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Triple product p-adic £-functions attached to p-adic 
families of modular forms 

*~&*~ milk~~ 
Osaka university, Kengo Fukunaga 

1 Introduction 

In this paper, we present the result [Fuk19, Theorem 5.2.1]. Let p be an odd prime. In 
[Hsil 7], Hsieh constructed three-variable p-adic triple product £-functions attached to triples 
of Hida families. We generalize the result [Hsi17, (1) of Theorem 7.1] axiomatically and con­
struct three-variable p-adic triple product £-functions in the unbalanced case attached to triples 
(F, G(2l, G(3l). Here, F is a Hida family and Q(i) is a more general p-adic family for i = 2, 3. 
For example, we can take Hida families, Coleman families or CM-families as Q(i). 

To state our theorem precisely, we prepare some notation. We denote by Q, Qp and IC the 
fields of rational numbers, p-adic rational numbers and complex numbers respectively. Let Z 
and Zp be the rings of integers and p-adic integers respectively. Throughout this paper, we fix 
an isomorphism ip : QP ~ IC over Q. Here, ij and QP are the algebraic closures of the fields Q 
and Qp respectively. We denote by A the adele over Q. Let A be a ring. We denote by a(n, f) 
the n-th coefficient of a formal power series f E A[q], where n is a non-negative integer. Let 
Wp be the Teichmiiler character mod p. Let (N1 , N 2 , N 3 ) be a triple of positive integers which 
are prime top and ('1/;1, '1/;2, 'lj;3) a triple of Dirichlet characters of modulo (Nip, N2p, N3p) which 
satisfies the following hypothesis. 

Hypothesis (1). There exists an integer a E Z such that 'l/;1'1/;2'1/;3 = w~a. 

Let K be a finite extension of Qp and OK the ring of integers of K. We denote by AK := 
OK[r] the Iwasawa algebra over OK, where r := 1 +pZP. Let Ii be a normal finite flat extension 
of AK for i = 1, 2, 3. We fix a set of non-zero OK-algebraic homomorphisms 

for i = 1, 2, 3. Let Q(i) E Ii[q] be a formal series such that the specialization 

is the Fourier expansion of a normalized cuspidal Hecke eigenform of weight k(il(m), level 

NipeCil(m) and Nebentypus 'I/Jiw;/C'l(m) E~ which is primitive outside of p for each positive integer 

m. Here, k(il(m) and e(il(m) are positive integers and E~ is a finite character of r. Let X1 1 be 
the set of arithmetic points Q with weight kq 2: 2 and a finite part EQ defined in Definition 2.0.1. 
We take the pair (X(l), G(1l) to be the pair (X1,, F), where F is a primitive Hida family F of 
tame level N1 and Nebentypus '1/;1 defined in Definition 2.0.3. We denote by Fq the specialization 
of F at Q for each Q E X11 • Let R := l1 ®oK l2®chl3 be the complete tensor product of l1, l2 
and l3 over OK, We define an unbalanced domain of interpolation points of R to be 
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For each 9_ = ( Q1, Q~;, Q~~) E X~, we denote by (F, G(2l, G(3l)(9_) the specialization of 

the triple (F, G(2), G(3l) at 9_. We define a representation Ilg_ = 7rQ, ~ 7rQ~; ~ 1rQ~i of 

(GL2(A))3, where (1rQ,, 7rQ(2J, 7rQ(3J) is the triple of automorphic representation attached to 
-m2 rn3 

the triple (F, G(2), G(3l)(9_). Let (xg_)A be the adelization of the following Dirichlet character 

for each 9_ = (Q1,QC2l,Q(3l) EX~. We set IIQ = IIQ ® (XQ)A for each 9_ EX~. Let E1(s,IIQ) 

be the local epsilon factor of IIQ defined in [Ike92, page 227] for each finite prime l. We ;t 
N = N1N2N3. Let m 1 be the unique maximal ideal of 11 . We summarize some hypotheses to 
state Main Theorem. 

Hypothesis (2). The residual Galois representation PF := PF mod m1 : Gal(Q/Q) --+ GL2(iFp) 
attached to F is absolutely irreducible as Gal(Q/Q)-module and p-distinguished in the sense 
that the semi-simplification of PF restricted to Gal(Qp/Qp)-module is a sum of two different 
characters. 

Hypothesis (3). The number gcd(N1, N2, N3) is square free. 

