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Maass forms on GL(2) over division quaternion algebras of 
discriminant p 

Hiroaki Narita, Ameya Pitale, Siddhesh Wagh 

1 Introduction 

In this talk, we will present a construction of Maass forms, that violate the Ramanujan conjec
ture, on 5-dimensional hyperbolic spaces. To provide some context, let us remind the reader of 
another famous example of modular forms that violate the Ramanujan conjecture - the Saito
Kurokawa lifts. 

Saito-Kurokawa lifts: Let f E S2k-2(SL2(Z)), with k even, and let h E s:_112 (ro(4)) be 

the corresponding cusp form in the Kohnen plus space. Let { c( n)} be the Fourier coefficients of 
h. For T half integral, positive definite, symmetric 2 x 2 matrix, define 

A(T) := L c(detd;T))dk-1_ 

dlgcd(T) 

1.1 Theorem. With A(T) as above, the function Ft(Z) = ~rA(T)exp(27riTr(TZ)) is a Siegel 
cusp form of weight k with respect to Sp4 (Z). 

Let us list some of the properties of the Saito-Kurokawa lifts (see [2] for details). 

1. Explicit formula for Fourier coefficients. 

2. The map f >-+ Ft is linear and injective. 

3. Relation between L-functions 

L(s, Ft, spin) = ((s - k + l)((s - k + 2)L(s, f). 

4. The map f >-+ Ft preserves Hecke eigenforms. 

5. If Ft is a Hecke eigenform, then let 7rF = ®p11"p be the irreducible cuspidal automorphic rep
resentation of GSp4 (A) generated by Ft. Then, for every p < oo, the local representation 
11"p is not tempered, i.e. Ft violates the generalized Ramanujan conjecture. 

6. Characterization of lifts as the Maass space: For T = [ r/2 r~2], write A(T) = A(m, r, n). 

Then a Siegel cusp form F with Fourier coefficients A(T) is a Saito-Kurokawa lift if and 
only if we have 

A( ) """""' dk-lA(mn '!:_ ) m, r, n = ~ d2 ' d' 1 . 
dlgcd(m,r,n) 
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2 MAASS FORMS ON 5-DIMENSIONAL HYPERBOLIC SPACE 

2 Maass forms on 5-dimensional hyperbolic space 

Let B be a definite division quaternion algebra over Q. Let us make the assumption that the 
discriminant of B is a prime number p. 

Let G be the algebraic group such that G(Q) = GL2(B). Then G(R) = GL2(1HI), where lHI is 
the Hamiltonian quaternions. We have the lwasawa decomposition: GL2(1HI) = ZN AK, where 
Z is the center, and K is the maximal compact, and 

We have 
G/ZK c::c {[Y Il: X E lHI,y ER+}, 

a realization of the 5-dimensional hyperbolic space lHI5. For a discrete subgroup r C GL2(1HI) 
and r E <C we denote by M (I', r) the space of smooth functions F on G L2 (lHI) satisfying the 
following conditions: 

1 r 2 
1. !1 · F = - 2( 4 + l)F, where !1 is the Casimir operator, 

2. for any (z, r, g, k) E Z x r x G x K, we have F(z,gk) = F(g), 

3. Fis of moderate growth. 

We will taker= GL2(0), where O is any maximal order in B. Let O' be the dual of O with 
respect to trace map on B. For FE M(GL2(0),r), we have the Fourier expansion 

F(n(x)ay) = u(y) + L A(,B)y2 KAr(21rl,Bly)e27rAtr(f3x) 
/3E<'.J'\{O} 

3 The Maass lift 

Let f E S(I'o(P), r 2t 1 ) be an Atkin Lehner eigenfunction with eigenvalue EE {-1,1}. Let 
{ c( n) : n E Z - { 0}} be the Fourier coefficients of f. Let us define the primitive elements of O' 
by 

Write ,8 E O' as 

Set 

Define 

1 
O~rim := {,8 E O': -,B if_ O' for all positive integers n}. 

n 

u 2 0,n > 0,pf n and ,Bo E O~rim· 

if ,Bo if_ O; 

if ,Bo E 0. 

