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ABSTRACT. Let s € C be variable, a, A € R parameters with a > 0, ¢(s,a,\) the Lerch
zeta-function defined below, and ¢*(s, a, A) its slight modification obtained by extracting
the only singularity at s =1 (if A € Z) of the Hurwitz zeta-function ((s,a). We denote
by (¢*)(™)(s,a,)\) for any m € Z the m-th derivative (with respect to s) if m > 0,
while the |m/|-th primitive (with its initial point at s 4+ oo) if m < 0. It is shown in
the present article that complete asymptotic expansions exist for the multiple Laplace-
Mellin transform (with respect to s) of (¢*)™ (s, a, \) for any m € Z if a > 1, when the
multivariate pivotal parameter z = (z1,...,24) € C? (of the transforms) becomes both
small and large through an appropriate poly-sector (Theorems 5 and 6), which extends
our previous results on one dimensional case (Theorems 1 and 2). Further consideration
on the excluded singular part of ((s,a) at s = 1 is supplemented to establish complete
asymptotic expansions for the Lapalce-Mellin transform of (") (s, @) (Theorems 7 and 8).
A topic on complete asymptotic expansions for certain mean values of multiple zeta-
functions, which is positioned on a sligntly different direction of research, is discussed in
the final section (Theorems 9-13). Several open problems, relevant to the present study,
are to be posed along with the presentation of our results (Problems 1-5).

1. INTRODUCTION

Let s = o + it be a complex variable, z = z + 7y complex parameter, ¢ and X\ real
parameters with a > 0, and write e(s) = €?™* throughout the article. The Lerch zeta-
function ¢(s, a, A) is defined by the Dirichlet series

(1.1) o(s,a,\) = Z e(A)(a+1)~° (c =Res>1)
1=0

and its meromorphic continuation over the whole s-plane (cf. [14][15]); this reduces to
the exponential zeta-function () (s) = e(A)é(s, 1, \) if a = 1, to the Hurwitz zeta-function
((s,a) if A € Z, and hence to the Riemann zeta-function ((s) = (\(s) = ((s, 1) for A € Z.
Let dz(x) be the symbol which equals 1 or 0 according to x € Z or otherwise, and set

(1.2) U(s,a) =
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The main object of study is a slight modification ¢*(s,a, ) of ¢(s,a, \), defined by

. C(Sv a) - al__sl
(1.3) d*(s,a,\) = @(s,a,\) — dz(N)(s,a) = s

(s, a,\) if otherwise,

if A € Z,

which removes the only (possible) singularity at s = 1. Let (¢*)"™ (s, a, \) for any m € Z
denote the m-th derivative (with respect to s) if mn > 0, while the |m|-th primitive (with
its initial point at s+ oo; see (2.3) below) if m < 0. We have shown in our previous study
[7][8] that complete asymptotic expansions exist for the Laplace-Mellin and Riemann-
Liouville transforms (with respect to the variable s) of (¢*)™ (s, a, \) for any m € Z if
a > 1, when the pivotal parameter z € C (of the transforms) tends both to 0 and oo
through appropriate sectors (see Theorems 1-4). The principal aim of the present article
is to show that similar expansions still exist for the multiple Laplace-Mellin transform
of (¢*)™(s,a, ) for any m € Z if a > 1, when the (multivariate) pivotal parameter
z = (21,...,24) € C? becomes both small and large through an appropriate poly-sector
(Theorems 5 and 6).

It is seen from (1.3) that the original Hurwitz zeta-function ((s,a) = (*(s, a) + ¢ (s, a)
(including the singularity at s = 1) is excluded from our initial consideration. It is in fact
possible to modify our method to study asymptics for the Laplace-Mellin transform of
the (excluded) singular term (s, a); this makes up for establishing complete asymptotic
expansions for (the restored) (™(s,a) (a > 1) and for {¢(s) — 1}(™ with any m € Z
(Theorem 7 and 8).

The article is organized as follows. After preparing several necessary notations, we
review our previous results in the next section. Section 3 is devoted to presenting our
results on the asymptotics for the multiple Laplace-Mellin transform of (¢*)™ (s, a, \),
while those for the (™ (s, a) and {¢(s) —1}(™ are given in Section 4. In the final section,
we discuss some results on complete asymptotic expansions for certain mean values of
multiple zeta-functions. Several open problems, which are relevant to the present study,
are to be posed along with the statement of our results (Problems 1-5).