Hypothesis (4). For each 9_ EX~ and for each prime ZIN, we have Ez(l/2, Ilg_)= 1. 

Hypothesis (5). Let i = 2, 3 and n a positive integer which is prime to p. There exits an 
element (n)(i) E Ii which satisfies 

for each positive integer m. 

Hypothesis (6). Let i = 2,3. We have a(p,G(il(m)) -/- 0 or G(il(m) is primitive for each 
positive integer m. 

Hypothesis (7). For each prime ZIN, the l-th Fourier coefficients of F, G(2) and Q(3) are non­
zero. 

Let L(s, Ilg_) be the triple product £-function attached to Ilg_ defined in §3. Let !1FQ, be the 
canonical period defined in [Hsi17, (1.3)] and t'FQ,,P(IIQ) the modified p-Euler factor defined in 
[Hsil 7, (1.2)]. Our main theorem is as follows. -

Main Theorem. Let us assume Hypotheses {1)~{7). Then, there exists an element,C~<2i,a<3 i E 

R such that we have the interpolation property : 

for every 9_ = (Q1,Q~;,Q~~) EX~. 

Let ( )AK : z; --+ A~ be a group homomorphism defined by (z)AK = [zw_;1(z)], where 
[zw_;1(z)] is the group-like element of zwp(z)- 1 Er in A~. Let n be a positive integer which is 
prime top. We have Q((n)AK) = EQ(n)(nw_;1(n))kQ for each arithmetic point Q E X1,. Then, 
if we take a Hida family as G(i), (n) AK satisfies the Hypothesis (5). 
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2 p-adic families of modular forms 

Let K be a finite extension of Q)p and OK the ring of integers of K. Let I be a normal finite 
flat extension of the Iwasawa algebra AK over OK. In this section, we recall the definitions of 
ordinary 1-adic cusp forms, primitive Hida families and congruence numbers attached to Hida 
families. Let N be a positive integer which is prime to p. Throughout this section, we assume 
that Q)p(X) c K for each Dirichlet character x modulo Np. Let A be a subring of Q. We 
denote by Sk(M, 7/J, A) the A-module of cusp forms of weight k, level M and Nebentypus 'ljJ 
whose Fourier coefficients at oo are included in A, where k, M are positive integers and 'lj; is a 
Dirichlet character modulo M. We set Sk(M, 7/J, B) := Sk(M, 7/J, A) 0A B for each A-algebra B. 

Definition 2.0.1. We call a continuous OK-algebra homomoT'f)hism Q: I-+ QP an arithmetic 

point of weight kQ 2 2 and a finite part EQ : r -+ ij; if the restriction Qlr : r -+ ij; is given 

by Q( x) = xkQ EQ ( x) for each x E r. Here, EQ : r -+ ij; is a finite character. 

Let X1 be the set of arithmetic points of I. We denote by e the ordinary projection defined 
in [Hid85, ( 4.3)]. We recall the definition of ordinary 1-adic cusp forms defined in [Wil88]. 

Definition 2.0.2. Let x be a Dirichlet character modulo Np. We call a formal power se­
ries f E l[q] an ordinary 1-adic cusp form of tame level N and Nebentypus x if the spe­

cialization fQ := LQ(a(n,f))qn E Q(l)[q] off is the Fourier expansion of an element of 
n::>O 

eSkQ (Npeq, xw;/Q EQ, Q(I)) with eQ 2 1 for all but a finite number of Q E X1. 

Let S0rd (N, X, I) be the I-module consisting of ordinary 1-adic cusp forms of tame level N 
and Nebentypus X· Next, we recall the definition of the Hecke algebra of S0rd (N, X, 1). For each 
prime l f Np, we define the Hecke operator Tz E End1(Sord(N, X, 1)) at l to be 

Tz(f) = La(n, Tz(f))qn 
n::>1 

for each f E S0rd (N,x,1), where 

a(n,Tz(f)) = L (b)AKX(b)b- 1a(ln/b2 ,f). 
bl(n,l) 

For each prime llNp, we define the Hecke operator Tz E End1(Sord(N, X, 1)) at l to be 

Tz(f) = La(ln, f)qn 
n::>1 

for each f E S0rd (N,x,1). The Hecke algebra T 0rd (N,x,1) is defined by the sub-algebra of 
End1(Sord(N,x,I)) generated by 1} for all primes l. Next, we recall the definition of primitive 
Hida families. 

