Maass forms on GL(2) over division quaternion algebras of discriminant p

Hiroaki Narita, Ameya Pitale, Siddhesh Wagh

1 Introduction

In this talk, we will present a construction of Maass forms, that violate the Ramanujan conjecture, on 5-dimensional hyperbolic spaces. To provide some context, let us remind the reader of another famous example of modular forms that violate the Ramanujan conjecture - the SaitoKurokawa lifts.

Saito-Kurokawa lifts: Let $f \in S_{2 k-2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, with k even, and let $h \in S_{k-1 / 2}^{+}\left(\Gamma_{0}(4)\right)$ be the corresponding cusp form in the Kohnen plus space. Let $\{c(n)\}$ be the Fourier coefficients of h. For T half integral, positive definite, symmetric 2×2 matrix, define

$$
A(T):=\sum_{d \mid \operatorname{gcd}(T)} c\left(\frac{\operatorname{det}(2 T)}{d^{2}}\right) d^{k-1}
$$

1.1 Theorem. With $A(T)$ as above, the function $F_{f}(Z)=\sum_{T} A(T) \exp (2 \pi i \operatorname{Tr}(T Z))$ is a Siegel cusp form of weight k with respect to $\operatorname{Sp}_{4}(\mathbb{Z})$.

Let us list some of the properties of the Saito-Kurokawa lifts (see [2] for details).

1. Explicit formula for Fourier coefficients.
2. The map $f \mapsto F_{f}$ is linear and injective.
3. Relation between L-functions

$$
L\left(s, F_{f}, \text { spin }\right)=\zeta(s-k+1) \zeta(s-k+2) L(s, f)
$$

4. The map $f \mapsto F_{f}$ preserves Hecke eigenforms.
5. If F_{f} is a Hecke eigenform, then let $\pi_{F}=\otimes_{p} \pi_{p}$ be the irreducible cuspidal automorphic representation of $\mathrm{GSp}_{4}(\mathbb{A})$ generated by F_{f}. Then, for every $p<\infty$, the local representation π_{p} is not tempered, i.e. F_{f} violates the generalized Ramanujan conjecture.
6. Characterization of lifts as the Maass space: For $T=\left[\begin{array}{cc}m & r / 2 \\ r / 2 & n\end{array}\right]$, write $A(T)=A(m, r, n)$. Then a Siegel cusp form F with Fourier coefficients $A(T)$ is a Saito-Kurokawa lift if and only if we have

$$
A(m, r, n)=\sum_{d \mid \operatorname{gcd}(m, r, n)} d^{k-1} A\left(\frac{m n}{d^{2}}, \frac{r}{d}, 1\right)
$$

2 MAASS FORMS ON 5-DIMENSIONAL HYPERBOLIC SPACE

2 Maass forms on 5-dimensional hyperbolic space

Let B be a definite division quaternion algebra over \mathbb{Q}. Let us make the assumption that the discriminant of B is a prime number p.

Let G be the algebraic group such that $G(\mathbb{Q})=\mathrm{GL}_{2}(B)$. Then $G(\mathbb{R})=\mathrm{GL}_{2}(\mathbb{H})$, where \mathbb{H} is the Hamiltonian quaternions. We have the Iwasawa decomposition: $\mathrm{GL}_{2}(\mathbb{H})=Z N A K$, where Z is the center, and K is the maximal compact, and

$$
N=\left\{n(x)=\left[\begin{array}{cc}
1 & x \\
1
\end{array}\right]: x \in \mathbb{H}\right\}, A=\left\{a_{y}:\left[\begin{array}{cc}
\sqrt{y} & \\
& \sqrt{y}^{-1}
\end{array}\right]: y \in \mathbb{R}^{+}\right\}
$$

We have

$$
G / Z K \simeq\left\{\left[\begin{array}{c}
y \\
1
\end{array}\right]: x \in \mathbb{H}, y \in \mathbb{R}^{+}\right\}
$$

a realization of the 5 -dimensional hyperbolic space \mathbb{H}_{5}. For a discrete subgroup $\Gamma \subset \mathrm{GL}_{2}(\mathbb{H})$ and $r \in \mathbb{C}$ we denote by $\mathcal{M}(\Gamma, r)$ the space of smooth functions F on $\mathrm{GL}_{2}(\mathbb{H})$ satisfying the following conditions:

1. $\Omega \cdot F=-\frac{1}{2}\left(\frac{r^{2}}{4}+1\right) F$, where Ω is the Casimir operator,
2. for any $(z, \gamma, g, k) \in Z \times \Gamma \times G \times K$, we have $F(z \gamma g k)=F(g)$,
3. F is of moderate growth.