2. NOTATION AND PREVIOUS RESULTS

Let I'(s) denote the gamma function, o and 8 complex numbers with positive real
parts, [(z) a function holomorphic in the sector |arg z| < 7, and write X, = max(0, X)
for any X € R. We introduce the Laplace-Mellin and Riemann-Liouville (or Erdélyi-
Kober) transforms of f(z), in the forms

(2.1) LM f(r) = %a) /000 flzr)m® e mdr,
(2.2) RLEL f(r) = 71[((2‘; (‘;)) /0 " feryre i@ - )l

with the normalization gamma multiples, provided that the integrals converge; the factor
72~1 secures the convergence of the integrals as 7 — 07, while ™7 and (1 — T)f:1 have
effects to extract the portions of f(z) corresponding to 7 = O(z). It is to be remarked
here that an overview of asymptotic results on the integral transforms of various zeta-
functions is given in [7, Sect. 1][8, Sect. 1]. Next let f(™(s) (m € Z) for any entire
function f(s) denote its m-th derivative if m > 0, while its |m|-th primitive if m < 0,



81

ASYMPTOTIC EXPANSIONS FOR LERCH ZETA-FUNCTIONS

defined inductively by

S

“+o0
(23) £ = [yt = [ s+ upd
s+o00 0
subject to convergence, where the path of integration is the horizontal half-line.
It has been shown in our previous study [7][8] that complete asymptotic expansions
exist for

(2.4) LM (6™ (s + 7,0, ) = ﬁ / T (s 4 270, 0)
X T”‘*le*TdT,
@B/ %\ (m) _F(Of"‘ﬁ) * \(m)
(2.5) RESH(O)™ s+ m0.3) = o / (6")™) (s + 27,0, A

x 771 — T)”i_ldT

with any m € Z if a > 1, together with those for their iterations, when both z — 0 and
2z — oo through appropriate sectors. We introduce here the Hadamard type operator
with the initial point at s + oo, defined for any (r,s) € C? by

(0+)
(2.6) 7 f(s) = m / f(s +2)2 Nz,

if f(s+ ) belongs to the class 1™R¢" 1[0, +00[ (as a function of z). Here the path of
integration is a contour which starts from oo, proceeds along the real axis to a sufficiently
small § > 0, encircles the origin counter-clockwise, and returns to co; arg z varies from 0 to
2m along the contour. The auxiliary zeta-function ¢ (s, a, \) is defined for any (r, s) € C?
and for any a, A € R with a > 1 by

(2.7) ¢r(s,0,A) = I3, ;0" (s,a, M),

which is crucial in describing our results, and also of some interests in itself, since it
interpolates the generalized Euler-Stieltjes constants 7,,(a, \) (associated with the Lerch
zeta-function), defined by

o(s,0,0) = (s =)'+ Aml@ (s =D (0<[s—1]<1)
m=0
(cf. [3, p.41, 1.8(1.123)]), when a > 1 as
(="
m(a, A) =
Tm(@;A) m!
Theorem 1 ([8, Theorem 1]). Let o be any complex number with Reaw > 0, a and A

real parameters with a > 1, and m any integer. Then for any complex s and any integer
N >0, in the sector |argz| < we have

{¢*,,(1,a, ) +log™a} (m=0,1,...).

=

28) LM () (s +ran) = (-1 S L@ oy

n!

I
o

n

+ H,I,I';V(a, a, ;).
Here the reminder R},’JN(S, a, \; z) satisfies the estimate

(2.9) Ryly(s.a,x:2) = O{(|t] + 1)l 2|V}
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as z — 0 through |argz| < m — n with any small n > 0, where the implied O-constant
depend at most on o, a, o, m, N and 7.

Theorem 2 ([8, Theorem 2]). Let a, A and m be as in Theorem 1, and 8 any complex
number with Re 8 > 0. Then for any complex s and any integer N > 0, in the sector
|arg z| < 7 we have

N-1
_1 n n o
(210) LM ()™ s+ r a0 = (-1 S T @ e o aysmen
' — n!
+ R},’L;V(s, a, \; ).
Here the reminder R,},’;N(s, a,\; z) satisfies the estimate

z

(2.11) Ry (s,a, )5 2) = O{(Jt] + 1)@ 2D

— ReafN}

as z — oo through the sector |argz| < m — n with any small n > 0, where the implied
O-constant depends at most on o, a, a, m, N and 7.