Definition 2.0.3. We call an element f E S0rd (N, X, I) a primitive Hida family of tame level 
N and Nebentypus x if the specialization fQ is the Fourier expansion of an ordinary p-stabilized 
cuspidal newform for all but a finite number of Q E X1 . 

Next, we recall the definition of the congruence number. Let F E S0rd (N, X, I) be a prim­
itive Hida family which satisfies Hypothesis (2). Let Ap : T0rd (N, X, I) -+ I be an I-algebra 
homomorphism defined by Ap(T) = a(l, T(F)) for each TE T 0rd (N, X, 1). Let mp be a unique 
maximal ideal of T 0rd (N, X, 1) which contains Ker>..p. Let T 0rd (N, X, l)mF be the localization of 
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T 0rd (N, X, I) by mp. Let AmF : T 0rd (N, X, I)mF --+ I be the restriction of Ap to T 0rd (N, X, I)mF. 
By [Hid88a, Corollary 3. 7], there exists a finite dimensional Fracl-algebra B and an isomorphism 

A: T 0rd (N,x,I)mF ®1 Fracl ~ Fracl 8 B 

such that (prFracl o .>.) ITa,d(N,x,l)mF = AmF, where prFracl : Fracl EBB--+ Fracl is the projection 
to the first part. 

Definition 2.0.4. Let prFracI (resp. prB) be the projection from Fracl EBB to Fracl (resp. B ). 
We put h(Fracl) := prFracl O >-(Tord(N,x,I)mF) and h(B) := prB O >-(Tord(N,x,I)mF). We 
define the module of congruence for F to be 

Let 
lp E Tord(N,x,I)mF ®1 Fracl 

be the idempotent element corresponded to (1,0) E FraclEBB by.>.. Let Ann(C(F)) := {a EI I 
aC(F) = {0}} be the annihilator of C(F). By [Wil95, Corollary 2, page 482], T0rd (N, X, I)mF 
is a Gorenstein ring. Hence, by [Hid88b, Theorem 4.4], the annihilator Ann(C(F)) is generated 
by an element. 

Definition 2.0.5. We call a generator 'T/F of Ann(C(F)) a congruence number of F. 

Next, we introduce general p-adic families of modular forms. We fix a set of non-zero 
continuous OK-algebraic homomorphisms 

Then, we define the specialization of an element G = La(n, G)qn E I[q], at Qm E X to be 
n:>:O 

GQ= := LQm(a(n, G))qn E Qm(I)[q]. Let X be a Dirichlet character modulo Np. 
n:>:O 

Definition 2.0.6. We call an element GE I[q] a primitive p-adic families of tame level N and 
Nebentypus x attached to X if GQ= is the Fourier expansion of a cuspidal Hecke eigenform of 

weight kQ=, level N peq= and N ebentypus xw:;/Q= EQ= which is primitive outside of p for each 
positive integer m 2': 1. Here, kQ= and eQ= are positive integers and EQ= is a finite character 
off. 

3 Triple product £-functions 

Let (91, 92, 93) be a triple of primitive forms of weight (k1, k2, k3), level (M1, M2, M3) and Neben­
typus (X1,X2,X3). We assume that there exists a Dirichlet character x such that X1X2X3 = x2. 
Let (1r1, 1r2, 1r3) be a triple of automorphic representations of GL2(A) attached to (g1, g2, g3). In 
this section, we recall the definition of the triple product L-function attached to the automorphic 
representation 

II := 1r1 ® (x)A ~ 1r2 ~ 1r3, 

where (X)A is the adelization of X· We define the triple product L-function L(s,II) to be 

L(s,II) = IT Lv(s,II), Re(s) > 1, 
v:place 

where Lv(s, II) is the GCD local triple product L-function defined in [PSR87] and [Ike92]. Let 
l be a prime. The local L-function L1(s,II) at l can be written by the form l/P(p- 8 ), where 
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P(T) E C[T] such that P(O) = 1. By the result of [Ike98], the archimedean factor L00 (s, II) can 
be written by the form 

3 

Loo(s, II) := rc(s + i) II rc(s + 1 - k:), 
i=l 

where w = k1 + k2 + k3 - 2, ki = k,+k;+k3 - ki and I'c(s) = 2(21r)-•r(s). By [Ike92, Propo­
sition 2.5], the function L(s, II) is continued to the entire C-plane analytically and by [Ike92, 
Proposition 2.4], the function L(s, II) satisfies the functional equation 

L(s,II) = E(s,II)L(l - s,II), 

where E(s,II) is the global epsilon factor defined in [Ike92, page 230]. The epsilon factor E(s,II) 
can be decomposed by the product of the local epsilon factors 

E(s,II) = II Ev(s,II) 
v:place 

and it is known that Ev(½,II) E {±1}. 