We will take $\Gamma=\mathrm{GL}_{2}(\mathcal{O})$, where \mathcal{O} is any maximal order in B. Let \mathcal{O}^{\prime} be the dual of \mathcal{O} with respect to trace map on B. For $F \in \mathcal{M}\left(\mathrm{GL}_{2}(\mathcal{O}), r\right)$, we have the Fourier expansion

$$
F\left(n(x) a_{y}\right)=u(y)+\sum_{\beta \in \mathcal{O}^{\prime} \backslash\{0\}} A(\beta) y^{2} K_{\sqrt{-1} r}(2 \pi|\beta| y) e^{2 \pi \sqrt{-1} \operatorname{tr}(\beta x)}
$$

3 The Maass lift

Let $f \in S\left(\Gamma_{0}(p), \frac{r^{2}+1}{4}\right)$ be an Atkin Lehner eigenfunction with eigenvalue $\epsilon \in\{-1,1\}$. Let $\{c(n): n \in \mathbb{Z}-\{0\}\}$ be the Fourier coefficients of f. Let us define the primitive elements of \mathcal{O}^{\prime} by

$$
\mathcal{O}_{\text {prim }}^{\prime}:=\left\{\beta \in \mathcal{O}^{\prime}: \frac{1}{n} \beta \notin \mathcal{O}^{\prime} \text { for all positive integers } n\right\}
$$

Write $\beta \in \mathcal{O}^{\prime}$ as

$$
\beta=p^{u} n \beta_{0}, \quad u \geq 0, n>0, p \nmid n \text { and } \beta_{0} \in \mathcal{O}_{\text {prim }}^{\prime} .
$$

Set

$$
\delta= \begin{cases}0 & \text { if } \beta_{0} \notin \mathcal{O} \\ 1 & \text { if } \beta_{0} \in \mathcal{O}\end{cases}
$$

Define

$$
\begin{equation*}
A_{f}(\beta):=|\beta| \sum_{t=0}^{2 u+\delta} \sum_{d \mid n} c\left(\frac{-|\beta|^{2}}{p^{t-1} d^{2}}\right)(-\epsilon)^{t} \tag{1}
\end{equation*}
$$

The main theorem is the following.

4 BORCHERDS THETA LIFTS

3.1 Theorem. Let $f \in S\left(\Gamma_{0}(p), \frac{r^{2}+1}{4}\right)$ be an Atkin Lehner eigenfunction with eigenvalue $\epsilon \in$ $\{-1,1\}$ with Fourier coefficients $\{c(n)\}$. For $\beta \in \mathcal{O}^{\prime}$, define $A_{f}(\beta)$ as above. Then the function $F_{f, \mathcal{O}}$ on $\mathrm{GL}_{2}(\mathbb{H})$ with Fourier coefficients $A_{f}(\beta)$ is a cusp form in $\mathcal{M}\left(\mathrm{GL}_{2}(\mathcal{O}), r\right)$.

One way to prove the automorphy is to use the converse theorem due to Maass.
3.2 Theorem. (Maass [3]) F given by the Fourier expansion is in $\mathcal{M}\left(\Gamma_{\mathcal{O}}, r\right)$ if and only if a family of twisted Dirichlet series are "nice".
Here, $\Gamma_{\mathcal{O}}=\left\langle\left[\begin{array}{c}1 \\ \beta\end{array}\right],\left[{ }_{-1}{ }^{1}\right]: \beta \in \mathcal{O}\right\rangle$. Unfortunately, we have $\operatorname{GL}_{2}(\mathcal{O})=\Gamma_{\mathcal{O}}$ if and only if $p=2,3,5$. We have used the Maass converse theorem to prove automorphy for $p=2$ in joint paper with Muto-Narita [4]. For general p, the strategy is to use Borcherds theta lifts.

4 Borcherds Theta lifts

In a nutshell, the idea for the theta lift is given by

$$
\Phi\left(n(x) a_{y}\right) \sim \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}} f(\tau) \Theta\left(\tau, n(x) a_{y}\right) d \tau
$$

To execute the strategy we have to do the following two things.

