RESTRICTION OF EISENSTEIN SERIES AND STARK-HEEGNER POINTS

MING-LUN HSIEH

This short note is written based on my talk on a joint work with Shunsuke Yamana [HY20] in the RIMS conference "Analytic, geometric and p-adic aspects of automorphic forms and L-functions" during January 20-24, 2020. ¹ The author thanks the organizers for their hospitality during the conference.

1. The work of Darmon, Pozzi and Vonk

Let F be a real quadratic field and let \mathfrak{d} be the different of F/\mathbf{Q} . Let $x \mapsto \overline{x}$ denote the non-trivial automorphism of F and let $N : F \to \mathbf{Q}$, $N(x) = x\overline{x}$ be the norm map. Let Δ_F be the discriminant of F/\mathbf{Q} . Let $\mathrm{Cl}^+(\mathcal{O}_F)$ be the narrow ideal class group of F. Let $\phi : \mathrm{Cl}^+(\mathcal{O}_F) \to \overline{\mathbf{Q}}^{\times}$ be an odd narrow ideal class character, i.e. $\phi((\delta)) = -1$ for any $\delta \in \mathcal{O}_F$ with $\overline{\delta} = -\delta$. Let $L(s, \phi)$ be the Hecke *L*-function attached to ϕ . Fix an odd rational prime p unramified in F. Fix an embedding $\iota_p : \overline{\mathbf{Q}} \hookrightarrow \mathbf{C}_p$ throughout.

To each odd character ϕ of the narrow ideal class group of a real quadratic field F, we associate a one-variable p-adic family $E_k^{(p)}(1,\phi)$ of Hilbert Eisenstein series on $\Gamma_0(p)$ over a real quadratic field F defined by the q-expansion:

$$E_{k}^{(p)}(1,\phi)(z_{1},z_{2}) = L^{(p)}(1-k,\phi) + \sum_{\beta \in \mathfrak{d}_{F}^{-1},\beta > 0} \sigma_{k-1,\phi}^{(p)}(\beta \mathfrak{d}_{F})q^{\beta},$$
$$q^{\beta} = \exp(2\pi\sqrt{-1}(\beta z_{1} + \overline{\beta} z_{2}),$$

where $L^{(p)}(1-k,\phi) = (1-\phi(p)p^{k-1})L(1-k,\phi)$ and

$$\sigma_{k-1,\phi}^{(p)}(\mathfrak{a}) = \sum_{\mathfrak{b}|\mathfrak{a},\,(\mathfrak{b},p)=1} \mathrm{N}\mathfrak{b}^{k-1}\phi(\mathfrak{b}).$$

Consider the elliptic modular form $G_{2k}(\phi)$ of weight 2k defined by

$$G_{2k}(\phi) := e_{\mathrm{ord}}\left(E_k^{(p)}(1,\phi)(z,z)\right),\,$$

where e_{ord} is Hida's *p*-ordinary projector. Then one can interpolate the function $k \in \mathbb{Z}_{\geq 2} \mapsto G_{2k}(\phi)$ into a locally analytic functions on \mathbb{Z}_p valued in the space of *p*-adic elliptic modular forms. Suppose that

p is inert in F.

¹The paper [HY20] was finished later after the conference. The text of this note has some overlapping with the content in [HY20].

MING-LUN HSIEH

It can be verified that

$$e_{\mathrm{ord}}G_k(\phi)|_{k=1} = 0.$$

In [DPV19], the authors investigate the spectral decomposition of the derivative

$$\frac{d}{dk} \left(e_{\mathrm{ord}} G_k(\phi) \right) |_{k=1} = \sum_f \lambda'_f \cdot f. \in M_2(\Gamma_0(p)),$$

where f runs over all the normalized Hecke eigenforms in $M_2(\Gamma_0(p))$. The main results of [DPV19] show that if f is an Eisenstein series, then λ'_f is essentially the p-adic logarithm of elliptic units over F in [DD06], while if f is a cusp form, then λ'_f can be expressed in terms of the product of special values of the L-function for f and the p-adic logarithms of Stark-Heegner points or introduced in [Dar01].

Stark-Heegner points are local points defined by theory of p-adic double integration on the product of p-adic upper half planes and conjectured to be rational over Hilbert class fields of F. The work [DPV19] may shed some light on the global nature of Stark-Heegner points in the future provided one has some K-theoretic construction of Hilbert Eisenstein series.

