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ARCHIMEDEAN NON-VANISHING AND COHOMOLOGICAL TEST 
VECTOR 

BINGCHEN LIN 

ABSTRACT. The standard £-functions of GL2 n expressed in terms of the Friedberg-Jacquet 
global zeta integrals have better structure for arithmetic applications, due to the relation of 
the linear periods with the modular symbols. In this paper, we just give an overview for our 
recent work on the archimedean local integrals of Friedberg-Jacquet([CJLT19],[LT20]). We will 
focus on the complex case, explicitly construct a uniform cohomological test vector v for a new 
twisted linear functional As,x and establish the non-vanishing property for the archimedean 
local Friedberg-Jacquet integral when evaluating at v. 

1. INTRODUCTION 

Let k be a number field, and A be the ring of adeles of k. Let 1r be an irreducible cuspidal 
automorphic representation of GL2n(A). The standard £-function L(s, 1r 181 x) of 1r, twisted by 
an idele-class character x of P, was first studied by R. Godement and H. Jacquet in 1972 
([GJ72]), and then by the Rankin-Selberg convolution method of Jacquet, I. Piatetski-Shapiro 
and J. Shalika in 1983 ([JPSS83]). In 1993, S. Friedberg and Jacquet found in [FJ93] a new 
global zeta integral for L(s, 1r 181 x), assuming that 1r has a non-zero Shalika period. 

Let W1r be the central character of 1r and take an idele-class character w such that wn = W1r­
The global zeta integral Z('P1r, X, w, s) of Friedberg-Jacquet is given by 

(1.1) 1 (91 0 ) det 91 s 1 det 91 
'P1r( 0 9 )1-d t I - 2x(-d t )w(det92)d91d92, 

[GLnxGLn] 2 e 92 e 92 

where 'P1r E 1r, [GLn x GLn] := Z2n(A)(GLn(k) x GLn(k))\(GLn(A) x GLn(A)) with Z2n the 
center of GL2n- In [F J93, Proposition 2.3], it is proved that Z( 'P1r, X, w, s) converges absolutely 
for all s E (C_ Particularly, for Re(s) sufficiently large, it is equal to the absolutely convergent 
integral 

Z('P1r,x,s) := 1 S~('P1r) (g i°) x(det9)ldet91•-½d9, 
GLn(A) n 

(1.2) 

where 7/; is a non-trivial additive character of k\A and S~ is the global Shalika period of 'P1r that 
is defined as follows. Let S be the Shalika subgroup of GL2n consisting of matrices of the form 

s(x, 9) = (i ~) Ca 1:)' 
where x E Mn and 9 E GLn. Define 0(s(x,9)) := w(det9)7/;(Tr(x)). The Shalika period is 
defined by 

S~('P1r)(h) := { 'P1r(s(x,9)h)0- 1(s(x,9))ds. 
j Z2n(A)S(k)\S(A) 

By the local uniqueness of the Shalika model ([Ni09], [AGJ09], and [CS19]), for the factoriz­
able 'P1r = 0~'Pv, one has that (S~('P1r))(h) = ITv(s;:('Pv))(hv) with s;:('Pv) being the local 
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Shalika function associated to the local Shalika model at each place v, and an euler product 
decomposition: 

V 

where the local zeta integrals are defined by 

(1.3) Zv('Pv,Xv,s) := f si:('Pv) (i I0n) Xv(detg)ldetgl~-½dg. 
jGLn(kv) 

Furthermore, it is proved that the local zeta integral Zv('Pv,Xv,s) is a holomorphic multiple of 
the local L-function L(s, Kv ® Xv) ([FJ93] and [AGJ09]). It is clear that the Friedberg-Jacquet 
global zeta integral for L(s, 1r ® x) is a natural generalization of the Hecke zeta integral for GL2 
([JL70]). 

In the three constructions of different global zeta integrals for L(s, 1r ® x), it seems that the 
Friedberg-Jacquet global zeta integral for L( s, 1r ® x) is better for arithmetic applications with 1r 
being cohomological, since the construction is closely related to the generalized modular symbols 
([AB89]). For instance, the work of A. Ash and D. Ginzburg ([AG94]) that constructs p-adic 
L-functions for GL2n; the work of Grobner and A. Raghuram ([GR14]) that studies arithmetic 
properties of the critical values of L(s, 1r® x) and the recent work of D. Jiang, B. Sun and F. Tian 
([JST19]) that establishes the period relations of the critical values at different critical places 
for the automorphic L-functions L(s, 1r ® x) are all focus on the Friedberg-Jacquet integrals for 
cohomological representations. Among these applications, there are two basic assumptions: 

(1) Non-vanishing Assumption: Zv('Pv, Xv,½) #- 0 for suitable cohomological vector 'Pv 
in co homological representation 1r v when kv = lll and IC. 

