On linear relations for special L-values over certain totally real number fields

Seiji Kuga
Graduate School of Mathematics, Kyushu University

This work was supported by JSPS KAKENHI Grant Number JP19J20176.

1 Introduction

Let F, \mathfrak{o}_{F}, and \mathfrak{d}_{F} be a totally real number field over \mathbb{Q} with degree m, the ring of integers of F, and the different of F over \mathbb{Q}. We denote the m embeddings of F to \mathbb{R} by $\iota_{1}, \iota_{2}, \ldots, \iota_{m}$. We define a congruence subgroup Γ by

$$
\Gamma=\boldsymbol{\Gamma}\left[\mathfrak{d}_{F}^{-1}, 4 \mathfrak{d}_{F}\right]=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(F) \right\rvert\, a, d \in \mathfrak{o}_{F}, b \in \mathfrak{d}_{F}^{-1}, c \in 4 \mathfrak{d}_{F}\right\}
$$

Let $\mathfrak{h}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ be the upper-half plane. As usual, we embed $S L_{2}(F)$ into $S L_{2}(\mathbb{R})^{m}$ by $\gamma \mapsto\left(\iota_{1}(\gamma), \iota_{2}(\gamma), \ldots, \iota_{m}(\gamma)\right)$ and consider the Möbius transformation of $S L_{2}(F)$ on \mathfrak{h}^{m} by this embedding.
For $\xi \in F$ and $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right) \in \mathfrak{h}^{m}$, we set $q^{\xi}=e^{2 \pi \sqrt{-1} \sum_{i=1}^{m} \iota_{i}(\xi) z_{i}}$. The standard theta series θ_{F} is given by

$$
\theta_{F}(\boldsymbol{z})=\sum_{\xi \in \mathfrak{o}_{F}} q^{\xi^{2}}
$$

We define the factor of automorphy $j_{F}(\gamma, \boldsymbol{z})$ by

$$
j_{F}(\gamma, \boldsymbol{z})=\frac{\theta_{F}(\gamma \boldsymbol{z})}{\theta_{F}(\boldsymbol{z})}
$$

for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \boldsymbol{\Gamma}$ and $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right) \in \mathfrak{h}^{m}$. When $F=\mathbb{Q}$, we write $\theta(z)=\theta_{\mathbb{Q}}(z)$ and $j(\gamma, z)=j_{\mathbb{Q}}(\gamma, z)$ briefly. It is known that

$$
j(\gamma, z)=\varepsilon_{d}^{-1}\left(\frac{c}{d}\right)(c z+d)^{\frac{1}{2}}, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(4), \quad z \in \mathfrak{h}
$$

where ($(:)$ is the Shimura's quadratic reciprocity symbol [5], and ε_{d} is 1 or $\sqrt{-1}$ according as $d \equiv 1(\bmod 4)$ or $d \equiv 3(\bmod 4)$.
Let k be in $\frac{1}{2} \mathbb{Z}$, a holomorphic function f on \mathfrak{h}^{m} is a Hilbert modular form on $\boldsymbol{\Gamma}$ of parallel weight k if f satisfies

$$
f(\gamma \boldsymbol{z})=j_{F}(\gamma, \boldsymbol{z})^{2 k} f(\boldsymbol{z}) \text { for any } \gamma \in \boldsymbol{\Gamma}, \boldsymbol{z} \in \mathfrak{h}^{m}
$$

and that has the q-expansions of the forms

$$
f(g \boldsymbol{z}) \prod_{i=1}^{m}\left(\iota_{i}(c)+\iota_{i}(d) z_{i}\right)^{-k}=c_{g}(0)+\sum_{\substack{\xi \in \mathfrak{o}_{F} \\ \xi \succ 0}} c_{g}(\xi) q^{\frac{\xi}{h_{g}}}
$$