The main theorem is the following. 

(1) 
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4 BORCHERDS THETA LIFTS 

3.1 Theorem. Let f E S(I'o(p), r 2t 1) be an Atkin Lehner eigenfunction with eigenvalue E E 

{ -1, 1} with Fourier coefficients { c( n)}. For (3 E O', define A f (/3) as above. Then the function 
F1,o on GL2(1HI) with Fourier coefficients At(/3) is a cusp form in M(GL2(0),r). 

One way to prove the automorphy is to use the converse theorem due to Maass. 

3.2 Theorem. (Maass [3]) F given by the Fourier expansion is in M(I'o, r) if and only if a 
family of twisted Dirichlet series are "nice". 

Here, ro = ([ 1 f], [_1 1 ] : /3 E 0). Unfortunately, we have GL2(0) = ro if and only if 
p = 2, 3, 5. We have used the Maass converse theorem to prove automorphy for p = 2 in joint 
paper with Muto-Narita [4]. For general p, the strategy is to use Borcherds theta lifts. 

4 Borcherds Theta lifts 

In a nutshell, the idea for the theta lift is given by 

<P(n(x)ay) ~ J f(T)0(T,n(x)ay)dT. 

SL2(Z)\b 

To execute the strategy we have to do the following two things. 

1. Replace f by a vector valued modular form with respect to SL2(Z). 

2. Define the theta kernel. 

Let us first define the vector valued modular forms. Define the discriminant form D = 
O' /0 c::c (Z/pZ) x (Z/pZ). The group algebra (['.[D] is a C-vector space generated by the formal 
basis vectors { eµ : µ E D} with product defined by eµeµ, = eµ+µ' · Let SL2(Z) act on (['.[D] via 
the representation p D as follows: 

Here e(x) = exp(27rix). Now, given f E S(I'o(P), r 2t 1 ), define £D(f) : ~--+ (['.[D] by 

f(M(T) )PD(M)-1(eo). 
ro(p)\SL2(Z) 

The main result is 

4.1 Proposition. Let f E S(I'o(p), r 2t 1 ) be an Atkin Lehner eigenfunction with eigenvalue 
E E { -1, 1} with Fourier coefficients { c( n)}. 

1. For all 7 E SL2(Z), we have 
£D(f)l1 = PD("/)£D(f). 
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4 BORCHERDS THETA LIFTS 

2. Write £v(f) = LµED Jµeµ- Let cµ(n) be the Fourier coefficients of fw Then we have 

{
c(n) - Ec(np) 

cµ(n) = -Ec(n) 

0 

ifµ= O; 

ifµ =J O,n = lµl 2 (mod p); 

otherwise. 

Next, let us define the theta kernel. Let ( 0, I • 12) c::: (Z4, Ao). Set L := [Z, 0, Zjl c::: (Z6 , A) with 

A= [ 
1 

-Ao 1
]. Let V = (JR6 , QA) = L ® lR c::: JR1,5. We have that the connected component of 

SO(V) c::: S0(1, 5) is isomorphic to GL2(lHI)/Z. Let V be the Grassmanian of positive oriented 
lines in the quadratic space V. We can identify the 5-dimensional hyperbolic space lHI5 with the 
connected component v+ via 

1 
lHI5 3 (x,y) >--+ v(x,y) := v'/(y + y-1QA0 (x), -y-1x,y-1) 

>--+lR·v(x,y) EV+. 

Every v := v(x, y) defines an isometry 

lv : V ➔ lR · V EB (v-1, QA0 l,_,_1_) c::: JR1•5 , .A ➔ (>..,_,, .A,_,_1_). 

Let p: JR6 ➔ lR be the polynomial given by p(x1, · · · , x5) = -2-2xI, For T = u + iv E [], (x, y) E 
lHI5, define the theta function 

Here, ~ is the Laplacian on JR1,5. 