(2) Uniform Cohomological Test Vector: The archimedean local zeta integral Zv('Pv, Xv, s) 
admits a uniform cohomological test vector 'Pv in the sense that 

1 
L( ® /v('Pv,Xv,s)=l s, 1fv Xv 

holds for all complex values s E IC. 

For (1), A. Ash and D. Ginzburg only show that such assumption is satisfied for n = 2 in 
[AG94]. For (2), the best result to the date is Sun's existence of cohomological test vector in 
[Sun19, Theorem 5.1], which shows that for any irreducible essentially tempered cohomological 
Casselman-Wallach representation Kv of GL2n(lll) and every s E IC, there exists a cohomological 
vector 'Pv,s, depending on s, such that the normalized Friedberg-Jacquet integral 

1 
L( ® )Zv('Pv,s,Xv,s)=l. 

s, 1rv Xv 

As explained [JST19], this is not enough to obtain the global period relation of the critical values 
of the twisted standard L-functions L(s, 1r ® x) at different critical places. 

The objective of our recent work [CJLT19], [LT20] is to develop a constructive approach to­
wards Problems (1) and (2) for archimedean case, which is complementary to the approach 
taken by Sun in [Sun19]. In this paper, we will sketch out the explicit construction of the co­
homological test vectors. The strategies between real and complex cases are similar. However, 
the latter case has extra complications. We will focus on the complex case in this paper. 

2. COHOMOLOGICAL REPRESENTATIONS, SHALIKA MODELS AND LINEAR MODELS 

For further arithmetic application, we often consider the cohomological representations. Hence, 
as in [JST19], we assume that the cuspidal automorphic representation of GL2n(A) is regular and 
algebraic in the sense of Clozel([Cl88]). Under this condition, Clozel shows that the archimedean 
local representation is essentially tempered and cohomological. In this section, we will give the 
description for the cohomological representations of GL2n(lK) (JK = lll, IC) with Shalika models 
and construct a new linear model for explicit computation. 
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2.1. Cohomological Representations of GL2n(lK). Let G = GL2n(lK) with center Z, and K 
be the maximal compact subgroup of G. Set 

H = { ( 91 gJ lg1,g2 E GLn(lK)} ~ GLn(lK) x GLn(lK). 

Let B be the standard Borel subgroup of G consisting of all upper-triangular matrices in G. We 
fix the usual root system of G so that B contains all simple root vectors. Then the half sum of 
all positive roots, denoted by p, is 

2n - 1 2n - 3 3 - 2n 1 - 2n 
(2-1) p=(-2-,-2-,··· ,-2-,-2-). 

To fix notation, we will use capital letters G, H etc. for certain Lie groups, G0 , H0 etc. for 
their identity components, German letters g, b etc. for their Lie algebras, and g<C, b<C for the 
complexifications of the Lie algebras. 
Real Case: Let Fv be a highest weight representation of GL2n(<C) with highest weight v, which 
can be written as a vector: v = (v1, v2, · · · , V2n) E z2n, with v1 2 v2 2 · · · 2 V2n• Let 7r be an 
irreducible essentially tempered Casselman-Wallach representations of GL2n (R) with property 
that the total relative Lie algebra cohomology 

H*(g, K 0 z0 , 1r@ F;:) i= 0. 

Here we also use 1r for its underlying (g, K)-module when no confusion arises. By [Cl88, Section 
3], the highest weight v satisfies the following purity condition: 

(2.2) 

Meanwhile, we must also have that 

n 2 S j S n 2 + n - 1. 

One should observe that the top non-vanishing degree n2 + n - 1 is exactly the dimension d of 
the quotient space Lie(H)/Lie((KnH)Z), where Lie(H) is the Lie algebra of H. It is the same 
as the dimension of the modular symbol generated by H(ref.[AG96]). Now set 

(2.3) li = Vi - V2n+1-i + (2n + 1 - 2i) for all 1 Si S 2n. 

We note that all li share the same parity, which is different from the parity of m. For each 
positive integer k, we write Dk for the relative discrete series of GL2(R) with quadratic central 
character whose minimal K-type has highest weight k+ 1. Then we have the langlands parameter 
for 1r(see [Ma05 , Section 3.1] and [GR14, Section 3.4]) 

Proposition 2.1. Let (1r, V1r) be an irreducible essentially tempered Casselman-Wallach repre­
sentation of GL2n(R) with property that 

H*(g, K 0 z0 , 1r@ F;:) i= 0. 

Then 1r is equivalent to the normalized induced representation 

Ini},L2nCIR) Dii I <let I~ @ D12 I <let I~ @ · · · @ Dzn I <let I~, 
where P is the standard parabolic subgroup of GL2n (R) associated with the partition [2n]. More­
over, the minimal K-type T of 7r has the highest weight (li + 1, 12 + 1, · · · , ln + 1). 

