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Maass forms on GL(2) over division quaternion algebras of 
discriminant p 

Hiroaki Narita, Ameya Pitale, Siddhesh Wagh 

1 Introduction 

In this talk, we will present a construction of Maass forms, that violate the Ramanujan conjec­
ture, on 5-dimensional hyperbolic spaces. To provide some context, let us remind the reader of 
another famous example of modular forms that violate the Ramanujan conjecture - the Saito­
Kurokawa lifts. 

Saito-Kurokawa lifts: Let f E S2k-2(SL2(Z)), with k even, and let h E s:_112 (ro(4)) be 

the corresponding cusp form in the Kohnen plus space. Let { c( n)} be the Fourier coefficients of 
h. For T half integral, positive definite, symmetric 2 x 2 matrix, define 

A(T) := L c(detd;T))dk-1_ 

dlgcd(T) 

1.1 Theorem. With A(T) as above, the function Ft(Z) = ~rA(T)exp(27riTr(TZ)) is a Siegel 
cusp form of weight k with respect to Sp4 (Z). 

Let us list some of the properties of the Saito-Kurokawa lifts (see [2] for details). 

1. Explicit formula for Fourier coefficients. 

2. The map f >-+ Ft is linear and injective. 

3. Relation between L-functions 

L(s, Ft, spin) = ((s - k + l)((s - k + 2)L(s, f). 

4. The map f >-+ Ft preserves Hecke eigenforms. 

5. If Ft is a Hecke eigenform, then let 7rF = ®p11"p be the irreducible cuspidal automorphic rep­
resentation of GSp4 (A) generated by Ft. Then, for every p < oo, the local representation 
11"p is not tempered, i.e. Ft violates the generalized Ramanujan conjecture. 

6. Characterization of lifts as the Maass space: For T = [ r/2 r~2], write A(T) = A(m, r, n). 

Then a Siegel cusp form F with Fourier coefficients A(T) is a Saito-Kurokawa lift if and 
only if we have 

A( ) """""' dk-lA(mn '!:_ ) m, r, n = ~ d2 ' d' 1 . 
dlgcd(m,r,n) 
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2 MAASS FORMS ON 5-DIMENSIONAL HYPERBOLIC SPACE 

2 Maass forms on 5-dimensional hyperbolic space 

Let B be a definite division quaternion algebra over Q. Let us make the assumption that the 
discriminant of B is a prime number p. 

Let G be the algebraic group such that G(Q) = GL2(B). Then G(R) = GL2(1HI), where lHI is 
the Hamiltonian quaternions. We have the lwasawa decomposition: GL2(1HI) = ZN AK, where 
Z is the center, and K is the maximal compact, and 

We have 
G/ZK c::c {[Y Il: X E lHI,y ER+}, 

a realization of the 5-dimensional hyperbolic space lHI5. For a discrete subgroup r C GL2(1HI) 
and r E <C we denote by M (I', r) the space of smooth functions F on G L2 (lHI) satisfying the 
following conditions: 

1 r 2 
1. !1 · F = - 2( 4 + l)F, where !1 is the Casimir operator, 

2. for any (z, r, g, k) E Z x r x G x K, we have F(z,gk) = F(g), 

3. Fis of moderate growth. 

We will taker= GL2(0), where O is any maximal order in B. Let O' be the dual of O with 
respect to trace map on B. For FE M(GL2(0),r), we have the Fourier expansion 

F(n(x)ay) = u(y) + L A(,B)y2 KAr(21rl,Bly)e27rAtr(f3x) 
/3E<'.J'\{O} 

3 The Maass lift 

Let f E S(I'o(P), r 2t 1 ) be an Atkin Lehner eigenfunction with eigenvalue EE {-1,1}. Let 
{ c( n) : n E Z - { 0}} be the Fourier coefficients of f. Let us define the primitive elements of O' 
by 

Write ,8 E O' as 

Set 

Define 

1 
O~rim := {,8 E O': -,B if_ O' for all positive integers n}. 

n 

u 2 0,n > 0,pf n and ,Bo E O~rim· 

if ,Bo if_ O; 

if ,Bo E 0. 