The case (s,z) = (0,it) € R x iR of Theorem 2 yields the following result.

Corollary 2.1 ([8, Corollary 2.1]). Let a, a, A and m be as in Theorem 1. Then for any
real o and for any N > 0 we have the asymptotic expansion, as t — £o0,

(2.12) LM (¢") ™ (o +iT,a,\)
N-1
—1)"(« nox sgn t)mi —a—n —Rea—
=y Y E e o AR o),
n=0 :

where the implied O-constant depends at most on o, o, A, a, m and N.

The following Theorems 3 and 4 give the complete asymptotic expansions for the
Riemann-Liouville transform RLSS (¢*)™ (s +7,a, A) as z — 0 and z — oo respectively.

Theorem 3 ([8, Theorem 3]). Let a, A\ and m be as in Theorem 1, and B complex number
with Re 8 > 0. Then for any complex s and any integer N > 0, in the sector |argz| < m
we have

(2.13) RLEZ(¢) ™ (s + 7,0, \) = (1) i %qﬁin_m(s, a, \)z2"

+ Rfr’:N(S, a, \; z).
Here the reminder ]?72R+N(< a, \; z) salisfies the estimale
(2.14) Ryty(s,a, 0 2) = O{(|t] + 1)m @Bz )N}

as z — 0 through the sector |argz| < m — n with any small n > 0, where the implied
O-constant depends at most on «, a, o, m, N and 7.

We write, for oy, 8, € C(k=1,....,m; k=1,...,n),

F(al, ceey am) HZ;l F(Olh>

Bro Ba) T T T (B

and set £(z) = sgn(arg z) for any z € C in the sectors | arg z| > 0.
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Theorem 4 ([8, Theorem 4]). Let o, 8, a, X\ and m be as in Theorem 3. Then for any
complex s, and any integers N; (j = 1,2) with Ny > |Re ] and Ny > |Rec], in the
sectors 0 < |argz| < m we have

(2.15) RLEE (¢7) ™ (s + 7,0, \)
(OB —eomia ] = (—DM(@)a(1 — B
=(-1) F(ﬁ)e() {

n!

n=0

X Ghpn (s @ N)(e T L R <s,a,x;z>}

n (71)7”[1(@ Z B) eé(z)mﬂ{ i (_1)71(5)7:'(1 — @)

X ¢2+n—m(5 +2,a, )‘)ziﬁin + Hi:;@,NZ(Sa a,A; Z)}

Here the reminder H?;IN (s,a,\;2) (j =1,2) satisfy the estimates

2.16) Ry (5,0, s 2) = O (Jt] + 1) O] ~Reamti},
RS:;L,NQ(S’ a, A; Z) = (){(|t 4 yl + 1)max(0,[27aij)|Z|7Re/3*N2}

as z — 0o through the sectorn < |arg z| < m—n with any small n > 0, where the constant
implied in the first O-symbol depends at most on o, «, B, a, m, Ny and 1, while that in
the second at most on o, x, a, 5, a, m, Ny and 7.

Remark. Let 1Fy(5;7Z) and U(k;v; Z) denote Kummer’s confluent hypergeometric func-
tions of the first and second kind defined by (4.1) and (4.2) below respectively. Then
Stokes” phenomenon for confluent hypergeometric functions, which is revealed in the con-
nection formula

(217) 1Fi (57 Z) — [‘(V v )eE(Z)TFiHU(K/; v, Z) + F( )65(2)771'(5—1/)62

14
— K R

x Uy — k;v;e s 7)

for |arg Z| > 0 (cf. [2, p.259, 6.7(7)][13, p.265, (10.5)]), in fact effects splitting the shape
of the asymptotic expansions into the two sectors 0 < |arg z| < 7.

The case (s,z) = (o,it) € R x iR of Theorem 4 yields the following result.

Corollary 4.1 ([8, Corollary 4.1]). Let a, \, o, 3, m be as in Theorem 4. Then for any
real o, and for any integers N; (j = 1,2) with Ny > |[Re ] and N > |Rea], we have
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the asymptotic expansion, as t — £00,
(2.18)  RLE(¢M) ™ (0 + it a,\)

— (" Pt {N“ D @all= B ye

a+n—m
n!
n=0

% (ef(sgnt)m'/2|t|)fa7n + O(|t|Reo¢N1)}

bt (® e {NZ D" By

n!
n=0

% (e(sgnt)wi/2|t|)—()’—n + O<tmax(O,LZ—o’J)—Reﬁ—Ng)}}

where the constant implied in the first O-symbol depends at most on o, «, B, a, m and
N1, while that in the second at most on o, «, 5, a, m and N,.