4 Construction of p-adic triple product £-functions 

Let K be a finite extension of IQlp and Ii a normal finite flat extension of AK for i = 1, 2, 3. We 
fix a triple of Dirichlet characters ( 'lp1, 'lp2, 'lj;3) of modulo (Nip, N2p, N3p), where Ni is a positive 
integer which is prime top for i = 1,2,3. Let FE S 0rd (N1,'lj;1,I1) be a primitive Hida family 
defined in Definition 2.0.3. Let G(i) E Ii [q] be a p--adic family of tame level Ni and Nebentypus 
'lpi attached to 

;r(il := {Q~ : Ii ➔ Qp}m2'.t 

for i = 2, 3. In this section, we prove Main theorem and construct the p--adic triple product £­
function attached to (F, c(2), G(3l). For simplicity, we assume N 1 = N 2 = N 3 = 1. Further, we 
assume that the triple (F,G(2l,c(3l) satisfies Hypothesis (1)~(7). We set R := I 1®oKI2 ®oKI3 

and 

We define a formal operator UR,p E EndR(R[q]) to be 

UR,p(f) = 'I:,a(pn, f)qn 
n2'.0 

for each f = I:n2'.o a(n, f)qn E R[q]. Let 8 : z; ➔ Rx be a character defined by 

for each z E z;, where (z)i, is the image of (z) AK by the natural inclusion AK c...+ I1 . For each 

f E 'I:,a(n,f)qn E R[q], we define a 8-twisted form fl[8] E R[q] to be 
n2'.0 

Jl[eJ = "I:,e(n)-a(n,f)qn. 
ptn 
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We set d := fri. For each 9_ = (Qi,Q~;,Q~;) EX~, we have fl[0](9_) = dr.2.(f(9_)1[0g_]) with 
the Dirichlet character 

- - -a-rg_ ½ (2) -½ (3)-½ 
89_ - '1/JiWp EQ, Em2 Em3 , 

where rQ = ½(kQ, - k(2l(m2) - k(3l(m3)). Here, f(9_)1[0Q] is the twisted cusp form by the 

Dirichlet character eQ, We regard G(2l and G(3) as eleme;-ts of R[q] by natural embeddings 

l2 '----+Rand l3 '----+ R~ We set H := G(2l · (G(3ll[0]) E R[q]. We define the Maass-Shimura 
differential operator Ok to be 

for each non-negative integer k. Further, we set or := Ok+2m-2 ... ok+2ok, where m is a non­
negative integer. We denote by 1{ the holomorphic projection from the space of nearly holo­
morphic modular forms to modular forms defined in [Shi76]. Let mR be the maximal ideal of 
R. 

Lemma 4.0.1. Let Q = (Qi,Q~;,Q~:) EX~. We fix a finite extension L of K such that 

OL contains Qi(Ii),Q~;(l2) and Q~:(l3). Then, the sequence {Uit',pH(9_)}n?:i converges in 
OL[q] by the mR-adic topology and the limit of the sequence equals to the Fourier expansion 

ofe1i(G(2l(m2)0~%l(m3 )G(3l(m3)l89.) E eSkq, (peq,,'1/Jiw!Q'EQ,,L), with eQ, := max{l,mcq,}• 
Here, mcq, is the p-power of the conductor of EQ,. 

Proof. It is known that H(Q) is a Fourier expansion of a p-adic modular form and by [Hid85, 
Lemma 5.2], we have -

where g0 E L[q] is a p-adic modular form. By [Hid85, (6.12)], ed = 0 and we have eH(9_) = 

e1i( G(2l(m2)0~%l(m3 ) G(3) (m3) l0g_). Further, by [Hid85, (4.3)], the sequence {UR;pH(9_)}n?:i 

converges in OL[q] by the mwadic topology and the limit of the sequence equals to eH(Q). 
We have completed the proof. - □ 

To construct a triple product p-adic L-function L~<2 l G<3l ER, we prove the following lemma 
and proposition. ' 

Lemma 4.0.2. There exists a unique element H 0rd E R[q] such that the specialization of 

H 0rd at each Q = (Qi, Q~;, Q~;) E X~ equals to the Fourier expansion of the modular form 

e1i( G(2) (m2)0Jal(m3 ) G(3) (m3) l0g_). 