for any $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(F)$ where $h_{g}>0$ is the constant which depends only on g and $\xi \succ 0$ means that $\iota_{i}(\xi)>0$ for any $i=1,2, \ldots, m$. We denote the space of Hilbert modular forms on $\boldsymbol{\Gamma}$ of parallel weight k by $M_{k}(\boldsymbol{\Gamma})$. We also denote the space of cusp forms by $S_{k}(\boldsymbol{\Gamma})$.
In 1975, Cohen [1] constructed a special modular form $\mathscr{H}_{r} \in M_{r+\frac{1}{2}}\left(\Gamma_{0}(4)\right)$ for all positive integers r, called the Cohen Eisenstein Series of weight $r+\frac{1}{2}$ which has the q-expansion of the form

$$
\begin{aligned}
\mathscr{H}_{r}(z)=\zeta(1-2 r)+ & \sum_{(-1)^{r} N \equiv 0,1(\bmod 4)} L\left(1-r, \mathfrak{X}_{(-1)^{r} N}\right) \\
& \times \sum_{d \mid f_{(-1)^{r} N}} \mu(d) \mathfrak{X}_{(-1)^{r} N}(d) d^{r-1} \sigma_{2 r-1}\left(\frac{f_{(-1)^{r} N}}{d}\right) q^{N}
\end{aligned}
$$

where \mathfrak{X}_{N} is the quadratic character corresponding to $\mathbb{Q}(\sqrt{N}) / \mathbb{Q}, f_{N}$ is the natural number such that $N=D_{N} f_{N}^{2}$, and D_{N} is the discriminant of $\mathbb{Q}(\sqrt{N}) / \mathbb{Q}$. The space of modular forms on $\Gamma_{0}(4)$ of weight $r+\frac{1}{2}$ whose nth Fourier coefficient vanishes unless $(-1)^{r} n$ is congruent to 0 or 1 modulo 4 is called the Kohnen plus space introduced and investigated by Kohnen in 1980 [3].
In 2013, Hiraga and Ikeda gave a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight [2].
Let κ be a positive integer, the Kohnen plus space $M_{\kappa+\frac{1}{2}}^{+}(\boldsymbol{\Gamma})$ with respect to $M_{\kappa+\frac{1}{2}}(\boldsymbol{\Gamma})$ is defined by the subspace of $M_{\kappa+\frac{1}{2}}(\boldsymbol{\Gamma})$ which consists of all $h \in M_{\kappa+\frac{1}{2}}(\boldsymbol{\Gamma})$ with Fourier coefficient of the form

$$
h(z)=c(0)+\sum_{\substack{\xi \in \in_{F}, \xi \succ 0 \\(-1)^{\wedge} \xi \equiv \square(4)}} c(\xi) q^{\xi} .
$$

Here, we define $\xi \equiv \square$ (4) if there exists $x \in \mathfrak{o}_{F}$ such that $\xi-x^{2} \in 4 \mathfrak{o}_{F}$. We also define $S_{\kappa+\frac{1}{2}}^{+}(\boldsymbol{\Gamma})=M_{\kappa+\frac{1}{2}}^{+}(\boldsymbol{\Gamma}) \cap S_{\kappa+\frac{1}{2}}(\boldsymbol{\Gamma})$.
In 2016, Su constructed the Eisenstein series $G_{\kappa+\frac{1}{2}, \chi^{\prime}} \in M_{\kappa+\frac{1}{2}}^{+}(\Gamma)$ which is a generalization of the Cohen Eisenstein series [6]. Let χ^{\prime} be a character of the class group of F, then $G_{\kappa+\frac{1}{2}, \chi^{\prime}}$ is defined by

$$
G_{\kappa+\frac{1}{2}, \chi^{\prime}}(\boldsymbol{z})=L_{F}\left(1-2 \kappa, \bar{\chi}^{2}\right)+\sum_{\substack{(-1)^{\kappa} \xi \equiv \square(4) \\ \xi \succ 0}} \mathcal{H}_{\kappa}\left(\xi, \chi^{\prime}\right) q^{\xi}
$$