We pose here the first problem on the Laplace-Mellin and the Riemann-Liouville trans-
forms of Lerch zeta-functions.

Problem 1. Deduce the asymptotics for |p™ (o +it,a, \)|> (m = 0,1,...), under ap-
plication of the operators LM, and RE?TH, as t — +oo, and further for the product
o) (51 4+ 7,0, \)d™2) (sy — 7,0, =) (my,me = 0,1,...) apart from the poles, under ap-
plication of E./\/l and RLS; . as both z — 0 and z — oo through appropriate sectors.

zZT FA

3. ASYMPTOTICS FOR THE MULTIPLE LAPLACE-MELLIN TRANSFORM

To describe our results, several notations are prepared in what follows.
We set 1 = (1,...,1), for any d-dimensional complex vectors & = (a1,...,24), Y =

(yh-'-ayd)a
(x,y) =mYr + -+ x49q  and () ={(x,1) =21 + - + 24,

and write x4, = (71,...,74-1) € C41 and further if 74 # 0,
Ld-1 _ (ﬂ xdfl)
o w0 )
Let oo, B = (B4, .., 84) and v be complex parameters. The (fourth) Lauricella hypergeo-
metric function of d-variables z; (j =1,...,d) is defined by the multiple series
FO (a,ﬁl-, e :Bd; . -~7-Td) _ (Of)k1+...+kd(ﬂl)’k1' . (ﬁ;j)kd‘rllcl gk
7 kl,m,kd:O (’Y)k;l+...+kdkl~ e k’d.

in the poly-disk |z;| <1 (j =1,...,d) (cf. [16, p.228, 8.6(8.6.4)]); this is continued to a
ﬁ ,x) for all (o, B,7) € C¥! x (C\ Z<p) and in
= ..7d) with any fixed ¢y € [—7/2,7/2]. The

for all o, B; € C (j =1,...,d) and v € C\ Z«g, where the series converges absolutely
(
@,

one-valued holomorphic function of (
the sector |arg(l — x;) — @o| < 7/2 (j
notations

B = (B1)ky -+ (Br) ks El=Fk! k! and aF=2ab.. . gk
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for k = (k1,...,kq) € (Zz0)! and = = (z1,...,24) € C? allows us to rewrite F,(jd) ina

more concise form
7 (aﬁ; a:) = (@) (k) (/B?kmk
v = (Dwk!

Our chief concern in this section is a multiple extension of the Laplace-Mellin transform
of (¢*)"™ (s + (1),a,\), in the form

B1) LM (6" +(7).0.0) = F s / @ + ()0

aq— 1 d 1 e T 77‘dd7_1

X Ty -dty,

where a = (o, ...,a4) € C? with Rea; >0 (j=1,...,d) and z = (21,...,24) € CL

Let (u) for any u € R denote the vertical straight path from u — ico to u + ico. The
following Theorem 5 gives a complete asymptotic expansion in the ascending order of z4
as zg — 0 through the sector |argzy — 0| < m/2 with any fixed 0y € [—7/2,7/2], while
the remaining parameter z,_; moves within the poly-sector |arg z; — 6p| < /2 upon
satisfying z; < 24 (j=1,...,d—1).

Theorem 5. Let a, A and m be as in Theorem 1, o = (v, ..., ) any complex vector
withRea; >0 (j =1,...,d), and by any angle fived with 0y € [—7/2,7/2]. Then for any
complex s and any integer N > 0, in the poly-sector |argz; — 0| < m/2 (j =1,...,d) we
have

(3.2) LME(¢") ™ (s + (1), a,\)

T L S I Y SR PR

|
o n! (a) 24

+R:‘n’N(s,a,)\;z).