1. Replace f by a vector valued modular form with respect to $\mathrm{SL}_{2}(\mathbb{Z})$.
2. Define the theta kernel.

Let us first define the vector valued modular forms. Define the discriminant form $D=$ $\mathcal{O}^{\prime} / \mathcal{O} \simeq(\mathbb{Z} / p \mathbb{Z}) \times(\mathbb{Z} / p \mathbb{Z})$. The group algebra $\mathbb{C}[D]$ is a \mathbb{C}-vector space generated by the formal basis vectors $\left\{e_{\mu}: \mu \in D\right\}$ with product defined by $e_{\mu} e_{\mu^{\prime}}=e_{\mu+\mu^{\prime}}$. Let $\operatorname{SL}_{2}(\mathbb{Z})$ act on $\mathbb{C}[D]$ via the representation ρ_{D} as follows:

$$
\rho_{D}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]\right) e_{\mu}=e\left(|\mu|^{2}\right) e_{\mu}, \rho_{D}\left(\left[{ }_{1}^{-1}\right]\right) e_{\mu}=-\frac{1}{p} \sum_{\mu^{\prime} \in D} e\left(-\left(\mu, \mu^{\prime}\right)\right) e_{\mu^{\prime}}
$$

Here $e(x)=\exp (2 \pi i x)$. Now, given $f \in S\left(\Gamma_{0}(p), \frac{r^{2}+1}{4}\right)$, define $\mathcal{L}_{D}(f): \mathfrak{h} \rightarrow \mathbb{C}[D]$ by

$$
\left(\mathcal{L}_{D}(f)\right)(\tau)=\sum_{\Gamma_{0}(p) \backslash \mathrm{SL}_{2}(\mathbb{Z})} f(M\langle\tau\rangle) \rho_{D}(M)^{-1}\left(e_{0}\right)
$$

The main result is
4.1 Proposition. Let $f \in S\left(\Gamma_{0}(p), \frac{r^{2}+1}{4}\right)$ be an Atkin Lehner eigenfunction with eigenvalue $\epsilon \in\{-1,1\}$ with Fourier coefficients $\{c(n)\}$.

1. For all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\mathcal{L}_{D}(f) \mid \gamma=\rho_{D}(\gamma) \mathcal{L}_{D}(f)
$$

4 BORCHERDS THETA LIFTS

2. Write $\mathcal{L}_{D}(f)=\sum_{\mu \in D} f_{\mu} e_{\mu}$. Let $c_{\mu}(n)$ be the Fourier coefficients of f_{μ}. Then we have

$$
c_{\mu}(n)= \begin{cases}c(n)-\epsilon c(n p) & \text { if } \mu=0 \\ -\epsilon c(n) & \text { if } \mu \neq 0, n \equiv|\mu|^{2} \quad(\bmod p) \\ 0 & \text { otherwise }\end{cases}
$$

Next, let us define the theta kernel. Let $\left(\mathcal{O},|\cdot|^{2}\right) \simeq\left(\mathbb{Z}^{4}, A_{0}\right)$. Set $L:=[\mathbb{Z}, \mathcal{O}, \mathbb{Z}]^{t} \simeq\left(\mathbb{Z}^{6}, A\right)$ with $A=\left[\begin{array}{lll} & & 1 \\ 1 & -A_{0} & \end{array}\right]$. Let $V=\left(\mathbb{R}^{6}, Q_{A}\right)=L \otimes \mathbb{R} \simeq \mathbb{R}^{1,5}$. We have that the connected component of $\mathrm{SO}(V) \simeq \mathrm{SO}(1,5)$ is isomorphic to $\mathrm{GL}_{2}(\mathbb{H}) / Z$. Let \mathcal{D} be the Grassmanian of positive oriented lines in the quadratic space V. We can identify the 5 -dimensional hyperbolic space \mathbb{H}_{5} with the connected component \mathcal{D}^{+}via

$$
\begin{aligned}
\mathbb{H}_{5} \ni(x, y) & \mapsto \nu(x, y):=\frac{1}{\sqrt{2}}^{t}\left(y+y^{-1} Q_{A_{0}}(x),-y^{-1} x, y^{-1}\right) \\
& \mapsto \mathbb{R} \cdot \nu(x, y) \in \mathcal{D}^{+}
\end{aligned}
$$

Every $\nu:=\nu(x, y)$ defines an isometry

$$
\iota_{\nu}: V \rightarrow \mathbb{R} \cdot \nu \oplus\left(\nu^{\perp},\left.Q_{A_{0}}\right|_{\nu \perp}\right) \simeq \mathbb{R}^{1,5}, \quad \lambda \rightarrow\left(\lambda_{\nu}, \lambda_{\nu \perp}\right)
$$