In this situation, the central character of 1r takes the form 

{
lalmn 

W,r(aI2n) = lalmn(sgn(a)r 
m is even; 

m is odd, 

We defines a character of Rx as follows: 

w(a) = {lalm 
lalmsgn(a) 

m is even; 

m is odd, 
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which is exactly the cental character of D1J I det I°¥'- for all j and W1r = wn. 
Complex Case:Let p1, p2 be two highest weight representations of GL2n(C) with highest 
weights (v1, v2, · · · , V2n) and (v2n+l, V2n+2, · · · , V4n) respectively, where each llj E Zand 

We consider a complex finite dimensional representation (p, Fv) of the real algebraic group 
GL2n(C) defined by p(g) := p1(g) ® p2(g). For consistency, we denote v2n+j by Dj for all 
j = 1, 2, · · · , 2n. The 4n-integers 

(2.4) 

is called the highest weight of Fv. Similar to the real case, we assume that v satisfies the purity 
condition as in [Cl88]. Namely, there exists an integer m E Z such that for all j = 1, 2, · · · , 2n, 

(2.5) Vj + V2n-j+l = m. 

Let ( 1r, V1r) be an irreducible essentially tempered Casselman-Wallach representation of GL2n ( q 
such that the total relative Lie algebra cohomology 

H*(g, K, 1r ® F;/) -/= 0. 

By [Cl88, Lemma 3.14], the ih-cohomology group 

Hj (g, K, 1r ® F;/) -/= 0 ~ 2n2 - n S j S 2n2 + n - l. 

In particular, when j is taken to be the dimension d = 2n2 - 1 of the modular symbol generated 
by H, the cohomology is nonzero. Now we recall the Langlands parameter for 1r, which is 
discussed in [Ra16, Section 2.4.2]. 

Proposition 2.2. Let ( 1r, V1r) be an irreducible essentially tempered Casselman- Wallach repre­
sentation of GL2n(C) such that the relative Lie algebra cohomology 

H"(g, K, 1r ® F;/) -/= 0. 

Then 1r is equivalent to the principal series representation 

(2.6) IndiiL2n(<C) zv' +2n2-1 zm-v, - 2n2-1 ® zv2+2n2-3 zm-v2- 2n2-3 ® ... ® zV2n+ 1-,2n zm-v2n- 1-22n' 

where v and m are described in (2.4) and (2.5) resp .. B is the standard Borel subgroup of G. 

For any integer L, denote by XL the unitary character of ex sending z to ( ~ )L. We set 
lj = 2vj+(2n+l-2j)-m, then (11, 12, • • • ,l2n) is a sequence of integers in a strictly decreasing 
order such that lj + l2n+l-j = 2vj + 2v2n+1-j - 2m is an even integer. We then rewrite the 
cohomological representation 1r given in (2.6) as 

(2.7) 7r '::: Indil 
m 

ll Xii® I 
2.2. Shalika model and linear model. Let us fix a non-trivial unitary character 'I/; of 1K and 
a multiplicative character w of ocx. We say a Casselman-Wallach representation 1r of G has a 
non-zero (w, 7/J)-Shalika model if there exists a non-zero continuous linear functional A on the 
Frechet space V1r, which is called a Shalika functional, such that 

(2.8) 

for any v E V1r, g E GLn(lK) and any n x n matrix Y E Mn(lK). For a character x of ocx, the 
local archimedean integral of Friedberg-Jacquet as in (1.3) can be re-written as 

(2.9) Z( v, s, x) = r (>-, 7f ( 9 I ) v) I det 91~-½ x(det g)dg. 
JGLn(IK) n 

By [AGJ09, Theorem 3.1], the integral (2.9) converges absolutely when Re( s) is sufficiently large. 
Z(v,s,x) is a homomorphic multiple of L(s,1r ® x) in the sense of meromorphic continuation 
and there exists a smooth vector v E V1r such that Z(v,s,x) = L(s,1r ® x). Thus whenever 
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s = s0 is not a pole of L(s, 1r ® x), Z( v, s, x) has no pole at s = s0. This implies that the map: 
v c-+ Z ( v, so, x) defines a nonzero element in 

HomH(V1r, I det l~so+½ x-1(det) ® I det 1;-½ (xw)(det)), 

which is called the space of twisted linear functionals of 1r. The uniqueness of the twisted linear 
model is proved in [CS19]. In our scenario, we apply [CS19, Theorem B] and conclude that for 
all but countably many characters X, 

(2.10) dim HomH(1r, I det l~so+½ [1(det) ® I det 1;-½ (xw)(det)) ::; 1. 

In fact, if I det 1-so+½ x-1(det) ® I det lso-½ (xw)( det) is a good character of H, then (2.10) holds. 
For the precise definition of a good character of H, we refer to [CS19]. Here we remark that 
when x and w are both trivial and so= ½, the uniqueness theorem is proved in [AG09]. 