where $L_{F}(s, \chi)$ is the L-function over F with respect to the character χ defined by

$$
L_{F}(s, \chi)=\sum_{\substack{0 \neq \mathfrak{Z} \subset \mathfrak{o}_{F} \\ \text { ideal }}} \frac{\chi(\mathfrak{A})}{N_{F / \mathbb{Q}}(\mathfrak{A})^{s}}
$$

for $\operatorname{Re}(s)>1$ and

$$
\begin{align*}
& \mathcal{H}_{\kappa}\left(\xi, \chi^{\prime}\right)=\chi^{\prime}\left(\mathfrak{D}_{(-1)^{\kappa} \xi}\right) L_{F}\left(1-\kappa, \overline{\mathfrak{X}_{(-1)^{\kappa} \xi} \chi^{\prime}}\right) \\
& \times \sum_{\mathfrak{a} \mid \mathfrak{F}_{\xi}} \mu(\mathfrak{a}) \mathfrak{X}_{\xi}(\mathfrak{a}) \chi^{\prime}(\mathfrak{a}) N_{F / \mathbb{Q}}(\mathfrak{a})^{\kappa-1} \sigma_{F, 2 \kappa-1, \chi^{\prime 2}}\left(\mathfrak{F}_{\xi} \mathfrak{a}^{-1}\right) \tag{1}
\end{align*}
$$

Here, \mathfrak{D}_{ξ} and \mathfrak{X}_{ξ} are the relative discriminant and the quadratic character corresponding to $F(\sqrt{\xi}) / F$ respectively, \mathfrak{F}_{ξ} is the integral ideal such that $\mathfrak{F}_{\xi}^{2} \mathfrak{D}_{\xi}=(\xi)$, μ is the Möbius function for ideals, and $\sigma_{F, k, \chi}$ is defined by

$$
\sigma_{F, k, \chi}(\mathfrak{A})=\sum_{\mathfrak{b} \mid \mathfrak{A}} N_{F / \mathbb{Q}}(\mathfrak{b})^{k} \chi(\mathfrak{b})
$$

When F is a real quadratic field such that $\mathfrak{d}_{F}=(\delta)$ with a totally real positive element δ, Su gave linear relations between special L-values over F and some arithmetic functions [7].
In this paper, we give generalization of these linear relations.
We define arithmetic functions $\alpha_{k}(n)$ and $\beta_{k}(n)$ by

$$
\alpha_{k}(n):= \begin{cases}-\frac{2 k}{\left(2^{k}-1\right) B_{k}} \tilde{\sigma}_{k-1}\left(\frac{n}{2}\right) & \text { if } k \in 2 \mathbb{Z} \\ \frac{2}{L(-k+1, \chi-4)} \sigma_{k-1, \chi-4}(n) & \text { if } k \in \mathbb{Z} \backslash 2 \mathbb{Z}, \\ -\frac{2 k-1}{\left(2^{k-\frac{1}{2}}-1\right) B_{k-\frac{1}{2}}} \sum_{s^{2}<n} \tilde{\sigma}_{k-\frac{3}{2}}\left(\frac{n-s^{2}}{2}\right)+2 \lambda(n) & \text { if } k \notin \mathbb{Z}, k-\frac{1}{2} \in 2 \mathbb{Z}, \\ \frac{2}{L\left(-k+\frac{3}{2}, \chi-4\right)} \sum_{s^{2}<n} \sigma_{k-\frac{3}{2}, \chi-4}\left(n-s^{2}\right)+2 \lambda(n) & \text { if } k \notin \mathbb{Z}, k-\frac{1}{2} \in \mathbb{Z} \backslash 2 \mathbb{Z}\end{cases}
$$