2. Statement of the main result

Now we introduce our recent work on partial generalizations of [DPV19] to the two-variable setting by introducing the cyclotomic variable. For $x \in \mathbf{Z}_p^{\times}$, let $\omega(x)$ be the Teichmüller lift of $x \pmod{p}$ and let $\langle x \rangle := x \omega^{-1}(x) \in$ $1 + p \mathbf{Z}_p$. Let $\mathscr{X} := \{x \in \mathbf{C}_p \mid |x|_p \leq 1\}$ be the *p*-adic closed unit disk and let $A(\mathscr{X})$ be the ring of rigid analytic functions on \mathscr{X} . For each ideal $\mathfrak{m} \triangleleft \mathcal{O}_F$ corpine to *p*, define $\sigma_{\phi}(\mathfrak{m}) \in A(\mathscr{X} \times \mathscr{X})$ by

$$\boldsymbol{\sigma}_{\phi}(\mathfrak{m})(k,s) = \sum_{\mathfrak{a} \lhd \mathcal{O}_{F}, \mathfrak{a} \mid \mathfrak{m}} \phi(\mathfrak{a}) \left\langle \mathcal{N}(\mathfrak{a}) \right\rangle^{\frac{k-s}{2}} \left\langle \mathcal{N}(\mathfrak{m}\mathfrak{a}^{-1}) \right\rangle^{\frac{s-2}{2}}.$$

Let $\mathscr{X}^{\text{cl}} := \{k \in \mathbf{Z}^{\geq 2} \mid k \equiv 2 \pmod{2(p-1)}\}$ be the set of classical points in \mathscr{X} . Let $h = \# \text{Cl}^+(\mathcal{O}_F)$. Fix a set $\{\mathfrak{t}_{\lambda}\}_{\lambda=1,\dots,h}$ of representatives of the narrow ideal class group $\text{Cl}^+(\mathcal{O}_F)$ with $(\mathfrak{t}_{\lambda}, p\mathcal{O}_F) = 1$. For each classical point $k \in \mathscr{X}^{\text{cl}}$, the classical Hilbert-Eisenstein series $E_{\frac{k}{2}}(1, \phi)$ on $\text{SL}_2(\mathcal{O}_F)$ of parallel weight $\frac{k}{2}$ is determined by the normalized Fourier coefficients

$$c(\mathfrak{m}, E_{\frac{k}{2}}(1, \phi)) = \sigma_{\phi}(\mathfrak{m})(k, s), \quad c_{\lambda}(0, E_{\frac{k}{2}}(1, \phi)) = 4^{-1}L(1 - k/2, \phi).$$

Let I_F be the set of integral ideals of F. Let $\mathfrak{n} \in I_F$ and p be coprime. Let $\mathcal{M}^{(2)}(\mathfrak{n})$ be the space of two-variable p-adic families of Hilbert *semi-cusp* forms² of tame level \mathfrak{n} , which consists of functions

$$f: I_F \to \mathscr{A}(\mathscr{X} \times \mathscr{X}), \quad \mathfrak{m} \mapsto c(\mathfrak{m}, f)$$

 $^{^{2}}$ Recall that a Hilbert semi-cusp form is a Hilbert modular form having no constant in the Fourier expansion around the cusps at the infinity.

such that the specialization $f(k,s) = \{c(\mathfrak{m}, f)(k,s)\}$ is the set of normalized Fourier coefficients of a *p*-adic Hilbert semi-cusp forms of parallel weight k on $\Gamma_0(p\mathfrak{n})$ for (k,s) in a *p*-adically dense subset $U \subset \mathbf{Z}_p \times \mathbf{Z}_p$. Define $\widehat{E}_{\phi}^{\{p\}} : I_F \to A(\mathscr{X} \times \mathscr{X})$ by the data

$$\begin{split} c(\mathfrak{m}, \widehat{E}_{\phi}^{\{p\}}) &= \boldsymbol{\sigma}_{\phi}(\mathfrak{m}) \text{ if } (\mathfrak{m}, p\mathcal{O}_{F}) = 1, \\ c(\mathfrak{m}, \widehat{E}_{\phi}^{\{p\}}) &= 0 \text{ otherwise.} \end{split}$$