2.3. Cohomological Representations with Shalika Models. The goal of this subection is 
to prove a hereditary property of Shalika models with respect to normalized parabolic induction. 
Let us first start from the case of GL2 (JK). Let er be a generic Casselman-Wallach representation 
of GL2(1K) with a central character w,,. We fix a nontrivial unitary character 7/J of lK. Then er 
admits a non-zero Whittaker model W( er, 7/J), i.e. there exists a continuous linear functional .>.,, 
on the Frechet space V,, such that 

(>-,,, er( (1 n ( a a }v) = w,,(a)'ljJ(x)(>-,,, v), 

which exactly coincides with (2.8) for n = 1. Hence any such er has a non-zero (w,,, 7/J)-Shalika 
model. Generally, suppose that we have l Frechet spaces Vi, Vi,••• , Vi- Let Aj be a continuous 
linear functional on ½ (j = 1, 2, • • • , l). Then ®;=l Aj is a continuous linear functional on the 

-z 
projective tensor space ®j=l ½, which is also a Frechet space. 

Theorem 2.3. Let w be a character of ocx and 7/J be a nontrivial unitary character of lK. For 
two positive even integers n1 = 2m1 and n2 = 2m2, take two Casselman- Wallach representa­
tions 1r1 and 1r2 of GLn1 (1K) and GLn2 (1K), respectively, and assume that both 1r1 and 1r2 have 

(w, 7/J )-Shalika models. Then the normalized parabolic induction 1r := Inl;Lni +n(~)(IK) 1r1 ® 1r2 also 
n1,n2 

has a non-zero (w,7/J)-Shalika model. Here Pn1 ,n2 is a standard parabolic subgroup of GLn1+n2 

with its Levi part isomorphic to GLn1 x GLn2 -

Proof. We can show this theorem by constructing a new linear function, which satisies the 
equivariant property (2.8). Please refer to [CJLT19, Theorem 2.1] for more details. □ 

Then combining Theorem 2.3 and the example on GL2(1K) discussed at the beginning of this 
section, we have 

Corollary 2.4. Any irreducible essentially tempered Casselman-Wallach representation (1r, V1r) 
of GL2n(iR) with 

F(g, K 0 z0 , 1r ® F;:) # 0 

has a non-zero Shalika model defined by the Shalika functional as in (2.8). 

However, not all ireducible essentially tempered cohomological Casselman-Wallach representa­
tions of GL2n((C) has Shallika modules automatically. Actually, we have the following description 
for such kind of representations with Shalika models. 

Theorem 2.5. Let 1r be the cohomological representation given in (2.7) with a central character 
W,r. Given a non-trivial additive character 7/J of C and a multiplicative character w of e,x such 
that wn = W,r, we have the following equivalent statements: 

(1) 1r has a non-zero (w, 7/J)-Shalika model defined at the beginning of the Introduction; 
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(2) There exists a discrete, countable subset S C (C such that for every complex number 
s r/:. S, 1r has a nonzero twisted linear model for arbitrary character x of ex, i.e. 

HomH(V1r, I det It+½ [ 1(det) ® I det I~-½ (xw)(det)) # 0. 

(3) There exists an integer L such that lj + l2n+1-j = 2L. 

Proof. (3)⇒ (1): If lj+l2n+l-j = 2L holds, then we can rewrite 1r as the normalized parabolically 
induced representation 

(2.11) 

where P is the standard parabolic subgroup of GL2n(C) associated with the partition [2n], and 
each O"j is the principal series of GL2(C): 

(2.12) ·-I d8 L2 (<C)ld tl!/J- D,ld tl!/J-O"j .- n B2 e IC Xlj '°' e IC Xbn+l-j" 

All the principal series O"j share the same central character w = I · 12X2L· Hence all O"j have 
nonzero Shalika models associated with the same characters wand 1/J. Then by Theorem 2.3(see 
[CJLT19, Thoerem 2.1]), 1r automatically has a nonzero (w,1/J)-Shalika model. 

(1)⇒(2): We assume that 1r has a nonzero (w,1/J)-Shalika model. Then the local integral 
Z ( v, s, x) defines a nonzero element in 

HomH(V1r, I det It+½ x-1(det) ® I det It½ (xw)(det)), 

whenever s is not a pole of the standard local £-function L(s, 1r ® x). Thus, Statement (2) 
follows from the fact that the poles of the local £-function L(s, 1r ® x) form a countable discrete 
subset of C. 