$$
\beta_{k}(n):= \begin{cases}\frac{(-1) \frac{k}{2}+1}{\left(2^{k}-1\right) B_{k}} \sigma_{k-1, \chi_{4}}^{\prime}(n) & \text { if } k \in 2 \mathbb{Z}, \\ \frac{2^{k}(-1)^{\frac{k}{2}}}{L(-k+1, \chi-4)} \sigma_{k-1, \chi_{-4}}^{\prime}(n) & \text { if } k \in \mathbb{Z} \backslash 2 \mathbb{Z}, \\ \frac{\left(-1-\frac{k}{2}+\frac{3}{4}(2 k-1)\right.}{\left(2^{k-\frac{1}{2}}-1\right) B_{k-\frac{1}{2}}} \sum_{s^{2}<n} \sigma_{k-\frac{3}{2}, \chi_{4}}^{\prime}\left(n-s^{2}\right) & \text { if } k \notin \mathbb{Z}, k-\frac{1}{2} \in 2 \mathbb{Z}, \\ \frac{2^{k-\frac{1}{2}}(-1)^{\frac{k}{2}-\frac{3}{4}}}{L\left(-k+\frac{3}{2}, \chi-4\right)} \sum_{s^{2}<n} \sigma_{k-\frac{3}{2}, \chi_{-4}}^{\prime}\left(n-s^{2}\right) & \text { if } k \notin \mathbb{Z}, k-\frac{1}{2} \in \mathbb{Z} \backslash 2 \mathbb{Z},\end{cases}
$$

where B_{k} is the k-th Bernoulli number,

$$
\tilde{\sigma}_{k}(n)=\sum_{d \mid n} d^{k}(-1)^{d}, \quad \lambda(n)= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

and we set $a(x)=0$ for an arithmetic function $a(n)$ and $x \notin \mathbb{N} \cup\{0\}$.
Our main result is the following.
Theorem 1.1. Let F be a totally real number field such that $8 \nmid m$ and $\mathfrak{d}_{F}=(\delta)$ with totally real positive element δ, we have

$$
\mathcal{R} G_{\kappa+\frac{1}{2}, \chi^{\prime}}=L_{F}\left(1-2 \kappa, \bar{\chi}^{2}\right)\left\{E_{m\left(\kappa+\frac{1}{2}\right)}+2^{-m \kappa}(-1)^{\frac{m \kappa(\kappa+1)}{2}} E_{m\left(\kappa+\frac{1}{2}\right)}^{*}\right\}+Q
$$

where Q is some cusp form in $S_{m\left(\kappa+\frac{1}{2}\right)}\left(\Gamma_{0}(4)\right)$.

By comparing the Fourier coefficients of both sides, we deduce the following corollary.

Corollary 1.1. With the above notation, if $\mathcal{H}_{\kappa}\left(\xi, \chi^{\prime}\right)$ is as in (1), we have

$$
\begin{aligned}
\sum_{\substack{\xi \in \mathcal{O}_{F}, \xi \succ 0 \\
(-1)^{\kappa} \xi=\square(4) \\
\operatorname{Tr}\left(\frac{\xi}{\delta}\right)=n}} \mathcal{H}_{\kappa}\left(\xi, \chi^{\prime}\right)= & L_{F}\left(1-2 \kappa, \bar{\chi}^{2}\right) \\
& \times\left\{\alpha_{m\left(\kappa+\frac{1}{2}\right)}(n)+2^{-m \kappa}(-1)^{\frac{m \kappa(\kappa+1)}{2}} \beta_{m\left(\kappa+\frac{1}{2}\right)}(n)\right\}+c(n)
\end{aligned}
$$

where $c(n)$ is the q-coefficient of some cusp form in $S_{m\left(\kappa+\frac{1}{2}\right)}\left(\Gamma_{0}(4)\right)$.