4.2 Proposition. (Borcherds [1]) For [ ~ ~] E SL2(Z), we have 

- aT + b - 5 [ a b] -eL(--d, v(x, y),p) - lcT + di PD( C d )eL(T, v(x, y),p). 
CT+ 

For (x, y) E lHI5, define 

J 5 dudv 
<I> J,o(v(x, y)) := (£v(f) ( T), e L ( T, v(x, y), p) )v2 ---;'2. 

SL2(Z)\~ 

4.3 Proposition. For every I E GL2(0), we have 

<I>1,o(,v(x,y)) = <I>1,o(v(x,y)). 

Proof. eL is invariant under a subgroup of GL2(0) that fixes O' /0. Action of GL2(0) preserves 
norms on 0'/0, and Fourier coefficients of Jµ,µ E 0'/0 only depend on 1µ1 2. ■ 
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5 MAASS SPACE 

Borcherds gives explicit formula for the Fourier coefficients of 'Pj,o(v(x,y)). We compute 
this to show that the Fourier coefficients of if!1,o(v(x, y)) are exactly At(/3) defined in (1). Hence, 
we obtain 

'PJ,o(v(x, y)) = L A1(f3)y2 KyCTr(27rl/31y)e2,r_,l=Itr(,Bx) 
,BEO'\{O} 

= F1,o(n(x)ay), 

which shows that F1,o E M(GL2(0),r). Cuspidality follows from the observation that the 
Fourier expansion of if! f,0 at a different cusp corresponds to the Fourier expansion of the 
Borcherds lift for a shift of O. This completes the proof of Theorem 3.1. 

If f is a non-zero even Hecke eigenform, then c(-1) =/ 0. Hence A1(l) =/ 0, and we get 
non-vanishing of F1,o- To show that F1,o is non-zero for a general f, we use the fact that the 
space of Maass forms f for a fixed p and r is finite dimensional. In addition, we need to show 
that f ➔ F1,o is Hecke equivariant. 

If a prime£ =Ip, then B ® IQlc =: Be CC:' M2(1Qlc) and GL2(Bc) CC:' GL4(1Qlc). Hence, we can use 
the well-known Hecke theory for GL4 and show that if f is a Hecke eigenform, then F1,o is also 
a Hecke eigenform. 

Now, let F1,o be a Hecke eigenform. Suppose 7l'F,O = ®7rc is the irreducible cuspidal automor
phic representation of GL2(BA) corresponding to Ft,o• Let Of= ®ac be the irreducible cuspidal 
automorphic representation of GL2(A) associated to f. Then, for£=/ p, the local representation 

7!'£ is the spherical component of the induced representation Ind~L•((~t)) (I <let 1-112ac x I det I 112ac). 
2,2 '\!£ 

We have 

i.e. F1,o does not satisfy the generalized Ramanujan conjecture. Note that the strong multi
plicity one theorem for GL2(BA) implies that, if 01 and 02 are two maximal orders in B, then 
7rpp1 = 7rpp2 • Hence, F1,01 and F1,02 give two vectors in the same representation. 

5 Maass space 

Let us finish with the description of Maass space in the case p = 2. Let the Maass space 
M*(GL2(0), r) denote the subspace of cusp forms Fin M(GL2(0), r) with Fourier coefficients 
A(/3) satisfying the following. 

1. If f3 = ro~nf3o, then A(/3) depends only on K := 1/31 2, u and n. We write A(/3) as A(K, u, n). 

2. A(K, u, n) satisfy the recurrence relation 

• A(K,u,n) = (-3E/\12)A(K/2,u-1,n) -A(K/4,u - 2,n) for some EE {-1, 1}. 

• A(K, u, n) = Ldln dA(K/d2, u, 1). 

5.1 Theorem. (Wagh [5]) FE M*(GL2(0),r) ifandonlyifF = Ft forsomef E S(I'o(2), r2t 1). 

We plan to extend this theorem to p > 2 in the future. 
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