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Maass forms on GL(2) over division quaternion algebras of
discriminant p

Hiroaki Narita, Ameya Pitale, Siddhesh Wagh

1 Introduction

In this talk, we will present a construction of Maass forms, that violate the Ramanujan conjec-
ture, on 5-dimensional hyperbolic spaces. To provide some context, let us remind the reader of
another famous example of modular forms that violate the Ramanujan conjecture — the Saito-
Kurokawa lifts.

Saito-Kurokawa lifts: Let f € So; 2(SLa(Z)), with k even, and let h € S;’_I/Z(FO(ZL)) be
the corresponding cusp form in the Kohnen plus space. Let {c(n)} be the Fourier coefficients of
h. For T half integral, positive definite, symmetric 2 x 2 matrix, define

AT) = Z c(det@T))dk*l.

42
d|ged(T)

1.1 Theorem. With A(T) as above, the function Fy(Z) = A(T)exp(2miTr(T Z)) is a Siegel
cusp form of weight k with respect to Spy(Z).

Let us list some of the properties of the Saito-Kurokawa lifts (see [2] for details).
1. Explicit formula for Fourier coefficients.
2. The map f ~ F} is linear and injective.

3. Relation between L-functions
L(s, Fy,spin) = ((s — k+ 1)((s — k+ 2)L(s, f).

4. The map f — F preserves Hecke eigenforms.

5. If Fy is a Hecke eigenform, then let 7p = ®,7, be the irreducible cuspidal automorphic rep-
resentation of GSpy(A) generated by Fy. Then, for every p < oo, the local representation
Tp is not tempered, i.e. Fy violates the generalized Ramanujan conjecture.

6. Characterization of lifts as the Maass space: For T = [:72 T{f], write A(T) = A(m,r,n).

Then a Siegel cusp form F with Fourier coefficients A(7T') is a Saito-Kurokawa lift if and

only if we have
- k—1 mn r
A(m.,'f’,n) = Z d A(?7E71)
d|ged(m,r,n)
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2 Maass forms on 5-dimensional hyperbolic space

Let B be a definite division quaternion algebra over QQ. Let us make the assumption that the
discriminant of B is a prime number p.

Let G be the algebraic group such that G(Q) = GLa(B). Then G(R) = GLo(H), where H is
the Hamiltonian quaternions. We have the Iwasawa decomposition: GLy(H) = ZNAK, where
Z is the center, and K is the maximal compact, and

N={n(z)=['"%]:2eH},A={ay: [‘/ﬂ\/@,l} cy € RTY

We have
G/ZK ~{[Y{]:x € H,y € R"},

a realization of the 5-dimensional hyperbolic space Hs. For a discrete subgroup I' C GLg(H)
and r € C we denote by M(I',r) the space of smooth functions F' on GLy(H) satisfying the
following conditions:

2

1
1. Q- F= —5(% + 1)F, where © is the Casimir operator,

2. for any (2,7,9,k) € Z xI' x G x K, we have F(zvgk) = F(g),

3. Fis of moderate growth.
We will take I' = GL2(O), where O is any maximal order in B. Let O’ be the dual of O with
respect to trace map on B. For F' € M(GL2(0O),r), we have the Fourier expansion

Fn(@)ay) = uly) + Y. ABWK 1, (2r|Bly)e*r T
ﬁeO’\{O}

3 The Maass lift

Let f € S(To(p), 7'211) be an Atkin Lehner eigenfunction with eigenvalue e € {—1,1}. Let

{c(n) : n € Z — {0}} be the Fourier coefficients of f. Let us define the primitive elements of O’
by

1
o ={Be0": Eﬁ ¢ O' for all positive integers n}.

prim
Write 8 € O as
3 = p“nfy, u>0n>0pfnand,60€(9pmm
Set
5= 0 if By &€ O;
|1 ifByeo.

Define
2u+9

=18 > S el oy (1)

t=0 d|n

The main theorem is the following.
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4 BORCHERDS THETA LIFTS

3.1 Theorem. Let f € S(To(p), ""211) be an Atkin Lehner eigenfunction with eigenvalue € €

{—1,1} with Fourier coefficients {c(n)}. For € O’, define Af(j3) as above. Then the function
F¢ o on GLa(H) with Fourier coefficients Af(3) is a cusp form in M(GL2(O),r).

One way to prove the automorphy is to use the converse theorem due to Maass.

3.2 Theorem. (Maass [3]) F given by the Fourier expansion is in M(T'p,r) if and only if a
family of twisted Dirichlet series are “nice”.

Here, T'p = <[1 ﬂ, [_1 1] : B € O). Unfortunately, we have GL2(O) = I'p if and only if

p = 2,3,5. We have used the Maass converse theorem to prove automorphy for p = 2 in joint
paper with Muto-Narita [4]. For general p, the strategy is to use Borcherds theta lifts.

4 Borcherds Theta lifts

In a nutshell, the idea for the theta lift is given by
e~ [ fO(mn()a, )i
SLa2(Z)\b
To execute the strategy we have to do the following two things.
1. Replace f by a vector valued modular form with respect to SLa(Z).
2. Define the theta kernel.