2 Outline of the proof

From here until the end, we assume that F is a totally real number field such that $\mathfrak{d}_{F}=(\delta)$ with totally real positive element δ.
Let $\mathbb{A}_{F}, \psi=\prod \psi_{v}$ be the adele ring of F, the additive character on \mathbb{A}_{F} / F with
$\psi_{v}(x)=e^{(-1)^{\kappa} 2 \pi \sqrt{-1} x}$ for archimedian places v. Let f be a complex valued function on \mathfrak{h}^{m}, we define a complex valued function $\mathcal{R} f$ on \mathfrak{h} as follows.

$$
(\mathcal{R} f)(z)=f\left(\frac{z}{\iota_{1}(\delta)}, \frac{z}{\iota_{2}(\delta)}, \ldots, \frac{z}{\iota_{m}(\delta)}\right)
$$

Lemma 2.1. [7, Theorem 2.1] For $f \in M_{k+\frac{1}{2}}(\Gamma)$, we have

$$
\mathcal{R} f \in M_{m\left(\kappa+\frac{1}{2}\right)}\left(\Gamma_{0}(4)\right)
$$

Moreover, if we write $f(\boldsymbol{z})=\sum_{\xi \in \mathfrak{o}_{F}} c(\xi) q^{\xi}, \mathcal{R} f(z)$ has the q-expansion of the form

$$
\begin{equation*}
(\mathcal{R} f)(z)=\sum_{n=0}^{\infty}\left(\sum_{\operatorname{Tr}_{F / \mathbb{Q}(}\left(\frac{\xi}{\delta}\right)=n} c(\xi)\right) q^{n} . \tag{2}
\end{equation*}
$$

The most important part of the proof of Theorem 1.1 is the calculations of the constant terms of $\mathcal{R} G_{\kappa+\frac{1}{2}, \chi^{\prime}}$ at each cusp. For a complex valued function $f: \mathfrak{h}^{m} \longrightarrow$ \mathbb{C}, we put

$$
\left(\mathcal{W}_{F} f\right)(\boldsymbol{z})=\prod_{i=1}^{m}\left(-2 \sqrt{-1} \iota_{i}(\delta) z_{i}\right)^{-\kappa-\frac{1}{2}} f\left(-\left(4 \iota_{1}(\delta)^{2} z_{1}\right)^{-1}, \ldots,-\left(4 \iota_{m}(\delta)^{2} z_{m}\right)^{-1}\right)
$$

and

$$
\left(\mathcal{U}_{F} f\right)(\boldsymbol{z})=\prod_{i=1}^{m}\left(2 \iota_{i}(\delta) z_{i}+1\right)^{-\kappa-\frac{1}{2}} f\left(\frac{z_{1}}{2 \iota_{1}(\delta) z_{1}+1}, \ldots, \frac{z_{m}}{2 \iota_{m}(\delta) z_{m}+1}\right)
$$

The following lemmas give the constant terms of $\mathcal{W}_{F} G_{\kappa+\frac{1}{2}, \chi^{\prime}}$ and $\mathcal{U}_{F} G_{\kappa+\frac{1}{2}, \chi^{\prime}}$.
Lemma 2.2. [7] The constant term of $\mathcal{W}_{F} G_{\kappa+\frac{1}{2}, \chi^{\prime}}$ is equal to

$$
2^{-m \kappa}(-1)^{\frac{m \kappa(\kappa+1)}{2}} L_{F}\left(1-2 \kappa, \bar{\chi}^{2}\right) .
$$

Lemma 2.3 (Kuga). The constant term of $\mathcal{U}_{F} G_{\kappa+\frac{1}{2}, \chi^{\prime}}$ is equal to

$$
2^{-m \kappa} L_{F}\left(1-2 \kappa,{\overline{\chi^{\prime}}}^{2}\right) \prod_{v \mid 2} \int_{\mathfrak{o}_{v}} \psi_{v}\left(\frac{x^{2}}{2 \delta}\right) d x .
$$

Especially when $8 \nmid m$, this value is equal to 0 .