The main theorem is the following. 

(1) 
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4 BORCHERDS THETA LIFTS 

3.1 Theorem. Let f E S(I'o(p), r 2t 1) be an Atkin Lehner eigenfunction with eigenvalue E E 

{ -1, 1} with Fourier coefficients { c( n)}. For (3 E O', define A f (/3) as above. Then the function 
F1,o on GL2(1HI) with Fourier coefficients At(/3) is a cusp form in M(GL2(0),r). 

One way to prove the automorphy is to use the converse theorem due to Maass. 

3.2 Theorem. (Maass [3]) F given by the Fourier expansion is in M(I'o, r) if and only if a 
family of twisted Dirichlet series are "nice". 

Here, ro = ([ 1 f], [_1 1 ] : /3 E 0). Unfortunately, we have GL2(0) = ro if and only if 
p = 2, 3, 5. We have used the Maass converse theorem to prove automorphy for p = 2 in joint 
paper with Muto-Narita [4]. For general p, the strategy is to use Borcherds theta lifts. 

4 Borcherds Theta lifts 

In a nutshell, the idea for the theta lift is given by 

<P(n(x)ay) ~ J f(T)0(T,n(x)ay)dT. 

SL2(Z)\b 

To execute the strategy we have to do the following two things. 

1. Replace f by a vector valued modular form with respect to SL2(Z). 

2. Define the theta kernel. 

Let us first define the vector valued modular forms. Define the discriminant form D = 
O' /0 c::c (Z/pZ) x (Z/pZ). The group algebra (['.[D] is a C-vector space generated by the formal 
basis vectors { eµ : µ E D} with product defined by eµeµ, = eµ+µ' · Let SL2(Z) act on (['.[D] via 
the representation p D as follows: 

Here e(x) = exp(27rix). Now, given f E S(I'o(P), r 2t 1 ), define £D(f) : ~--+ (['.[D] by 

f(M(T) )PD(M)-1(eo). 
ro(p)\SL2(Z) 

The main result is 

4.1 Proposition. Let f E S(I'o(p), r 2t 1 ) be an Atkin Lehner eigenfunction with eigenvalue 
E E { -1, 1} with Fourier coefficients { c( n)}. 

1. For all 7 E SL2(Z), we have 
£D(f)l1 = PD("/)£D(f). 
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4 BORCHERDS THETA LIFTS 

2. Write £v(f) = LµED Jµeµ- Let cµ(n) be the Fourier coefficients of fw Then we have 

{
c(n) - Ec(np) 

cµ(n) = -Ec(n) 

0 

ifµ= O; 

ifµ =J O,n = lµl 2 (mod p); 

otherwise. 

Next, let us define the theta kernel. Let ( 0, I • 12) c::: (Z4, Ao). Set L := [Z, 0, Zjl c::: (Z6 , A) with 

A= [ 
1 

-Ao 1
]. Let V = (JR6 , QA) = L ® lR c::: JR1,5. We have that the connected component of 

SO(V) c::: S0(1, 5) is isomorphic to GL2(lHI)/Z. Let V be the Grassmanian of positive oriented 
lines in the quadratic space V. We can identify the 5-dimensional hyperbolic space lHI5 with the 
connected component v+ via 

1 
lHI5 3 (x,y) >--+ v(x,y) := v'/(y + y-1QA0 (x), -y-1x,y-1) 

>--+lR·v(x,y) EV+. 

Every v := v(x, y) defines an isometry 

lv : V ➔ lR · V EB (v-1, QA0 l,_,_1_) c::: JR1•5 , .A ➔ (>..,_,, .A,_,_1_). 

Let p: JR6 ➔ lR be the polynomial given by p(x1, · · · , x5) = -2-2xI, For T = u + iv E [], (x, y) E 
lHI5, define the theta function 

Here, ~ is the Laplacian on JR1,5. 