(2)⇒(3): This is the most difficult part of the proof. Please refer [LT20, Theorem 2.1] for 
more details. □ 

2.4. A New construction of Linear Model. In this subsection, we will construct another 
linear period so that we do the computation more easily. Let 1r be an irreducible essentially 
tempered cohomological representation of G = GL2n(K) with a nonzero (w, '1/J)-Shalika model. 
According to the discussion in previous subsections, we see that 1r must be isomorphic to the 
normalized parabolically induced representation 

(2.13) Indj0"1 ® 0"2 ® · · · ® O"n, 

where P is the standard parabolic subgroup of G associated with the partition [2n], and O"j = 
m GL2(<C) "" "" 

DiJ I det I 2 or IndRGL2 I· IJ XlJ ®I· IJ Xl 2n+i-J when K = R or C respectively. It is clear that all 

O"j are generic and share the same central character w. Fix a character x of Kx. For each O"j, 
which admits a nonzero Whittaker model W(O"j, 1/J), the archimedean local integral 

(2.14) As,j(v) := lx Wv((a 1) lal~-½x(a)dxa 

has a meromorphic continuation to the whole complex plane, and it is a holomorphic multiple 
of the £-function L(s, O"j ® x). Whenever s = so is not a pole of the £-function L(s, O"j ® x), 
.\80 ,j defines a nonzero continuous linear functional in 

1 

HomGL,(IK)xGL1(1K)(O"j, I lik-s"x-l@ I 
sa-l 

loc 2 wx). 

Then we consider a continuous linear functional Q?/J=l >-s,j on the projective tensor product 
A n 

®j=l V,,.J of Frechet spaces. Take <p E V1r, we can define a function on H by 

(2.15) 
n 

Fs(h; 'P) = (Q9 >-s,j, 'P( wh)), 
j=l 
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where w is inverse of the Wey! element which changes the sequence (1, 2, 3, · · · , 2n) to (1, 3, · · · , 2n-
1, 2, 4, · · · , 2n). Let B1 and B2 be the standard Borel subgroups of GLn(lK). By the equivari­
ance of As,j, it is easy to check that Fs ( h; <p) satisfies a B1 x B2 equivariant property: for 
(b1, b2) E B1 X B2 

(2.16) Fs( (bi b2) h; <p) = c5B, (b1)c5B2 (b2)x1,s(det b1) · x2,s(det b2) · Fs(h; <p), 

1 1 

where c5B, is the modular character of Bi(i = 1, 2), Xl,s =I• li-sX-1, and X2,s =I· l~- 2 xw. Now 
we define a continuous linear functional As,x on V,r by the following convergent integral 

(2.17) 

In terms of <p, As,x can be rewritten as: 
(2.18) 

As,x('P) = f (®>-.s,j,<p(w (ki k ))x1,!(detk1)x2,!(detk2))dk1dk2 = (®>-.s,j,cp(w)), 
j KnH j=l 2 j=l 

where cp is obtained by averaging <p against the character x 1!(det k1)x2!(det k2) over the com­
pact group Kn H. In particular, if <p satisfies the right K n'H-equivari~nt property: 

(2.19) <p(g e1 k2} = X1,s(detk1) · X2,s(detk2) · <p(g) = x-1(detk1) · (wx)(detk2) · <p(g), 

then 
n n 

(2.20) 
i=l i=l 

We can show that the linear functional As,x has the following property. 

Proposition 2.6. For every <p E V,r, As,x('P) defined by (2.17) has a meromorphic continuation 
in s to the whole complex plane. It is a holomorphic multiple of L(s, 1r 121 x). As,x defines a 
nonzero element in 

HomH(1r, X1,s(det) 121 X2,s(det)) = HomH(1r, I det It+½ [ 1(det) 121 I det I~-½ (xw)(det)), 

whenever s is not a pole of the L-function L( s, 1r 121 x). In particular, one can choose <p such that 
As,x('P) = L(s, 1r 121 x). 

3. COHOMOLOGICAL VECTORS IN THE INDUCED REPRESENTATION 

Although Proposition 2.6 tells us that we can find a test vector <p for As,x, it does not show 
such <p is cohomological, namely, <p lies in the minimal K-type of 1r. Thus, The goal of this 
Section is to explicitly construct a cohomological vector of 1r for As,x· Since the construction 
of real and complex cases is similar, here we only focus on the case G = GL2n(C). One can 
also refer to [CJLT19] for the real case, where we use a conceptual method. Now we will start 
with some reductions and then outline our strategy on the construction of the function in the 
minimal K-type. Throughout this Section, we use the bold letter i for A. 

3.1. Some reductions. First, we briefly recall the notations in Section 2. Let K = U2n be the 
standard maximal compact subgroup of G = GL2n(C), B be the standard Borel subgroup of G, 
and T be the split torus contained in B. Then Tisa product of 2n copies of ex, and T n K is 
a product of 2n copies of U 1. 

