Let a, a, >., m and 0(s) be as in Theorem 8. Then for any complex s0 

fixed with l0(s0)1 < 1r, and for any integer N ~ 0 we have the asymptotic expansion, as 
t--+ ±oo, 

(4.9) LM"' r(m)( · ) - ( l)m ~ (-lt(a)n{r* ( ) .!, ( )} t;T'> So+ ZT, a - - L.....,, n! '>a+n-m so, a + 'l'a+n-m so, a 
n=O 

X (isgnt)1ri/21tlra-n + O(ltl-Rea-N), 

where the implied O-constant depends at most on a, a, Res0, m and N. 

The result above on ((s, a) can in fact be transferred to that below on ((s) through 
the relation ((s) = 1 + ((s,2). Note here that the primitives {((s) - l}(m) exist for all 
non-positive integers m; however ((ml(s) does not for such m, since lima-++oo ((a-+it) = 1 
with any real t. We can therefore show the following formula for {((s) - l}(m) insted for 
((ml(s) (m E Z) itself. 

Corollary 8.2. Let s0 , a, a, >. and m be as in Theorem 8. Then for any integer N ~ 0 
we have the asymptotic expansion, as t --+ ±oo, 

(4.10) LM~7 {((so + iT) - l}(m) 

= (-1r ~ (-1r/a)n { G+n-m(so, 2) + 7/Ja+n-m(so, 2) }(isgntJ1ri/2ltlr"'-n 
n. 

n=O 

+ O(IWRea-N), 

where the implied O-constant depends at most on a, a, Re s0 , m and N. 

Problem 4. Find the complete asymptotic expansions for the Riemann-Liouville trans
form RL~;'f ((ml(s + T, a) with any m E Z as both z--+ 0 and z--+ oo through appropriate 
sectors. 

5. SOME MEAN VALUES OF DOUBLE HURWITZ ZETA-FUNCTIONS 

Let s = (s1, s 2) be complex variables, a = (a1 , a2 ) real parameters with ai > 0 (j = 

1, 2), write Sj = O"j + iti (j = 1, 2), and set e 1 = (1, 0) and e 2 = (0, 1) throughout the 
following. We here introduce the double Hurwitz zeta-function G(s; a) and the double 
Plejeri-Minak zeta-function ( 2 (s; a), defined respectively by 

(5.1) 
00 

G(s; a)= L (a1 + a2 + li + l2)-•1 (a2 + l2)-•2 

li,l,=0 

for a-1 > 1 and a-2 > 1, and 
00 

(5.2) (2(s; a)= L(a1 + a2 + l)-•1 (a2 + l)-•2 

l=O 
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for (T1 + (T2 > 1, both with their meromorphic continuations to the whole s-space (('.2. 
The following theorems can in fact be shown for the mean values with respect to the 
parameters x = (x1, x2) E (~>o)2 in G(s; a+ x). 

Theorem 9. For any integer N :::: 0, and for any complex s = (s1 , s2 ) in the region 
(T1 + (T2 > 1 - N, except the points on 

(5.3) 

where 

(5.5) 

(5.6) 

E 1 = { s E C 2 I (s) = 2 - n or s1 = 1 + n (n = 0, 1, ... )}, 

N-1 ( ) 
S ( . ) _ ~ S1 n n+l;- ( . ) 

1,N s,a - ~ (n+l)!a1 -,2 s+ne1,a, 

Here the estimates 

(5.7) 
(2(s + ne1; a)= O(atai-a2 -n), 

R (s· a) = O(a1-a1 -a2 -N) 1,N , 2 

follow for all N > n:::: 0 in the same region of s above; this shows that the formula (5.4) 
gives a complete asymptotic expansion in the descending order of a2 as a 2 ➔ +oo, while 
a1 > 0 is fixed. 

Theorem 10. For any integer N :::: 0 and for any complex s = (s1 , s2 ) in the region 
(T1 < 1 + N and (T2 > 1 - N, except the points on 

(5.8) E 2 = {s E C2 I (s) = 2 - nor s2 = 1 + n (n = 0, 1, ... )}, 

we have the formula 

(5.9) r1 - . (1 - S2, (s) - 1) Jo (2(s, a+ x2e2)dx2 = I' si (( (s) - 1, a1) 

- S2,N(s a) - R2,N(s; a), 

where 

(5.10) 

(5.11) 

Here the estimates 

(5.12) 
(2(s + ne1, (a))= O(at-ai-n), 

R2,N(s; a)= O(at-ai-N) 

follow for all N > n:::: 0 in the same region of s above; this shows that the formula (5.9) 
gives a complete asymptotic expansion in the descending order of a1 as a 1 ➔ +oo, while 
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a2 is fixed. Furthermore, in the same region of s above, for any integer K 2". 0, we have 
the expression 

(5.13) 

which gives a complete asymptotic expansion when Sj -t oo (j = 1, 2), so as that s E C 2 

is on any hyper-plane (s) = c E (C except the points on E 2 . 