Let $p: \mathbb{R}^{6} \rightarrow \mathbb{R}$ be the polynomial given by $p\left(x_{1}, \cdots, x_{6}\right)=-2^{-2} x_{1}^{2}$. For $\tau=u+i v \in \mathfrak{h},(x, y) \in$ \mathbb{H}_{5}, define the theta function

$$
\Theta_{L}(\tau, \nu(x, y), p):=\sum_{\mu \in D}\left(\sum_{\lambda \in L+\mu}\left(\exp \left(\frac{-\Delta}{8 \pi v}\right)(p)\right)\left(\iota_{\nu}(\lambda)\right) e\left(Q_{A}\left(\lambda_{\nu}\right) \tau+Q_{A}\left(\lambda_{\nu^{\perp}}\right) \bar{\tau}\right)\right) e_{\mu}
$$

Here, Δ is the Laplacian on $\mathbb{R}^{1,5}$.
4.2 Proposition. (Borcherds [1]) For $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\Theta_{L}\left(\frac{a \tau+b}{c \tau+d}, \nu(x, y), p\right)=|c \tau+d|^{5} \rho_{D}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \Theta_{L}(\tau, \nu(x, y), p)
$$

For $(x, y) \in \mathbb{H}_{5}$, define

$$
\Phi_{f, \mathcal{O}}(\nu(x, y)):=\int_{\operatorname{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{h}}\left\langle\mathcal{L}_{D}(f)(\tau), \overline{\Theta_{L}(\tau, \nu(x, y), p)}\right\rangle v^{\frac{5}{2}} \frac{d u d v}{v^{2}}
$$

4.3 Proposition. For every $\gamma \in \mathrm{GL}_{2}(\mathcal{O})$, we have

$$
\Phi_{f, \mathcal{O}}(\gamma \nu(x, y))=\Phi_{f, \mathcal{O}}(\nu(x, y))
$$

Proof. Θ_{L} is invariant under a subgroup of $\mathrm{GL}_{2}(\mathcal{O})$ that fixes $\mathcal{O}^{\prime} / \mathcal{O}$. Action of $\mathrm{GL}_{2}(\mathcal{O})$ preserves norms on $\mathcal{O}^{\prime} / \mathcal{O}$, and Fourier coefficients of $f_{\mu}, \mu \in \mathcal{O}^{\prime} / \mathcal{O}$ only depend on $|\mu|^{2}$.

5 MAASS SPACE

Borcherds gives explicit formula for the Fourier coefficients of $\Phi_{f, \mathcal{O}}(\nu(x, y))$. We compute this to show that the Fourier coefficients of $\Phi_{f, \mathcal{O}}(\nu(x, y))$ are exactly $A_{f}(\beta)$ defined in (1). Hence, we obtain

$$
\begin{aligned}
\Phi_{f, \mathcal{O}}(\nu(x, y)) & =\sum_{\beta \in \mathcal{O}^{\prime} \backslash\{0\}} A_{f}(\beta) y^{2} K_{\sqrt{-1} r}(2 \pi|\beta| y) e^{2 \pi \sqrt{-1} \operatorname{tr}(\beta x)} \\
& =F_{f, \mathcal{O}}\left(n(x) a_{y}\right)
\end{aligned}
$$

which shows that $F_{f, \mathcal{O}} \in \mathcal{M}\left(\mathrm{GL}_{2}(\mathcal{O}), r\right)$. Cuspidality follows from the observation that the Fourier expansion of $\Phi_{f, \mathcal{O}}$ at a different cusp corresponds to the Fourier expansion of the Borcherds lift for a shift of \mathcal{O}. This completes the proof of Theorem 3.1.

If f is a non-zero even Hecke eigenform, then $c(-1) \neq 0$. Hence $A_{f}(1) \neq 0$, and we get non-vanishing of $F_{f, \mathcal{O}}$. To show that $F_{f, \mathcal{O}}$ is non-zero for a general f, we use the fact that the space of Maass forms f for a fixed p and r is finite dimensional. In addition, we need to show that $f \rightarrow F_{f, \mathcal{O}}$ is Hecke equivariant.