Let us first define the vector valued modular forms. Define the discriminant form D =
0')O ~ (Z/pZ) x (Z/pZ). The group algebra C[D] is a C-vector space generated by the formal
basis vectors {e, : p € D} with product defined by eye, = €,4,. Let SLa(Z) act on C[D] via
the representation pp as follows:

po([* 1])en = €(|M|2)€uvPD([1 71])6;1 = e Z e(—=(p, 1t')) ey

webD

Here e(x) = exp(2miz). Now, given f € S(Lo(p), %)7 define Lp(f) : h — C[D] by

(Lo = D> fM(m)pp(M)™ (o).

Lo (p)\SL2(Z)

The main result is

Iy 2
4.1 Proposition. Let f € S(To(p), L 4“

) be an Atkin Lehner eigenfunction with eigenvalue
e € {—1,1} with Fourier coeflicients {c(n)}.

1. For all v € SLy(Z), we have
Lp(f)lr = pp()Lp(f)-
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2. Write Lp(f) = ZMED fuepn- Let ¢, (n) be the Fourier coefficients of f,,. Then we have

c(n) —ec(np) if p=0;
eun) = { —ec(n) 0, = (mod p);
0 otherwise.

Next, let us define the theta kernel. Let (O, |-|?) =~ (Z*, Ag). Set L := [Z,0,Z]" ~ (75, A) with
1
A= —4y | . Let V= (R5Q4) = L&R ~RY. We have that the connected component of
1

SO(V) ~ SO(1,5) is isomorphic to GLo(H)/Z. Let D be the Grassmanian of positive oriented
lines in the quadratic space V. We can identify the 5-dimensional hyperbolic space Hs with the
connected component D via

2
—R-v(z,y) € DT.

Hs 5 (2,y) = v(z,y) = %t(y +y ' Q@) —y ey

Every v := v(x,y) defines an isometry
wiVoR vt Qal,) 2R, X (A, A1)

Let p : R% — R be the polynomial given by p(z1, -+ ,2¢) = —27222. For 7 = u+iv € b, (2,y) €
His, define the theta function

oL@, y)p) = Y (D (eap(To)®) ((M)e(@a)T + Qa(A,)7) e

HED AeLtp
Here, A is the Laplacian on R,
4.2 Proposition. (Borcherds [1]) For [¢Y] € SLy(Z), we have

at +b

oo V@) = ler +d’pp([25])OL(r,v(2,y), p).

or(

For (z,y) € Hs, define

browwa) = [ (Lo(h)n). 8Ll v p
SLa(Z)\h

4.3 Proposition. For every v € GL2(O), we have
Pro(w(z,y) = Prov(z,y)).

Proof. ©y is invariant under a subgroup of GLy(O) that fixes O’/O. Action of GL2(O) preserves
norms on O'/O, and Fourier coefficients of f,, u € O'/O only depend on |u|?. L]
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5 MAASS SPACE

Borcherds gives explicit formula for the Fourier coefficients of ® ;o (v(x,y)). We compute
this to show that the Fourier coefficients of ® o (v(z,y)) are exactly A;(3) defined in (1). Hence,
we obtain

SroWmy) = S AjB)PK g, (2r|8ly)e™Y )
Be0O\{0}

= Fro(n(z)ay),

which shows that Fyo € M(GL2(0O),r). Cuspidality follows from the observation that the
Fourier expansion of ®yo at a different cusp corresponds to the Fourier expansion of the
Borcherds lift for a shift of ©. This completes the proof of Theorem 3.1.

If f is a non-zero even Hecke eigenform, then ¢(—1) # 0. Hence Ay(1) # 0, and we get
non-vanishing of Iy . To show that F o is non-zero for a general f, we use the fact that the
space of Maass forms f for a fixed p and r is finite dimensional. In addition, we need to show
that f — F o is Hecke equivariant.

If a prime ¢ # p, then B ® Qp =: By ~ M2(Qy) and GLa(By) ~ GL4(Qy). Hence, we can use
the well-known Hecke theory for GL4 and show that if f is a Hecke eigenform, then F o is also
a Hecke eigenform.

Now, let F'y, 0 be a Hecke eigenform. Suppose mp,0 = @ is the irreducible cuspidal automor-
phic representation of GLa(By) corresponding to Fyo. Let oy = ®o be the irreducible cuspidal
automorphic representation of GLg(A) associated to f. Then, for £ # p, the local representation
g is the spherical component of the induced representation Indgfségg (| det | =120, x | det |V20y).
We have )

L(S7 7TF10) = L(S + 1/2, O’f)L(S - 1/2, crf),

i.e. Fyo does not satisfy the generalized Ramanujan conjecture. Note that the strong multi-
plicity one theorem for GLg(By) implies that, if O; and Oy are two maximal orders in B, then
TRO, = TFo,. Hence, Ff o, and Ff o, give two vectors in the same representation.

5 Maass space

Let us finish with the description of Maass space in the case p = 2. Let the Maass space
M*(GL2(0),r) denote the subspace of cusp forms F in M(GL3(O),r) with Fourier coefficients
A(B) satistying the following.

1. If 8 = w¥npBy, then A(B3) depends only on K := |3]?,u and n. We write A(B) as A(K,u,n).
2. A(K,u,n) satisfy the recurrence relation

o A(K,u,n) = (=3¢/V2)A(K/2,u—1,n) — A(K/4,u —2,n) for some € € {—1,1}.
o A(K,u,n) =3y, dA(K /d?,u,1).

5.1 Theorem. (Wagh [5]) F € M*(GLy(0),r) ifand only if F = Fy for some f € S(I'g(2), szl).

We plan to extend this theorem to p > 2 in the future.
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