Here the reminder RE,N(S, a,\; z) is expressed as

—1)m — /- _
(33 Riglsarz) =0 /<+>F<<a>+w’ (e -2

27 (a) (@) 24
X O e m (S5 a, Nz dw

with a constant u}, satisfying max(— Re(a), N — 1) < u}, < N. Further if z is in the
poly-sector |argz; — Op| < mw/2—n (j =1,....d) with any small n > 0, and satisfies

clzal <zl < eolzal (G=1,...,d—1)

for some constants ¢, > 0 (k = 1,2), then the estimates

(d=1) (—N, Oqg—1 Zd—1
F ( 1 —) —0(1),
D <a> 24 ( )

Ry, x(s,0, 25 2) = O{(Jt] + 1)LV

(3.4)

follow for all N > n > 0 as zg — 0 through the sector |arg zq — 6| < 7/2 — n with any
small n > 0, where the implied O-constants depend at most on o, o, a, m, N, c¢1, co and
n; this shows that (3.2) gives a complete asymptotic expansion in the ascending order of
24 as zq — 0 through |arg zqg — 0o < 7/2.
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The following Theorem 6 gives a complete asymptotic expansion in the descending order
of z4 as zg — oo through the sector | argzy — 6y < 7/2 with any fixed 0y € [—7/2,7/2],
while the remainig parameter z4_; moves within the poly-sector |arg z; — 6| < /2 upon
satisfying z; < z4 (j =1,...,d —1).

Theorem 6. Let a, A, m, a = (ay,...,aq) and 0y be as in Theorem 5. Then for any
complex s and any integer N > 0, in the poly-sector |argz; — 0| < m/2 (j =1,...,d) we
have

(3.5) ﬁMg,( “*)<m)(s + <r> a, \)

_ Z n+m ) F<d 1) <<a> +n, Qg1 1— del)

(o) ' 2d
X ¢<a>+n,m($, a,\)z, fa)=n | R, (s a, ) 2).

Here the reminder R;%N(s, a, \; z) is expressed as

_ (=™ (@) + w, —w\ L(d-1) [—W, Og_1 Zd—1
(3.6) Rm,N(s,a.,)\,z)——zm /(U>F< () )FD ( (@) 1 — » )

X O (8, ay Nz dw

with a constant uy satisfying — Re(a) — N < uy < min(— Re(a) — N +1,0). Further if
z is in the poly-sector |argz; — Oy| < w/2 —n (j = 1,...,d) with any small n > 0, and
satisfies
Cl|zd|§|zj‘gc2‘zd| (]:177d_1)

for some constants ¢, > 0 (k = 1,2), then the estimates

(d-1) ((a) tn, o o zd—l) _
Fp (o) i1 - O(1),
R (5,0, 3 2) = O{(t] 4 1020 Rele =

(3.7)

follow for all N > n > 0 as zg — oo through the sector | arg zq — 0y < 7/2 — n with any
small n > 0, where the implied O-constants depend at most on o, o, a, m, N, c¢1, co and
n; this shows that (3.5) gives a complete asymplotic expansion in the descending order of
24 G zqg — 00 through |arg zq — 0o < 7/2.

The case (s,z) = (0,it) € R x (iR)? with t = (t1,...,14) and 0y = (sgnty)7/2 of
Theorem 6 implies the complete asymptotic expansion in the descending order of ¢, as
ty — Foco.

Corollary 6.1. Let a, A, m, a = (a,...,aq) and Oy be as in Theorem 6, and t =
(t1,...,ty) € R Then for any integer N > 0 we have the asymptotic expansion, as
tyg — oo,

(3.8) LM, (qﬁ*)(m)(aJri(ﬂ a, \)

n+m ) F(d 1) (<a> +n,ad_1. 1- td 1)
(@) ’ la

M

n=0

X Glaypn-m (@A) (€CE T2ty )@ O Jtg] RN,
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while the other parameter t;_1 moves as t; — 00 upon satisfying
Cltdgfj SCth (j::l,...,dfl)

for some constants ¢, > 0 (k = 1,2), where the implied O-constant depends at most on
a,a, 0,m, N, c and cs.

Problem 2. Find the complete asymptotic expansions for the multiple Riemann-Liouville
transform RLP(¢*) ™ (s+(z,7),a, X) when z € C* becomes both small and large through
appropriate poly-sectors.

Problem 3. Find a good class of multiple zeta-functions which appropriates to apply the
operators LM _ and RLEP, and further deduce the asymptotic expansions with respect

zT zT
to z € C under application of these operators.