By definition, for $(k, s) \in \mathscr{X}^{cl} \times \mathscr{X}^{cl}$ with $k \geq 2s$, we have

$$\widehat{E}_{\phi}^{\{p\}}(k,s) = \langle \Delta_F \rangle^{\frac{s-2}{2}} \cdot \theta^{\frac{s-2}{2}} E_{\frac{k+4-2s}{2}}^{\{p\}}(1,\phi),$$

where $E_k^{\{p\}}(1,\phi)$ is the *p*-depletion of $E_k(1,\phi)$ and θ is Serre's differential operator defined by $c(\mathfrak{m},\theta f) = \Delta_F^{-1} \mathbb{N}_{F/\mathbf{Q}}(\mathfrak{m}) c(\mathfrak{m},f)$. Therefore, $\widehat{E}_{\phi}^{\{p\}}(k,s)$ is a *p*-adic Hilbert modular form of parallel weight *k* for all $(k,s) \in \mathbf{Z}_p^2$, and $\widehat{E}_{\phi}^{(p)} \in \mathcal{M}^{(2)}(\mathcal{O}_F)$. For each prime ideal \mathfrak{q} , define $\mathbf{U}_{\mathfrak{q}} \colon \mathcal{M}^{(2)}(\mathfrak{n}) \to \mathcal{M}^{(2)}(\mathfrak{n}\mathfrak{q})$ by $c(\mathfrak{m}, \mathbf{U}_{\mathfrak{q}}f) := c(\mathfrak{m}\mathfrak{q}, f)$. Let *N* be a positive integer such that $p \nmid N$ and

(Splt)
$$N\mathcal{O}_F = \mathfrak{N}\overline{\mathfrak{N}}, \quad (\mathfrak{N}, \overline{\mathfrak{N}}) = 1.$$

Define $\boldsymbol{E}_{\phi} \in \mathcal{M}^{(2)}(\mathfrak{N})$ by

$$\boldsymbol{E}_{\phi} := \prod_{\mathfrak{q} \mid \mathfrak{N}} (1 - \phi(\mathfrak{q})^{-1} \langle \mathrm{N}(\mathfrak{q}) \rangle^{\frac{2s-2-k}{2}} \mathbf{U}_{\mathfrak{q}}) \cdot \widehat{E}_{\phi}^{\{p\}}$$

and the diagonal restriction $G_{\phi} \in A(\mathscr{X} \times \mathscr{X})[\![q]\!]$ of E_{ϕ} by

$$\boldsymbol{G}_{\phi} := \sum_{n>0} \big(\sum_{\beta \in \mathfrak{d}_{+}^{-1}, \operatorname{Tr}(\beta) = n} c(\beta \mathfrak{d}, \boldsymbol{E}_{\phi}) \big) q^{n},$$

where \mathfrak{d}_{+}^{-1} is the additive semigroup of totally positive elements in \mathfrak{d}^{-1} .

By definition $G_{\phi}(k,s)$ is the *q*-expansion of a *p*-adic elliptic modular on $\Gamma_0(pN)$ of weight *k* obtained from the diagonal restriction of $\widehat{E}_{\phi}^{\{p\}}(k,s)$ for $(k,s) \in \mathscr{X}^{\text{cl}} \times \mathscr{X}^{\text{cl}}$ with $k \geq 2s$. Let \mathscr{U} be an appropriate neighborhood around $2 \in \mathscr{X}$. Let $\mathbf{S}^{\text{ord}}(N)$ be the space of ordinary $A(\mathscr{U})$ -adic elliptic cusp forms on $\Gamma_0(Np)$, consisting of *q*-expansion $\mathbf{f} = \sum_{n>0} c(n, \mathbf{f})q^n \in A(\mathscr{U})[\![q]\!]$ such that the weight *k* specialization \mathbf{f}_k is a *p*-ordinary cusp forms of weight *k* on $\Gamma_0(pN)$ for $k \in \mathscr{X}^{\text{cl}}$. By Hida theory, we know $\mathbf{S}^{\text{ord}}(N)$ is a free $A(\mathscr{U})$ -module of finite rank. It can be shown that the image $e\mathbf{G}_{\phi}$ under Hida's ordinary projector actually belongs to $\mathbf{S}^{\text{ord}}(N)\widehat{\otimes}_{A(\mathscr{U})}A(\mathscr{U} \times \mathscr{X})$, where $A(\mathscr{U})$ is regarded as a subring of $A(\mathscr{U} \times \mathscr{X})$ via the pull-back of the first projection $\mathscr{U} \times \mathscr{X} \to \mathscr{U}$. We can thus decompose

$$eG_{\phi} = \sum_{f} \mathcal{L}_{E_{\phi}, f} \cdot f + (\text{old forms}), \quad \mathcal{L}_{E_{\phi}, f} \in A(\mathscr{U} \times \mathscr{X}),$$