Theorem 11. A complete asymptotic expansion similar to that in Theorem 10 exists for 
the double mean value 

(5.14) 1111 G(s; a+ x1e1 + x2e2)dx1dx2. 

Theorem 12. Complete asymptotic expansions in the descending order of q as q -t +oo 
exist for the discrete mean values 

(5.15) ~ -( a+r·e·) 
L.., (2 s; 1 1 

r;=O q 
(j = 1,2). 

Theorem 13. Complete asymptotic expansions in the descending order of q as q -t +oo 
exist for the hybrid mean values 

(5.16) 

where (i,j) = (1, 2) or (2, 1). 

Let s = (s1, ... , sd) be complex variables, and a = (a1 , ... , ad) real parameters with 
aj > 0 (j = 1, ... , d). Then the multiple Hurwitz zeta-function (d(s; a) is defined by 

(5.17) (d(s; a)= f _ lJ { i)ai + li) }-s; 
li, ... ,ld-0 J-1 i-J 

oo d 

L IT (aj + aj+l +···+ad+ lj + lj+l + • • • + ld)-s; 
li, ... ,ld=O j=l 

for L1=l Oj > d, and its meromorphic continuation to the wholes-space (Cd_ It is reason
able from the observation of the theorems above to pose the following Problem 5. 

Problem 5. Find all the 'asymptotic phenomena' as above for mixed mean values of 
(d( s; a+ x) appropriately averaged with respect to the ( discrete or continuous) parameter 
X E [0, l]d. 
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It is to be remarked that there are 

t (~)3j = 4d -1 
j=l J 

possibilities of formulation for continuous and discrete mean values, together with their 
hybridization, for (d(s; a+ x) with respect to the parameter x E [O, l]d. 

Let L(s, x) denote the Dirichlet £-functions attached to a Dirichlet character x modulo 
q(?_ 1). We note that the direction of research above proceeds from our previous study 
of the discrete and continuous mean squares Lx(modq) IL(s,x)l 2 , L;=1 l((s,r/q)l 2 and 

f0
1 l((s, 1 + x)l2dx, given in [9], [10], [11] and [12], also of the continuous and multiple 

mean squares f0
1 l<f>(s, 1 + x, >-)l 2dx and f0

1 · · · f0
1 l<f>(s, a+ X1 + · · · + Xm, >-)l 2dx1 · · · dxm 

(m = 1, 2, ... ) in [4] and [6], and further of the higher power moments L;=1 l((s, r/q)l 2k 

(k = 2, 3, ... ) in [1]. 

6. OUTLINE OF THE PROOFS OF THEOREMS 5 AND 6 

We write w = u + iv with real coordinates u and v. A key to prove Theorems 5 and 6 
is the Mellin-Barnes type integral expression 

(6.1) .CM':;T(</>*)(ml(s + (T), a,>.) 

= ju) r((a) (a)' -w)Fbd-1) (-w,;d-1; 1 - z;:1 )<f>"-w-m(s, a, >.)z:fdw 

for any m E Z, and a constant u with - Re(a) < u < 0. The vertical estimate 

(6.2) <f>':_w-m(s, a,>-)« (lvl + ltl + 1rax(O,l2-uj) 

can in fact be shown for any (w, s) E C2 (cf. [8, Lemma 3]). It follows from (6.2) 
that the integral in (6.1) converges absolutely for all s E (C and z E (Cd in the sector 
largzj -00 1 < 1r/2 (j = 1, ... ,d) with any fixed 00 E [-1r/2,1l-/2]; this provides the 
analytic continuation of .CM':.T(</>*)(m)(s + (T), a,>.) to the same region of (s, z) above. 

Theorems 5 and 6 are established respectively by moving the path (u) to the right upon 
yielding the complete asymptotic expansion as ZJ ➔ 0 (Theorem 5), while to the left upon 
that as ZJ ➔ oo (Theorem 6). 
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