Let 7r be the irreducible generic cohomological representation given in (2.7) with lj +l2n+l-j = 
2L(j = 1, · · · , n). Set lj = Nj + L. Then (N1, N2, · · · , N2n) is a sequence of integers in the 
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strictly decreasing order satisfying Nj + N2n+1-j = 0 (j = l, 2, · · · , n). As in subsection 2.4, 1r 

can be rewritten as 

(3.1) Ind~I 
m 

ll X-N1+L Q9 • • • Q9 I 
m 

llXNn+L®I 

Let T be the minimal K-type of 1r. By Frobenius reciprocity law, we see that the highest weight 
of T is A= (Ni+ L, · · · , Nn + L, -Nn + L, · · · - Ni+ L). For simplicity, we set 

XjJ := XN1+L ® X-N1+L ® · · · ® XNn+L ® X-Nn+L, 

where N := (Ni+ L, -Ni+ L, · · · , Nn + L, -Nn + L). Then by [Vo86, Proposition 8.1], T is 
also the minimal K-type of the representation 7rK = Ind¥'nKXR· Every function in 7rK belongs 
to the space C00 (K) of smooth functions on K satisfying the left equivariant property given by 
XR· Inspired by this, we may regard C00 (K) as a left TnK- and right K-module under the left 
and right regular actions. As a (T n K) x K-module, the space C00 (K)fin of K-finite vectors of 
C00 (K) is completely reducible and decomposed into a direct sum: 

(3.2) C00 (K)fin = E9 
(x,ry)ETnKxR xETnK ryEK 

where mx,'7 is the multiplicity of (T n K) x K-submodule x ® 1J occurring in C00 (K)fin· 
Thus EBryEK mxR,'7XiJ ® 1J is the space of K-finite vectors of 7rK and the minimal K-type T 

of 7rK is an irreducible summand in this space with highest weight (-IV) x A. Here the left 
irreducible T n K-module is given by the tensor product of 2n characters on Ui, and we write 
its highest weight as the form -N. 

Now we consider the restriction map 

l: C00 (Mat~n)--+ C00 (K), f f---t JIK, 
where Mat~n is the realification of the complex vector space Mat2n of 2n x 2n complex matrices. 
Once we equip C00 (Mat~n) a left T n K- and right K-module structures by the left and right 
regular actions, i becomes a T n K x K-module homomorphism. To explicitly construct a coho­
mological vector in the minimal K-type T, we only need to produce a polynomial FR,x-zOxz+2L 

in C00 (Mat~n)fin = C[Mat~nl such that 

(1) its restriction l(FN- 0 ) lies in a T n K x K-submodule of C00 (K)fin with highest ,X-l Xl+2L 
weight ( - IV) x A; 

(2) its restriction i(FR,x-zoxz+2L) satisfies the right Kn H-equivariant property (2.19). 

Such a polynomial is called (IV, X-l ® Xl+2L)-equivariant. Here X-l ® xz+2L is a character of 
Un X Un. 

3.2. Strategy of the construction. As is known to all, every highest weight representation 
of a connected compact Lie group can be realized as the Cartan component of a tensor prod­
uct of fundamental representations. Following the principle of this realization, we state our 
construction as follows. 

(i) First, we consider the case that the right Kn H-equivariance (2.19) is given by the trivial 
characters x = w = id. In this situation, l = L = 0. We write A0 and JV0 for the corresponding 
A and IV, that is, 

n-i 
Ao= (Ni,··· , Nn, -Nn, · · · , -Ni)= 2)Nj - Nj+I)Aj + NnAn, 

j=i 

n-i 
No= (Ni, -Ni,··· , Nn, -Nn) = L)Nj - Nj+i)Nj + NnNn, 

j=i 
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where Aj = (1, · · · , 1, 0, · · · , 0, -1, · · · , -1) and Nj = (1, -1, · · · , 1, -1, 0, · · · , 0). Thus, we only 
'-..,.-' '-,-' ,.__,.-, 

j j j~IB 

need to construct some right KnH = Un x Un-invariant polynomials Fj(l ::; j ::; n) in C[Mat!nl 
such that i(Fj) lies in the minimal K-type Tj (with the highest weight Aj) of the right K-module 
7rj of C00 (K), where 

(3.3) 7rj := Ind,¥'nK x1 ® X-1 ® · · · ® x1 ® X-1 ®id®···® id. 

j pairs 

{ii) For each integer k, denote by Sk the symmetric group that permutes {1, ... , k }. Then 
for j = 1, 2, · · · , n, we define 

s(i) := {s E S2jls(2i - 1) is an odd number, s(2i) = s(2i - 1) + 1, 1::; i::; j} c::: Si. 

From the definition of 7rj in (3.3), it is clear that 7rj is a left sU)_module. Here the left sU)_action 
is given by 

(s · F)(Z) := F(s-1 Z). 

Moreover, we can show the highest weight function in the minimal K-type Tj of 7rj is s(j)_ 

invariant by a direct matrix computation. Thus any function in Tj is sU)_invariant. For this 
reason, we require that every i(Fj) which will be constructed in {i) is left S(j)_invariant. 

{iii) Finally, we consider the case that the characters x = Xl and w which define the right 
Kn H-equivariance in (2.19) are non-trivial. In this situation, except for constructing above 
functions Fj, we also need to produce some extra functions ~1,± and ~2,± in C[Mat!nl such 
that 

(1) they contribute to the right Kn H-equivariant property; 
(2) they lie in some suitable irreducible K-modules whose highest weights match with the 

data N and A combining with the highest weights Aj of Tj and Nj for 1 ::; j ::; n. 