MING-LUN HSIEH

where \boldsymbol{f} runs over the set of primitive Hida families of tame conductor N. We shall call $\mathcal{L}_{\boldsymbol{E}_{\phi},\boldsymbol{f}} \in A(\mathscr{U} \times \mathscr{X})$ the twisted triple product *p*-adic *L*-function attached to the *p*-adic Hilbert Eisenstein series \boldsymbol{E}_{ϕ} and a primitive Hida family \boldsymbol{f} . We provide the following derivative formula for $\mathcal{L}_{\boldsymbol{E}_{\phi},\boldsymbol{f}}$, which partially generalizes [DPV19, Theorem C(2)] to elliptic newforms of split tame conductor.

Theorem (H.- and S. Yamana). Let E be an elliptic curve over \mathbf{Q} of conductor pN with N satisfying (Splt). Let $\mathbf{f} \in A(\mathscr{U})[\![q]\!]$ be a primitive Hida family of tame level N such that the weight two specialization \mathbf{f}_2 is the elliptic newform associated with E. Suppose that p is inert in F. Then $\mathcal{L}_{\mathbf{E}_{\phi},\mathbf{f}}(2,s) = 0$ and

$$\frac{d}{dk} \left(\mathcal{L}_{\boldsymbol{E}_{\phi},\boldsymbol{f}}(k,s+1) \right) |_{k=2} = \frac{1}{2} (1 + \phi(\mathfrak{N})^{-1} w_{N}) \cdot \log_{E} P_{\phi} \cdot L_{p}(E,s) \\ \times \frac{c_{f}}{m_{F}^{2} 2^{\alpha(E)}} \left\langle \Delta_{F} \right\rangle^{\frac{s-1}{2}},$$

where

- $\log_E P_{\phi}$ is the p-adic loagrithm of the twisted Stark-Heegner point $P_{\phi} \in E(F_p) \otimes \mathbf{Q}(\phi)$ introduced in [Dar01, (182)],
- $L_p(E,s)$ is the Mazur-Tate-Teitelbaum cyclotomic p-adic L-function for E,
- $c_f \in \mathbf{Z}^{>0}$ is the congruence number for f, $m_E \in \mathbf{Q}^{\times}$ is the Mainn constant for E and $2^{\alpha(E)} = [\mathrm{H}_1(E(\mathbf{C}), \mathbf{Z}) : \mathrm{H}_1(E(\mathbf{C}), \mathbf{Z})^+ \oplus \mathrm{H}_1(E(\mathbf{C}), \mathbf{Z})].$

Remark 2.1.

- The definition of Stark-Heegner points P_{ϕ} for odd ϕ in [Dar01] depends on a choice of the purely imaginary period Ω_E^- . In the above theorem, we require $(\sqrt{-1})^{-1}\Omega_E^-$ to be positive.
- Our main motivation for this two-variable generalization is that we have the non-vanishing of the *p*-adic *L*-function $L_p(E, s)$ thanks to Rohrlich's theorem [Roh84], so $\log_E P_{\phi}$ can be computed from the twisted triple product *p*-adic *L*-function even when the central value L(E, 1) vanishes.
- The Eisenstein contribution in the spectral decomposition in Part (2) of [DPV19, Theorem C] is connected with the *p*-adic logatithms of elliptic units over F, while in our two-variable setting, eG_{ϕ} is a *p*-adic family of cusp forms, so we do not get any information for elliptic units.

3. The idea of the proof

We briefly explain the idea of the proof. Let $\mathcal{L}_p(\mathbf{f}/F, \phi, k)$ be the (odd) square-root *p*-adic *L*-function associated with the primitive Hida family \mathbf{f} and the character ϕ constructed in [BD09, Definition 3.4] with $w_{\infty} = -1$ and let $L_p(\mathbf{f}, k, s)$ be the Mazur-Kitagawa two-variable *p*-adic *L*-function so

that $L_p(f, 2, s)$ is the cyclotomic *p*-adic *L*-function for f_2 . We prove the following factorization formula of $\mathcal{L}_{E_{\phi}, f}$:

(3.1)
$$C^*(k) \cdot \mathcal{L}_{\boldsymbol{E}_{\phi},\boldsymbol{f}}(k,s+1) = \mathcal{L}_p(\boldsymbol{f}/F,\phi,k) \cdot L_p(\boldsymbol{f},k,s),$$

where $C^*(k)$ is a meromorphic function on \mathscr{X} holomorphic at all classical points $k \in \mathscr{X}^{cl}$ with $C^*(2) = 1$. By the very construction, the square root p-adic L-function $\mathcal{L}_p(\boldsymbol{f}/F, \phi, k)$ interpolates the toric period integrals $B^{\phi}_{\boldsymbol{f}_{k}}$. Thus we get $\mathcal{L}_{\boldsymbol{E}_{\phi},\boldsymbol{f}}(2,s) = \mathcal{L}_{p}(\boldsymbol{f}/F,\phi,2) = 0$ by a classical theorem of Saito and Tunnell. Moreover, from the formula [BD09, Corollary 2.6], it is not difficult to deduce that the first derivative of $\mathcal{L}_p(f/F, \phi, k)$ at k = 2 is $2^{-1}(1 + w_N \phi(\mathfrak{N})^{-1}) \log_E P_{\phi}$, and hence we obtain Theorem from (3.1). The factorization formula (3.1) is established by the explicit interpolation formulae on both sides. In particular, the interpolation formula for $\mathcal{L}_{E_{\phi},f}(k,s)$ is the most technical part of this paper. Roughly speaking, for $(k,s) \in \mathscr{X}^{\mathrm{cl}} \times \mathscr{X}^{\mathrm{cl}}$ with $k \geq 2s$, Hida's *p*-adic Rankin-Selberg method shows that $\mathcal{L}_{E_{\phi},f}(k,s)$ is interpolated by the inner product between the diagonal restriction of a nearly holomorphic Hilbert Eisenstein series $E_{\phi}(k,s)$ and f_k . Therefore, a result of Keaton and Pitale [KP19, Proposition 2.3] tells us that $\mathcal{L}_{E_{\phi},f}(k,s)$ is a product of (i) the Waldspurger toric period integral $B_{\boldsymbol{f}_k}^{\phi}$ of \boldsymbol{f}_k over F twisted by ϕ , (ii) the special value $L(\boldsymbol{f}_k, s)$ of the L-function for f_k and (iii) local zeta integrals $Z_{\mathcal{D}}(s, B_{W_v})$ for every place of **Q**. Now items (i) and (ii) are basically interpolated by $\mathcal{L}(f/K, \phi, k)$ and $L_p(f,k,s)$, so our task is to evaluate explicitly these local zeta integrals, which occupy the main body of Section 4. By the explicit interpolation formulae of these p-adic L-functions, we find immediately that the ratio C^* between $\mathcal{L}_p(\boldsymbol{f}/F, \phi, k) \cdot L_p(\boldsymbol{f}, k, s)$ and $\mathcal{L}_{\boldsymbol{E}_{\phi}, \boldsymbol{f}}(k, s+1)$ is independent of s, and hence C^* is a meromorphic function in k only. Finally, by a standard argument using Rohrlich's result on the non-vanishing of the cyclotomic padic L-functions for elliptic modular forms, we can conclude that $C^*(k)$ is holomorphic at all $k \in \mathscr{X}^{cl}$ and $C^*(2)$ is essentially the congruence number.

References

- [BD09] Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343–370. MR 2521118
- [Dar01] Henri Darmon, Integration on H_p × H and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589–639. MR 1884617
- [DD06] Henri Darmon and Samit Dasgupta, Elliptic units for real quadratic fields, Ann. of Math. (2) 163 (2006), no. 1, 301–346. MR 2195136
- [DPV19] Henri Darmon, Alice Pozzi, and Jan Vonk, Gross-Stark units, Stark-heegner points, and derivatives of p-adic Eisenstein series, Preprint. Available at http://www.math.mcgill.ca/darmon/pub/pub.html.
- [HY20] M.-L. Hsieh and S. Yamana, Restriction of Eisenstein series and Stark-Heegner points, arXiv:2002.11858.

MING-LUN HSIEH

- [KP19] Rodney Keaton and Ameya Pitale, Restrictions of Eisenstein series and Rankin-Selberg convolution, Doc. Math. 24 (2019), 1–45. MR 3935491
- [Roh84] David E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), no. 3, 409–423. MR 735333

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan E-mail address: mlhsieh@math.sinica.edu.tw