Proof. Let IQ be the ideal of R generalized by KerQi,KerQ~; and KerQ~: for each Q = 

(Qi, Q~;, Q~0 EX~. We denote by~ the set of finite intersections of IQ for Q EX~. Then, 
we can easily check that nJesJ = {O}. Further, we have the natural isomorphis-;_ R ~ ~ (R/ 

JE'J3 
J). In particular, we have 

R[q] ~ ~ R[q] ®R (R/ J). 
JE'J3 

For each J = nbciIQ_ E ~, it suffices to prove that there exists a unique element H'j"d E 

R[q] ®R (R/J) such that the image of H'j"d by the natural embedding iJ: R[q] ®R (R/J) '----+ 
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m m 

IJ(R[q] ®RR/I9) equals to [e(H(2Jl=l· The uniqueness of HJrd is trivial. We prove the 
i=l 
existence of HJrd . 

Let PJ : R[q] ---+ R ®R (R/ J) be the natural projection. If J = IQ for Q E X~, we 

have lim PJ(U'1f PH) = e1-i(Q) by Lemma 4.0.1. We assume that there ex~t ele~nts HYd = 
n➔oo ' -

lim PJ(U'Ji1PH) E R[q] ® (R/ J) and HJ';d = lim PJ' (U'Ji1PH) E R[q] ® (R/ J') for a pair 
n➔oo ' n➔oo ' 

(J, J') E Bx B. We define the R-linear map: 

(R[q] ®R (R/J)) x (R[q] ®R (R/J')) ~ (R[q] ®R (R/J + J')) 
w w 

(a, b) >-------+ a - b 

Then, we have iJ,J'(HYd,HJ';d) = lim iJ J'(PJ(U'Ji 1PH),PJ'(U'Ji1PH)) = 0. Further, since 
n➔CXJ ' ' ' 

Ker iJ,J' ~ R[q] @ 8 (R/J n J'), there exists a unique element HJ1f--,dJ' E R[q] @ 8 (R/J n J') 
such that the image of HJ1f--,dJ' in (R[q] ®R (R/ J)) x (R[q] ®R (R/ J')) equals to (HYd, HJ';d). In 
particular, we have HJ1f--,dJ' = lim PJnJ' (U'Ji 1PH). Then, for each J = n~1 IQ E B, there exists 

n➔oo ' -i 

a unique element Hyd E R[q] ®R (R/ J) such that the image of Hyd by the natural embedding 

iJ: R[q] ®R (R/J) Y Il(R[q] ®R R/Ig_) equals to [e(H(gi))J:1. We have completed the 
i=l 

proof. □ 

Proposition 4.0.3. The power series H 0rd is an element of S0rd (N, 7/Ji, l1)®11 R. 

Proof. We identify the Iwasawa algebra AK with OK[X] by the isomorphism [1 + p] r-+ 1 + X 
and we regard Ii as the normal finite flat extension of OK[Xi] for i = 1, 2, 3. Let a1, a2, ... , an 
be a base of Rover Ro = OK[X1, X2, X3]. We put 

n 

Hord= LH(i)ai, 
i=l 

where H(i) E Ro [q] for each i = 1, ... , n. We put L = FracR and Lo = FracRo. Let TrL/ Lo : 

L ---+ Lo be the trace map and ai, a 2, ... , a~ be the dual base of a1, a2 ... , an with respect to 
TrL/Lo·Then, we have 

H(il(g) = Tr(H(g)at(2)) 

for all but a finite number of Q = (Q1, Q~L Qg~) EX~. Further, Tr(H(Q)a:;(Q)) is the Fourier 

expansion of an element of eSkq1 (NpeQ1, EQ 1 1/J1w;kQ 1 , g(R)). It suffi.ce~o pr~ve 

for each i = 1, ... ,n. 
For each positive integers m2, m3, let H~;,m3 E OK[b~;, bg~][X1] [q] be the specialization 