In order to show that i(Fj) belongs to the minimal K-type Tj of 7rj, we need to check i(Fj) is 
an eigenfunction for the Casimir operator n corresponding the correct eigenvalue. 

3.3. Explicit Construction of a Cohomological Test Vector. To simplify notations, for 
any matrix Z = X + iY = (x;,j)i9,j:,;2n + i(Yi,j)19,j~2n in Mat2n, we write it as 

( 
U1 V1) 
u2 v2 

Z= . . ' 

U~n V~n 

where Uj := (zj,1, · · · , Zj,n) and Vj := (zj,n+l, · · · , Zj,2n)- Every polynomial f E C[Mat!nl is a 
polynomial in Xij and Yij in prior. Yet for convenience of the future calculations, we will regard 
f as a polynomial in Zij and Zij by a change of variables: Zij = Xij + iy;j; Zi,j = Xij - iyij · For 
any 1 ::; k i= l ::; 2n, we set 

(3.4) 

Then <I>kl E C[Mat!nl• Now we will give the construction of certain Casimir eigen-polynomials. 
For each integer 1 ::; j::; n, we define a polynomial Fj(Z, Z) E C[Mat!nl as follows: 

(3.5) Fj := L sgn(s) · <I>1,s(l)+l <I>3,s(3)+1 · · · <I>2j-l,s(2j-1)+1, 
sESj 

where Sj is the permutation group of the set {1, 3, • • • , 2j - 1} and sgn(s) is the sign of the 
permutation s, i.e. it is 1 if s is an even permutation, and it is -1 if s is an odd permutation. 
From the definition (3.5), it is obvious that i(Fj) is left S(j)_invariant. By direct computation, 
we show that 
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Theorem 3.1. i(Fj) lies in 'lrj and it generates an irreducible submodule h, ½) of K with 
highest weight Aj. 

Proof. Please refer to [LT20, Theorem 3.9, Corollary 3.11]. □ 

Then we define the ~1,± and ~2,± as follows, which will contribute to the right Kn H­
equivariance in the cohomological vector. 

(3.6) 
( 

U1 ) - U3 
~1,+(Z, Z): = det . . . , 

U2n-l 

~2,+(Z, Z) : = det(Z), ~2,-(Z, Z) := det(.Z), 

where Uj := (zj,1, • • • , Zj,n) for each 1 ::; j ::; 2n. Similarly, we have 

Proposition 3.2. ~1,+(resp. ~1,-) generates an irreducible K-submodule W1(resp. W_1) of 
cn[Ma~nl with highest weight(~, 0, · · · , 0)(resp. highest weight (0, · · · , 0,~)-

n n 

~2,+(resp. ~2,-) generates an irreducible K-submodule W{(resp. W.'._1) of C2n[Ma~nl with 
highest weight (1, ... , 1) (resp. (-1, ... , -1) ). 

Finally, combining above polynomials, we will give the explicit construction of a smooth 
function in the minimal K-type T of 7r satisfying the right Kn H-equivariant property (2.19). 
Fix two integers l, L E Z. Assume that N := (N1 + L, -Ni+ L, · · · , Nn + L, -Nn + L) is a 
sequence of integers with the property that N1 2'. · · · 2'. Nn 2'. ll + LI. We define a polynomial 
function F N " in C[Mat!nl as follows, 

,X-l<>Xl+2L 

(3.7) 

FN,x-1@x1+2L := 
n-1 ( II pNi-Ni+'). pNn-l-L~2(l+L) ~l+2L 

i n 1,- 2,+ , 
i=l 

i=l 

n-1 ( II pNi-Ni+1). pNn+l+L~ -2(l+L) ~l+2L 
i n 1,+ 2,+ , 

i=l 

n-1 

if l + L 2'. 0, l + 2L 2'. 0; 

if l + L 2'. 0, l + 2L ::; 0; 

if l + L ::; 0, l + 2L 2'. 0; 

( II pNi-Ni+l) • pNn+l+L~ -2(l+L) ~ -(l+2L) if l + L <_ 0, l + 2£ <_ 0. 
i n 1,+ 2,- , 

i=l 

Theorem 3.3. Let 1r be the cohomological representation of G given in (3.1), i.e. 
m m 

ll XN1+d0 I ll X-N1+L ® ... ®I 
with LE Z and (N1, N2, · · · , Nn) being a sequence of positive integers in the strictly decreasing 
order. For any integer l satisfying ll+LI 2'. Nn, '{) = i(FN " ) lives in the minimal K-type 

,X-l161Xl+2L 

T of 'lr. 