Sketch of proof of the Theorem 1.1.
When $4 \nmid m$, the proof is similar to that of [7].
When $4 \mid m$ and $8 \nmid m$, we define operators \mathcal{U} and \mathcal{W} on $M_{m\left(\kappa+\frac{1}{2}\right)}\left(\Gamma_{0}(4)\right)$ as follows.
For $h \in M_{m\left(\kappa+\frac{1}{2}\right)}\left(\Gamma_{0}(4)\right)$,

$$
\begin{aligned}
& (\mathcal{W h})(z)=\left(\frac{2 z}{\sqrt{-1}}\right)^{-m\left(\kappa+\frac{1}{2}\right)} h\left(-\frac{1}{4 z}\right) . \\
& (\mathcal{U h})(z)=(2 z+1)^{-m\left(\kappa+\frac{1}{2}\right)} h\left(\frac{z}{2 z+1}\right) .
\end{aligned}
$$

Then, by a simple caluculation, we can check that

$$
\mathcal{W} \mathcal{R} G_{\kappa+\frac{1}{2}, \chi^{\prime}}=\mathcal{R} \mathcal{W}_{F} G_{\kappa+\frac{1}{2}, \chi^{\prime}}
$$

and

$$
\mathcal{U} \mathcal{R} G_{\kappa+\frac{1}{2}, \chi^{\prime}}=\mathcal{R} \mathcal{U}_{F} G_{\kappa+\frac{1}{2}, \chi^{\prime}}
$$

By Lemmas 2.1, 2.2, and 2.3, we have

$$
\begin{aligned}
\mathcal{R} G_{\kappa+\frac{1}{2}, \chi^{\prime}}= & L_{F}\left(1-2 \kappa,{\overline{\chi^{\prime}}}^{2}\right) E_{m\left(\kappa+\frac{1}{2}\right)} \\
& +2^{-m \kappa}(-1)^{\frac{m \kappa(\kappa+1)}{2}} L_{F}\left(1-2 \kappa,{\overline{\chi^{\prime}}}^{2}\right) E_{m\left(\kappa+\frac{1}{2}\right)}^{*}+Q
\end{aligned}
$$

where

$$
\begin{gathered}
E_{k}(z)= \begin{cases}\sum_{\gamma \in \Gamma_{0}(4)_{\infty} \backslash \Gamma_{0}(4)} j(\gamma, z)^{-2 k} & \text { if } k \in \mathbb{Z} \\
\theta(z) \sum_{\gamma \in \Gamma_{0}(4)_{\infty} \backslash \Gamma_{0}(4)} j(\gamma, z)^{-2 k+1} & \text { if } k \in \frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}\end{cases} \\
E_{k}^{*}(z)=\left(\frac{2 z}{\sqrt{-1}}\right)^{-k} E_{k}\left(-\frac{1}{4 z}\right) .
\end{gathered}
$$

and $Q \in S_{m\left(\kappa+\frac{1}{2}\right)}\left(\Gamma_{0}(4)\right)$. By comparing the Fourier coefficients of both side, we complete the proof. Indeed, $\alpha_{k}(n)$ and $\beta_{k}(n)$ represent the nth Fourier coefficients of E_{k} and E_{k}^{*} respectively.

References

[1] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271-285.
[2] K. Hiraga, T. Ikeda, On the Kohnen plus space for Hilbert modular forms of halfintegral weight I, Compos. Math. 149 (2013), no. 12, 1963-2010.
[3] W. Kohnen, Modular forms of half-integral weight on $\Gamma_{0}(4)$, Math. Ann. 248 (1980), no. 3, 249-266.
[4] J. Neukirch, Algebraische Zahlentheorie, (German) [Algebraic number theory] Springer-Verlag, Berlin, 1992.
[5] G. Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973) 440-481.
[6] R-H. Su, Eisenstein series in the Kohnen plus space for Hilbert modular forms, Int. J. Number Theory, 12 (2016), no. 3, 691-723.
[7] R-H. Su, On linear relations for L-values over real quadratic fields, Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 2, 317-330.