(i) ( (2) (3)) (2) (2) ( ) (3) (3) ( ) . (i) of H at Qm2 ,Qm3 , where bm2 := Qm2 X2 and bm3 := Qm3 X3 . First, we prove Hm2 ,m3 E 

S0rd (l, 7/Ji, OK[b~;, bg;] [X1]). We define a subset x;;,2 ,m3 of arithmetic points ofl1 to be 

For each positive integer k, there exists an arithmetic point Q E X11 with kQ = k. Then, we have 

#X;;,2 ,m3 = oo. Let s~i,ms C OK[b~;,bg;][X1][q] be an OK[b~;,bg;][X1]-module consisting 
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of elements f E Ch[b~;, bg;][X1] [q] such that, for all but a finite number of Q E X;,2 ,m3, f ( Q) 
equals to the specialization of an element of S0rd (l,'!p1, OK[b~;, bg;][Xi]) at Q. Then, we have 

S0rd (l,'!p1,0K[b~;,bg;][Xi]) C S~~,ms and H;/;;,m3 E S~~,ms· It suffices to prove that we 

have S0rd (l,'!p1,0K[b~;,bg;][X1]) = S~~,ms· Let g1, ... ,gd be elements of S~~,ms which are 

OK[b~;, bg;][X1]-linear independent. Then, there are positive integers m 1, ... , md such that 

d = det(a(mi,9j))i<::i,j:<'.d =/= 0 E OK[b~;, bg~J[X1]. 

Since #X;,2 ,m3 = oo, there exists an element Q E X;,2 ,m3 such that d(Q) =/= 0. Then, we have 

rank() [b(2) b(3)][XJS~~m3 =rank() [b(2) b(3)]1X]S0rd (l,'!p1,0K[b~;,bg~J[X1]). 
K m.2, rn3 1 ' K m2 , rn3 1 

Then, if we take an element f E S~~,m3 , there exists an element a E OK[b~;,bg~][X1]\{0} 

such that af E S0rd (l,'!p1,0K[b~Lbg~][X1]). Since a has only finite roots, we have f E 

S0rd (l,'lf'1,0K[b~;,bg;][Xi]). Then, we have S0rd (l,'lf'1,0K[b~;,bg;l[X1]) = S~~,ms· 

For each positive integer m 3, let H(i),ms E OK[bg~l[X1,X2] be the specialization of H(i) at 

Qg;. Next, we prove H(i),ms E S0rd (l,'!p1, OK[bg;][X1])00 [b(sJ 10K[bg;][X2]. We define an 
K =s 

OK[bg~][X1,X2]-module S~~ c OK[bg~][X1,X2] consisting of elements f(X1 ,X2 ) such that 

f(X1, b~)) E S0rd (l, '!p1, OK[X1]) ®oK Oij" for each positive integer m. We have already proved 

that H(i),ms E S~d. It is clear that S0rd (l,'!p1,0K[bg;][Xi])0,,., [bcsi 10K[bg~][X2] C S~d. 
3 VK ma 3 

Further, if g1, ... , 9d E S~~ are linear independent, there exist positive integers m 1, ... , md 

such that 
d = det(a(m;,gj))i<::i,j<'.d =/= 0 E OK[bg~l[X1,X2]. 

We can take a positive integer m 2 such that d(X1,b~;) =/= 0. Then, rank0 K[b~~ ]lx,,x21 S~~ = 

rank0 K[b~~][Xd S0rd (l,'!p1,0K[bg~l[X1]). We take an element a E OK[bg~][X1,X2]\{0} such 

that aH(i),ms E S0rd (l, '!p1, OK[bg~][X1])00 K[b~~]OK[bg~][X2]. Since we have a(X1,Pm) =/= 0 

for almost all positive integers m, there exists a positive integer km3 such that H(i),ms (X1, pm') E 

S0rd (l,'!p1,0K[bg;][X1]) for each positive integer m' ~ km3 -

We put H6i),ms := H(i),m3 and Cm= pk=s+m for each non-negative integer m. We define a 

power series H;/;),ms E OK[bg~][X1,X2][q] inductively for each positive integer m to be 

H$:,,l ,m3 (X1,X2) := (H;!;~7;'3 (X1,X2) - H;!;~7;'3 (X1,cm))(X2 - cm)-1 E OK[bg~][X1,X2][q]. 