If a prime $\ell \neq p$, then $B \otimes \mathbb{Q}_{\ell}=: B_{\ell} \simeq M_{2}\left(\mathbb{Q}_{\ell}\right)$ and $\mathrm{GL}_{2}\left(B_{\ell}\right) \simeq \mathrm{GL}_{4}\left(\mathbb{Q}_{\ell}\right)$. Hence, we can use the well-known Hecke theory for GL_{4} and show that if f is a Hecke eigenform, then $F_{f, \mathcal{O}}$ is also a Hecke eigenform.

Now, let $F_{f, \mathcal{O}}$ be a Hecke eigenform. Suppose $\pi_{F, \mathcal{O}}=\otimes \pi_{\ell}$ is the irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}\left(B_{\mathbb{A}}\right)$ corresponding to $F_{f, \mathcal{O}}$. Let $\sigma_{f}=\otimes \sigma_{\ell}$ be the irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ associated to f. Then, for $\ell \neq p$, the local representation π_{ℓ} is the spherical component of the induced representation $\operatorname{Ind}_{P_{2,2}\left(\mathbb{Q}_{\ell}\right)}^{\mathrm{GL}}\left(|\operatorname{det}|^{-1 / 2} \sigma_{\ell} \times|\operatorname{det}|^{1 / 2} \sigma_{\ell}\right)$. We have

$$
L\left(s, \pi_{F, \mathcal{O}}\right)=L\left(s+1 / 2, \sigma_{f}\right) L\left(s-1 / 2, \sigma_{f}\right)
$$

i.e. $F_{f, \mathcal{O}}$ does not satisfy the generalized Ramanujan conjecture. Note that the strong multiplicity one theorem for $\mathrm{GL}_{2}\left(B_{\mathbb{A}}\right)$ implies that, if \mathcal{O}_{1} and \mathcal{O}_{2} are two maximal orders in B, then $\pi_{F, \mathcal{O}_{1}}=\pi_{F, \mathcal{O}_{2}}$. Hence, $F_{f, \mathcal{O}_{1}}$ and $F_{f, \mathcal{O}_{2}}$ give two vectors in the same representation.

5 Maass space

Let us finish with the description of Maass space in the case $p=2$. Let the Maass space $\mathcal{M}^{*}\left(\mathrm{GL}_{2}(\mathcal{O}), r\right)$ denote the subspace of cusp forms F in $\mathcal{M}\left(\mathrm{GL}_{2}(\mathcal{O}), r\right)$ with Fourier coefficients $A(\beta)$ satisfying the following.

1. If $\beta=\varpi_{2}^{u} n \beta_{0}$, then $A(\beta)$ depends only on $K:=|\beta|^{2}, u$ and n. We write $A(\beta)$ as $A(K, u, n)$.
2. $A(K, u, n)$ satisfy the recurrence relation

- $A(K, u, n)=(-3 \epsilon / \sqrt{2}) A(K / 2, u-1, n)-A(K / 4, u-2, n)$ for some $\epsilon \in\{-1,1\}$.
- $A(K, u, n)=\sum_{d \mid n} d A\left(K / d^{2}, u, 1\right)$.
5.1 Theorem. (Wagh [5]) $F \in \mathcal{M}^{*}\left(\mathrm{GL}_{2}(\mathcal{O}), r\right)$ if and only if $F=F_{f}$ for some $f \in S\left(\Gamma_{0}(2), \frac{r^{2}+1}{4}\right)$.

We plan to extend this theorem to $p>2$ in the future.

REFERENCES

References

[1] Borcherds, R. E.: Automorphic forms with singularities on Grassmanians. Invent. Math., 132 (1998), 491-562.
[2] Eichler, M., Zagier, D.: The Theory of Jacobi Forms Progress in Mathematics, 55. Birkhauser, Boston (1985)
[3] Manss, H.: Automorphe Funktionen von meheren Veränderlichen und Dirchletsche Reihen. Abh. Math. Sem. Univ. Hamburg, 16, no. 3-4, (1949) 72-100.
[4] Muto, M., Narita, H., Pitale, A.: Lifting to GL(2) over a division quaternion algebra and an explicit construction of CAP representations. Nagoya Math. J., 222, issue 01, (2016) 137-185.
[5] Wagh, S.: Maass space for lifts to GL_{2} over a division quaternion algebra Journal of Number Theory, 28, (2020) 230-261

Department of Mathematics, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
Email address: hnarita@waseda.jp
Department of Mathematics, University of Oklahoma, Norman, OK, 73019, USA Email address: apitale@ou.edu

Department of Mathematics, University of Wisconsin, Madison, USA
Email address: waghsiddhesh@gmail.com