4. SUPPLEMENTED ASYMPTOTICS FOR (RESTORED) LM ((s+ T, a)

We recall the extraction of the singular part ¥ (s, a) from ((s,a) as (*(s,a) = ((s,a) —
(s, a), see (1.3). Note further that our asymptotic results are obtained under the restric-
tion a > 1, and hence the case of ((s) = ((s, 1) is excluded from our initial consideration.
We supplement in this section the corresponding results on the singular part (s, a) to
make up for establishing the asymptotic expansions for (restored) LM ((s + 7,a), al-
though the presentation of the resulting formulae becomes rather involved.

Let 1Fi(5; Z) and U(k;v; Z) denote Kummer’s confluent hypergeometric function of
the first and second kind, defined respectively by

(4.1) P (’; Z) = (l(/I;;);f'Zk (12] < +00)
k=0 ’
for (k,v) € C x (C\ Z<p) (cf. [2, p.248, 6.1(1)]), and
1

(0+)
(42) U(K, v Z) = / e—Zwu,n—l(l + w)y_,i_ldw

I'(r){e(r) — 1}
for |arg Z| < 7/2 and for all (k,v) € C? (cf. [2, p.255, 6.5(2)]), where the domain of Z
in the latter expression can be extended to |arg Z| < 37/2 by rotating suitably the path
of integration (cf. [2, p.273, 6.11.2(9)]). We write s = o + it and r = p + i7 with real
coordinates throughout the following, and introduce for any (r,s) € C x (C\ {1}) the
auxiliary function

(4.3) I551(s,a) = n(s, a).
Then for any a > 1 the evaluation
Ur(s,a) =a'*log" " a-U(1;2 —r; (s — 1) loga)
a'~*log' " a 1 P
= ﬁlF&(Q o (s— 1)10ga) + (1 —7)(s—1)""

is in fact valid for all (r,s) € C? with |arg(s — 1)| < 7, where the second equality follows
from the connection formula

. § 1—v K v =1\ 1, k—v+1 .
4y Umwn=r( " WA(z) (" )2 m (T 2)
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for any (k,v) € C x (C\ Z) (cf. 2, p.257, 6.5(7)]); this further implies the estimate
de(s,a) < (] + 1)7™OLD (7] 4 Jt] 4 1)mx©le)
eI (7 1) 20 ([ 4+ 1)
in the same region of (r, s) above.
We can show along with the lines above the following Theorems 7 and 8, which give

complete asymptotic expansions for LMZ. ¢ (M) (s 4 7,a) if a > 1 as both z — 0 and
z — oo through a sector narrower than |arg z| < 7.

Theorem 7. Let a, a, A and m be as in Theorem 1, the complex variable s located in the
sector |arg(s — 1)| <, and set 0(s) = arg(s — 1) and §(s) = 7 — |0(s)|(> 0). Then for
any integer N > 0, in the sector

max(—ﬁ, —3% + 9(5)) < arg z < min (77, 3% + 9(3))
we have

(4.5) LM (M (s+7a) = (—1)™" M{gjn_m(w)+w,n,m(s,a)}zn

n!

3
o

1=

+ R} y(s,a52).
Here the reminder R:,FL_’N(S, a; z) satisfies the estimate
(4.6) Ry, (s, a;.2) = O (|| + 1ymex@RrodMmm V)

as z — O through the sector
3 3
max<f7r, 7% + 9(5)) +n<argz < min(ﬂ, % + 9(5)) —n
with any small 0 < 1 < §(s), where the implied O-constant depends at most on «, o, a,
m, N and 7.

Theorem 8. Let a, a, A\, m and 0(s) be as in Theorem 7. Then for any complex variable
s with |0(s)| < m, and any integer N > 0, in the sector

max(—m —3% + 9(5)) <argz < min(ﬁ, 3% + 9(5))

we have

=

(@7) M5 ma) = (10 3 T e o)+ (s )}

i
=)

n

+ R, n(5,0;2).
Here the reminder R, \(s,a;2) satisfies the estimate
(48) Ry (5,:2) = O{(t] + 1ms(@lz-odReark¥=m) |- Rear)

as z — 0o through the sector
3 3
max(—ﬂ, —% + H(s)) +n<argz < min<7r, g + 9(5)) o/

with any small 0 < n < 0(s), where the implied O-constant depends at most on o, o, a,
m, N and 7.
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One can observe for any sy € C fixed in the sector |arg(sp — 1)| < 7 that the vertical
lines » = €8 97/2|¢| with all ¢ € R\ {0} are included in the sector

max(—ﬁ, —3% + 9(50)) <argz < mm( 32 + 9(50))

which allows us to deduce from Theorem 8 the following corollary.