Proof. Please refer to [LT20, Theorem 3.13 and Corollary 3.14]. □ 

4. NON-VANISHING OF ARCHIMEDEAN LOCAL INTEGRALS 

In this Section, we will establish the non-vanishing property for the archimedean local integrals 
of Friedberg-Jacquet. For convenience, we begin with the GL2(C) case and then reduce the 
GL2n(C) case to GL2(C) blocks in the sense of linear periods. 
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4.1. GL2(C) Case. Given a non-negative integer N, two integers m and L, we consider the 
principal series 

c, = Ind~~~;q I I! XN+L ® I I! X-N+L· 

The minimal K-type Tu has highest weight (N + L, -N + L ). As a representation of SU2, Tu is 
a 2N + 1 dimensional vector space and it has a weight space decomposition: 

N 

Tu= E9 Tu,k, 
k=-N 

where Tu,k is the one dimensional weight 2k space. 
Given the character x of ex, we consider the continuous linear functional As,u,x defined as in 

(2.14) for 1K = C. 

Proposition 4.1. [Po08, Proposition 1, Theorem 1] If ll + LI S N, then for all k =I= -l - L, 
As,u,x vanishes on the weight 2k space Tu,ki fork = -l - L, there exists a vector v E Tu,k such 
that As,u,x(v) = L(s,c, ® x). If ll + LI > N, then As,u,x vanishes identically on the minimal 
K-type Tu. 

In Section 3, we provide a strategy to construct a function in the minimal K-type by restricting 
a polynomial in IC[Mat!nl on U2n- In the special case of n = 1, we have the following Corollary: 

(4.1) 

if l + L 2 0, l + 2L 2 O; 

if l + L 2 0, l + 2L S 0; 

if l + L S 0, l + 2L 2 0; 

if l + L S 0, l + 2L S 0 

is a (N,X-l ® Xl+2L)-equivariant polynomial function in IC[Ma~nl• The restriction map i2 
IC[Ma~nl ---+ C 00 (U2) sends the above 'Pu to a smooth function i2('f!u) living in the minimal 
K-type Tu of CT. 

Since T u,k is one dimensional for all k, i2 ('Pu) is a nonzero multiple of the vector v in Proposition 
4.1. Thus, we can define a continuous linear functional >-s,u,x on Vu, which is a nonzero scalar 
multiple of As,u,x such that 

(4.2) 
if ll+LI > N; 

if ll +LI s N. 

4.2. GL2n(C) Case. Generally, we consider an irreducible essentially tempered cohomological 
representation 1r given in (2.13), namely 

each c, · '::c IndGL2 (C) I 
J BaL2 

m 

ll XNj+L ® I 
For each CTj, we can define a nonzero continuous linear functional >-s,j := >-s,uJ,X such that 
the equation ( 4.2) holds. Then we can define a nonzero continuous linear function As,x on 1r 

by replacing As,j with >-s,j in (2.18), which is a nonzero scalar multiple of As,x constructed in 
(2.17). Similarly, if r.p satisfies the right Kn H-equivariant property (2.19), we have 

(4.3) 
n 

As,x('P) = (Q$) >-s,j, r.p(w)). 
j=l 
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Here w is the same Weyl element as in (2.15). Thus to evaluate the twisted linear functional 
As,x at the cohomological vector, we only need to track the isomorphism in the double induction 
formula: 
(4.4) 

m m m m 

ll XN,+L ® I ll X-N,+L ® ... ®I ll XNn+L@ I ll X-Nn+L· 

If cp = i(f) is the cohomological vector constructed in Theorem 3.3 using the model of 1r on 
the RHS of (4.4), then 17-1 (cp)(w) = cp(xw) is a smooth function (defined on M) valued in 
Va,®···® Van• By direct computation, we have 

Theorem 4.3. If the integer l satisfies ll + LI > Nn, then As,x vanishes identically on the 

minimal K-type T of 1r. If l satisfies ll + LI :S Nn, we take cp = i(FR,x-z@xz+2J to be the 

cohomological vector constructed in Theorem 3.3 using the model for 1r on the RHS of (4.4), 
then 

As,x(11-1 (cp)) = L(s, 1r ® x). 

Proof. Please refer to [LT20, Theorem 4.3]. 

Finally, by the uniqueness of linear period(see [CS19, Theorem B]), we show that 

Corollary 4.4. There exists a holomorphic function G(s, x) such that 

Z(v s x) = eG(s,x) A (v) 
' ' s,x . 

□ 

Remark 4.5. {1) If we take v = 7]-1 (cp) as in Theorem 4.3, then Z(v, s, x) does not vanish for 
alls and X· This shows the Non-vanishing Assumption mentioned in Section 1. 
{2) In the recent work [JST19], the authors actually show that Z(v,s,x) = As,x(v). It implies 
that the function constructed in Theorem 3.3 is just the cohomological test vector for archimedean 
Friedberg-Jacquet zeta integral and it is independent of s. This gives the answer for the Uniform 
Cohomological Test Vector problem, which is also mentioned in Section 1. 
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