By the induction of m, we have H;/;),ms (X1, ci) E S0rd (l, '!p1, OK[bg~][X1]) for each non-negative 

integer m and l ~ m + 1. In particular, if we put H;!;~;:;'_; 1 := H$;;l,m3 (X1, Cm+1), we have 

oo m 

H(i),ms = LH;;;,~:--:1IT (X2 - Cj) E S0rd (I, '!f'l, OK[bgwx1])®0K[b~~]OK[bgwx2]. 
m=l j=l 

Next, we prove H(i) E S0rd (l,'!p1,0K[X1])®0KOK[X2,X3]. By the same way as above, 
we can take a non-zero element a E OK[X1,X2,X3]\{0} such that aH(i) is an element of 
S0rd (l,'!p1,0K[X1])®0KOK[X2,X3]. Further, there exists a positive integer k which satisfies 
H(il(X1,X2,Pm) E S0rd (l,'!p1,0K[Xi])®oKOK[X2] for each m ~ k. We put H6i) := H(i) and 

c;,, = pk+m for each non-negative integer m. We define a power series H;/;l E OK[X1, X2, X3][q] 
inductively for each positive integer m to be 

H;/;l := (H;!;~l (X1, X2, X3) - H;!;~l (X1, X2, c;,,))(x3 - c;,,)-1 E OK[X1, X2, X3][q]. 
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Then, we have 

00 m 

m=O j=l 

We have completed the proof. □ 

Definition 4.0.4. We define an element L~c 2),cCs) E R to be 

L~c2l,c<sl := a(l,77plp(Hord)). 

Here, lp is the idempotent element defined in §2 and 7/F is the congruence number defined in 
Definition 2.0.5. 

By [Hid85, Proposition 4.5] and [Ich08, Theorem I.I] , we have the interpolation formula of 
L0 c2l ,ccs). However, we omit the detail of the proof of the interpolation formula. Let nFq, be 
the canonical period defined in [Hsil 7, (1.3)] and t'Fq"p(IIQ) the modified p-Euler factor defined 
in [Hsi17, (1.2)]. -

Proposition 4.0.5. We assume Hypotheses {1)~ (7). Then, there exists an element .C~<2l,ccs) E 

R such that we have the interpolation property : 

5 Examples 

In this subsection, we give examples of the triple (I;, ;t(i), c(i)) which satisfy Hypothesis (5), (6) 
and (7). As a first example, we can take families of CM forms of weight 1. Let L be a quadratic 
imaginary extension of Q with a discriminant D. We assume that D is square-free and prime 
to p. Let f be an integral ideal of OL such that f is prime to Dp. We assume that N(f) is 
square-free, where N is the absolute norm. Let (!'.(f(p)j) be the class ray group modulo f(p)j 
over L for each j 2". 0. By the class field theory, (!'.(f(p) 00 ) = ~(!'.(f(p)j) is a Zp-module of rank 

j~O 

2. Let ~f be the torsion part of (!'.(f(p) 00 ) and X : ~f ➔ icx be a primitive character. Here, a 
primitive character means that it is not induced by any character from ~f' for f c;;; f'. Let L~/ L 
be the anticyclotomic extension of L. By the class field theory, the Galois group Gal(L~/L) 
is a direct summand of the Zp-torsion free part of (!'.(f(p) 00 ). Let prf : (!'.(f(p) 00 ) ➔ ~f and 
pr_ : (!'.(f(p) 00 ) ➔ Gal(L~/ L) be the natural projections to ~f and Gal(L~/ L) respectively. 
Let Ebe a finite Galois extension of Qp such that the image of ~f by x is contained in E. We 
define a group homomorphism 

to be w(a) = x(pr1(a))[pr_(a)] for a E (!'.(f(pr). Let Jf(p) be the group which consists of 
fractional ideals a of L which is prime to f(p). For each finite prime ideal I, we denote by Lr the 
completion of L by I. Let OL, be the integers of Lr and 11'( a generator of the maximal ideal of 
OL,· We define a group homomorphism 
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to be w*(n) = II Wr(rrf'), where W = II Wz and n = II [n'. We put 
ltf(p) l ltf(p) 