Corollary 8.1. Let «, a, A, m and 0(s) be as in Theorem 8. Then for any complex sq
fized with |0(so)| < 7, and for any integer N > 0 we have the asymptotic expansion, as
L — +oo,

N— 1

(4.9) LM Q(m)(:.o +iT,a) ™ Z n{Qa+n (50, @) + Yayn_m(S0, a)}

% (e(bgnt)m/2|t|) + O(|t|chosz)7
where the implied O-constant depends at most on «, a, Re sy, m and N.

The result above on ((s,a) can in fact be transferred to that below on ((s) through
the relation ((s) = 1 + ((s,2). Note here that the primitives {¢(s) — 1}™ exist for all
non-positive integers m; however (™ (s) does not for such m, since limg_, ;o0 ((o+il) = 1
with any real t. We can therefore show the following formula for {((s) — 1} insted for
¢M(s) (m € Z) itself.

Corollary 8.2. Let sy, «, a, X\ and m be as in Theorem 8. Then for any integer N > 0
we have the asymptotic expansion, ast — +oo,
(4.10) LM {¢(so +iT) — 1}

N—-1

= (_l)m Z (_1)71&{(;+n_m(507 2) + Q/)aJrnfm(So, 2) } (e(sgnt)m‘/2|t|)fafn

n=0
+O(Jt|7 o),

where the implied O-constant depends at most on «, a, Re sy, m and N.

Problem 4. Find the complete asymptotic expansions for the Riemann-Liouville trans-
form REZ’EC(’")(S + 7, a) with any m € Z as both z — 0 and z — oo through appropriate
sectors.

5. SOME MEAN VALUES OF DOUBLE HURWITZ ZETA-FUNCTIONS
Let s = (s1, $2) be complex variables, @ = (ay, az) real parameters with a; > 0 (j =
1,2), write s; = g; +it; (j = 1,2), and set e; = (1,0) and e; = (0,1) throughout the
following. We here introduce the double Hurwitz zeta-function (»(s;a) and the double
Plejeri-Minak zeta-function (»(s; @), defined respectively by

oo

(5.1) é(& a) = Z (a1 +ag+ 11 + 1) " (ag + 1)~

11,l2=0

for oy > 1 and 05 > 1, and

(5.2) Gs;a) =Y (a1 +ay+1)"" (ap + 1)
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for o1 + 09 > 1, both with their meromorphic continuations to the whole s-space C2.
The following theorems can in fact be shown for the mean values with respect to the
parameters & = (71, 72) € (R>0)? in (2(s;a + ).

Theorem 9. For any integer N > 0, and for any complex s = (s1,s2) in the region
01+ 09 >1— N, except the points on

(5.3) B ={seC®|(s)=2—nors;=14+n (n=0,1,...)},

we have the formula

() =1

1
(5.4) / Cao(s;a+ xep)dry =
0 S1 — 1

where

+ Sin(s;a) + Rin(sia).

(5.5) Sin(s;a) = CESI al™ ¢y (s + nep; a),
n=0 :
(SN Ny - 1— > x*?
5.6 R ca) = ————al't + 1) ——dux.
( ) 1,N(S (1) (N + 1)!0‘1 ;(CL? ) st (al + $)31+N T

Here the estimates
G(s +nep;a) = Oay 77727,
Rin(s;a) = O(ay 77N
follow for all N > n > 0 in the same region of s above; this shows that the formula (5.4)

gives a complete asymptotic expansion in the descending order of as as ay — 400, while
ay > 0 is fized.

(5.7)

Theorem 10. For any integer N > 0 and for any complex s = (s1,$2) in the region
01 <14+ N and o9 >1— N, except the points on

(5.8) E:{SG(C2|<8>:2—n01"82:1—0-71,(”:071,..‘)},
we have the formula
1
~ 1- —1
(5.9) / Ga(8s;a + woeq)das = F( 82;<8> )C((s) —1,a1)
0 1
—Son(sa)— Ryn(s;a),

where

N-1 (s

_ n g+

(5.10) San(s;a) = Z T Ca(s + ney, (a)),

n=0
(5.11) Ryn(sia) = —2 (s1) Sl*NZa +0)- <8>/ Ldm

. 2,N\2; (1 _ 52 a4l (Gz + x)51+N

Here the estimates
(o(s + ey, (@) = O(a; "),
Ron(s;a) = ()(ai Ul_N)

follow for all N > n >0 in the same region of s above; this shows that the formula (5.9)
gives a complete asymptotic expansion in the descending order of ay as a; — 400, while