4.2 Proposition. (Borcherds [1]) For [ ~ ~] E SL2(Z), we have 

- aT + b - 5 [ a b] -eL(--d, v(x, y),p) - lcT + di PD( C d )eL(T, v(x, y),p). 
CT+ 

For (x, y) E lHI5, define 

J 5 dudv 
<I> J,o(v(x, y)) := (£v(f) ( T), e L ( T, v(x, y), p) )v2 ---;'2. 

SL2(Z)\~ 

4.3 Proposition. For every I E GL2(0), we have 

<I>1,o(,v(x,y)) = <I>1,o(v(x,y)). 

Proof. eL is invariant under a subgroup of GL2(0) that fixes O' /0. Action of GL2(0) preserves 
norms on 0'/0, and Fourier coefficients of Jµ,µ E 0'/0 only depend on 1µ1 2. ■ 
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5 MAASS SPACE 

Borcherds gives explicit formula for the Fourier coefficients of 'Pj,o(v(x,y)). We compute 
this to show that the Fourier coefficients of if!1,o(v(x, y)) are exactly At(/3) defined in (1). Hence, 
we obtain 

'PJ,o(v(x, y)) = L A1(f3)y2 KyCTr(27rl/31y)e2,r_,l=Itr(,Bx) 
,BEO'\{O} 

= F1,o(n(x)ay), 

which shows that F1,o E M(GL2(0),r). Cuspidality follows from the observation that the 
Fourier expansion of if! f,0 at a different cusp corresponds to the Fourier expansion of the 
Borcherds lift for a shift of O. This completes the proof of Theorem 3.1. 

If f is a non-zero even Hecke eigenform, then c(-1) =/ 0. Hence A1(l) =/ 0, and we get 
non-vanishing of F1,o- To show that F1,o is non-zero for a general f, we use the fact that the 
space of Maass forms f for a fixed p and r is finite dimensional. In addition, we need to show 
that f ➔ F1,o is Hecke equivariant. 

If a prime£ =Ip, then B ® IQlc =: Be CC:' M2(1Qlc) and GL2(Bc) CC:' GL4(1Qlc). Hence, we can use 
the well-known Hecke theory for GL4 and show that if f is a Hecke eigenform, then F1,o is also 
a Hecke eigenform. 

Now, let F1,o be a Hecke eigenform. Suppose 7l'F,O = ®7rc is the irreducible cuspidal automor­
phic representation of GL2(BA) corresponding to Ft,o• Let Of= ®ac be the irreducible cuspidal 
automorphic representation of GL2(A) associated to f. Then, for£=/ p, the local representation 

7!'£ is the spherical component of the induced representation Ind~L•((~t)) (I <let 1-112ac x I det I 112ac). 
2,2 '\!£ 

We have 

i.e. F1,o does not satisfy the generalized Ramanujan conjecture. Note that the strong multi­
plicity one theorem for GL2(BA) implies that, if 01 and 02 are two maximal orders in B, then 
7rpp1 = 7rpp2 • Hence, F1,01 and F1,02 give two vectors in the same representation. 

5 Maass space 

Let us finish with the description of Maass space in the case p = 2. Let the Maass space 
M*(GL2(0), r) denote the subspace of cusp forms Fin M(GL2(0), r) with Fourier coefficients 
A(/3) satisfying the following. 

1. If f3 = ro~nf3o, then A(/3) depends only on K := 1/31 2, u and n. We write A(/3) as A(K, u, n). 

2. A(K, u, n) satisfy the recurrence relation 

• A(K,u,n) = (-3E/\12)A(K/2,u-1,n) -A(K/4,u - 2,n) for some EE {-1, 1}. 

• A(K, u, n) = Ldln dA(K/d2, u, 1). 

5.1 Theorem. (Wagh [5]) FE M*(GL2(0),r) ifandonlyifF = Ft forsomef E S(I'o(2), r2t 1). 

We plan to extend this theorem to p > 2 in the future. 
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