Fw = L w*(n)qN(cil, 
citf(p) 

where n runs through integral ideals of L which are prime to f(p). Let E: Gal(L~/ L) -+ «:f be 
a finite character. We denote by P, : OE[Gal(L~/ L)] -+ ijP the OE-algebra homomorphism 
defined by P,([w]) = E(w) for w E Gal(L~/L). It is known that for each finite character E: 

Gal(L~/L)-+ ij\ the series f, := P,(Fw) E P,(OE[Gal(L~/L)])[q] is the Fourier expansion 
of a classical modular form of weight 1 and level (-D)N(f)pe', where e, is a positive integer 
(cf. [Miy06, Theorem 4.8.2]). By the definition, f, is the CM-form. We remark that the p-th 
coefficient a(p,Fw) E OE[Gal(L~/L)] of Fw is zero by the definition. However, if E: Gal(L~/ 

L) -+ ijx is primitive and the conductor is sufficiently large, it is known that J, is a primitive 
form (cf. [Miy06, Theorem 4.8.2]). Then, if we put X := {KerP, I J, is primitive}, the 
cardinality of X is not finite, and the triple (OE[Gal(L~/L)],X,Fw) satisfies the condition 
(6). Further, it is not difficult to prove that the triple (OE[Gal(L~/L)],X,Fw) satisfies the 
condition (5). Let prAx : A,_X -+ <!:(f(p)=) be the natural projection defined by the class field 
theory. We denote by jp : Q; '---+Ax the natural injection. If we put (n) = nwp(n)-1 w([prAx o 
jp(nwp(n)-1)])-1 E OE[Gal(L~/L)r for each positive integer n which is prime top, (n) 
satisfies the condition of (5). Since DN(f) is square-free, by [Miy06, Theorem 4.6.17], Fw 
satisfies Hypothesis (7). 

As a second example of (Ii, X(i), G(il), we give Coleman families. For an element x E K and 
EE p'J, we denote by B[x, E]K the closed ball of radius E and center x, seen as a K-affinoid space. 
We denote by AB[x,,]K the ring of analytic functions on B[x, E]K and by A~[x,,]K the subring of 

power bounded elements of AB[x,,]K· We remark that if EE K, the ring A~[x,<]K is isomorphic 
to the ring 

Let M be a positive integer which is prime top and square-free. Let EM be a Dirichlet character 
mod M. Let f be a p-stabilized newform of weight ko, level Mp , slope a < ko - 1 and 
Nebentypus EMwt-ko where O ::; i ::; p - 1. Further, we assume that a(p, f) 2 f= EM(P)Pko-l if 
i = 0. Then, by Coleman in [Col97], there exists an element EE p'J n Kand a series 

such that the specialization G(k) of G at k is the Fourier expansion of a normalized Hecke 
eigenform of weight k, level Mp, slope a and Nebentypus EMwt-k for each positive integer 
k E B[ko, E]K(K) which is greater than a+ 1. Further, we prove in [Fuk19, A2.7] that we can 
take a sufficiently small E such that G(k) is a p-stabilized newform for each positive integer 
k E B[ko, E]K(K) which is greater than a+ 1. If we put X = c 1(T - k0 ), we can regard 
the Coleman series G as a series G(X) in OK[X]. Let k E B[ko, E]K(K) be a positive integer 
which is greater than a+ 1. If we put bk = c 1(k - ko), G(bk) is the Fourier expansion of a 
p-stabilized newform of weight k, level Mp, slope a and Nebentypus EMwt-k. We denote by 
Pk: OK[X]-+ K the continuous OK-algebra homomorphism defined by Pk(X) = bk. We define 
X to be the set consisting of Pk for each positive integer k E B[ko, E]K(K) which is greater than 
a + 1. Then, the triple ( 0 K [ X], X, G ( X)) satisfies Hypothesis ( 6). We check that the triple 
(OK[X],X,G(X)) satisfies Hypothesis (5). Let exp(x) and log(x) be the formal exponential 
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series and log series in K[x] defined by 

We fix an isomorphism AK~ OK[X] defined by [1 + p] >--+ X + 1 and we define a formal series 

for each positive integer n which is prime top. We remark that since we have IPmlP ::; lm!IP 
for each positive integer m, the series (n)' is contained in OK[X]. Further, for each positive 
integer n which is prime top, the series (n)' satisfies the condition of Hypothesis (5). Since M 
is square-free, by [Miy06, Theorem 4.6.17], G(X) satisfies Hypothesis (7). 
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