(5.12)
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as 18 fived. Furthermore, in the same region of s above, for any integer K > 0, we have
the expression

K -
(5.13) Ron(s;a) Z (2(1__<2§’:\[1(51)Nk a3 NGk, sy + N — ks a)

O S R

(1 — 82)]\[
® _ gK2
X ————v - ax
/mz (ag + z)sr V=K

which gives a complete asymptotic expansion when s; — oo (j = 1,2), so as that s € C?

+

=0

is on any hyper-plane (s) = ¢ € C except the points on Es.

Theorem 11. A complete asymptotic expansion similar to that in Theorem 10 exists for
the double mean value

1,1
(514) // CQ(S;G+17161 +$262)d3§1d$’2.
0J0

Theorem 12. Complete asymptotic expansions in the descending order of q as ¢ — +00
exist for the discrete mean values

(5.15) Z@( “’J”"Jef) (j=1,2).

Theorem 13. Complete asymptotic expansions in the descending order of q as ¢ — +00
exist for the hybrid mean values

(5.16) 3 / @(S;WW’
Tj:() 0

where (i,7) = (1,2) or (2,1).
Let s = (s1,...,58q4) be complex variables, and a = (ay, ..., ad) real parameters with
a; >0 (j=1,...,d). Then the multiple Hurwitz zeta-function (y(s;a) is defined by

oo d d

(5.17) Gsia)= 3 H{Z(ai + m}sy

1yesdg=0j=1 % i=j

0 d
Z Ha]+aj+1+ +ad+lj+lj+1+"'+ld)_sj
l1,..,lq=0 j=1

for Z{?ZI oj > d, and its meromorphic continuation to the whole s-space CY. It is reason-
able from the observation of the theorems above to pose the following Problem 5.

Problem 5. Find all the ‘asymptotic phenomena’ as above for mized mean values of

ai(s; a+ x) appropriately averaged with respect to the (discrete or continuous) parameter
z € [0,1]%
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It is to be remarked that there are

d
> <d> ¥ =411
=1 ™
possibilities of formulation for continuous and discrete mean values, together with their
hybridization, for (4(s; a + x) with respect to the parameter x € [0, 1]¢.

Let L(s, x) denote the Dirichlet L-functions attached to a Dirichlet character y modulo
q(> 1). We note that the direction of research above proceeds from our previous study
of the discrete and continuous mean squares 3° (o4 [L(s,X)1? 2272, [C(s,7/q)[* and

[ 1¢(s,1 + @)[?dz, given in [9], [10], [11] and [12], also of the continuous and multiple

mean squares fol |6(s, 1+ z,\)|*dz and fol - fol |p(s,a + x1 4 - 4 Ty, A)|Pday - - - day,
(m =1,2,...) in [4] and [6], and further of the higher power moments >_7_, [((s,r/q)[*
(k=2,3,...)in [1].

6. OUTLINE OF THE PROOFS OF THEOREMS 5 AND 6

We write w = u + v with real coordinates v and v. A key to prove Theorems 5 and 6
is the Mellin-Barnes type integral expression

(6.1) LM (") (s+ (T),a,N)

B (o) +w, —w) (d—1) (—Uh Q-1 del) . w g
= /(u) I ( () 1 N ;1 — O m(Ssa, N)zy dw

24
for any m € Z, and a constant u with — Re(a) < u < 0. The vertical estimate
(6.2) 0" (5,0, A) < (Jo] + [t] + 1)@ 2med

can in fact be shown for any (w,s) € C? (cf. [8, Lemma 3]). It follows from (6.2)
that the integral in (6.1) converges absolutely for all s € C and z € C? in the sector
largz; — Op| < w/2 (j = 1,...,d) with any fixed 6y € [—7/2,7/2]; this provides the
analytic continuation of LME_(¢*)™ (s + (), a, ) to the same region of (s, z) above.

Theorems 5 and 6 are established respectively by moving the path () to the right upon
yielding the complete asymptotic expansion as z; — 0 (Theorem 5), while to the left upon
that as zg — oo (Theorem 6).
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