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Triple product p-adic L-functions attached to p-adic
families of modular forms

PNTTNE VI T

Osaka university, Kengo Fukunaga

1 Introduction

In this paper, we present the result [Fukl9, Theorem 5.2.1]. Let p be an odd prime. In
[Hsil7], Hsieh constructed three-variable p-adic triple product L-functions attached to triples
of Hida families. We generalize the result [Hsil7, (1) of Theorem 7.1] axiomatically and con-
struct three-variable p-adic triple product L-functions in the unbalanced case attached to triples
(F, GO, G’<3)). Here, F is a Hida family and G is a more general p-adic family for ¢ = 2, 3.
For example, we can take Hida families, Coleman families or CM-families as G,

To state our theorem precisely, we prepare some notation. We denote by Q, Q, and C the
fields of rational numbers, p-adic rational numbers and complex numbers respectively. Let Z
and Zj, be the rings of integers and p-adic integers respectively. Throughout this paper, we fix
an isomorphism i, : Q, = C over Q. Here, Q and Q, are the algebraic closures of the fields Q
and Q) respectively. We denote by A the adele over Q. Let A be a ring. We denote by a(n, f)
the n-th coefficient of a formal power series f € A[q], where n is a non-negative integer. Let
wp be the Teichmiiler character mod p. Let (Ni, N2, N3) be a triple of positive integers which
are prime to p and (¢1, 12, 3) a triple of Dirichlet characters of modulo (Nyp, Nap, N3p) which
satisfies the following hypothesis.

Hypothesis (1). There exists an integer a € Z such that 1isths = wga

Let K be a finite extension of Q, and Ok the ring of integers of ). We denote by Ay :=
Ok |[I'] the Iwasawa algebra over Ok, where I' := 14+pZ,. Let I; be a normal finite flat extension
of Ai for i =1,2,3. We fix a set of non-zero O-algebraic homomorphisms

£ = QW) : L = Q1
for i =1,2,3. Let G e I;[¢] be a formal series such that the specialization
G (m) ZQ(Z a(n,G"))g" € Q,[q]

is the Fourier expansion of a normalized cuspidal Hecke eigenform of weight k() (m), level
N;p® () and Nebentypus 9;wp @ m) m which is prlmltlve outside of p for each positive integer
m. Here, k) (m) and e (m) are positive integers and ¢ is a finite character of I'. Let X1, be
the set of arithmetic points @ with weight kg > 2 and a finite part g defined in Definition 2.0.1.
We take the pair (%(1), G’(l)) to be the pair (Xy,, F'), where F is a primitive Hida family F of
tame level N; and Nebentypus 91 defined in Definition 2.0.3. We denote by F(, the specialization
of F at @ for each Q € Xy,. Let R := Il®@KIQ®oK13 be the complete tensor product of Iy, Is
and I3 over Ok . We define an unbalanced domain of interpolation points of R to be

kg, + k@ (m2) + k) (m3) = 0 (mod 2)
F._ _ (3) (2) 3)| FQ. 2 3 )
Y= {Q = (@R Q) & X x X x| ) o e '



For each @ = (Ql, 5,2 S{)g) € XE, we denote by (F, G G®))(Q) the specialization of

the triple (F,G®? G®)) at Q. We define a representation I = mg, X To@ W moe of
— = mo m3

(GLa(A))?, where (ﬂ'Ql,TFQg)Q ) ) is the triple of automorphic representation attached to
the triple (F, G, G3))(Q). Let (xqg)a be the adelization of the following Dirichlet character

. 3a—kg; —k® (m2)—k® (my))
Wp

xa = (coue)e®)t

“1%mo tma

for each @ = (Q1,Q@, QW) € X{. We set Ilg = IIj; ® (x@)a for each @ € X Let e(s,1lg)
be the local epsilon factor of Il defined in [Ike92, ‘page 227] for ecach finite prime I. We set
N = N;N,N3. Let m; be the unique maximal ideal of I;. We summarize some hypotheses to
state Main Theorem.

Hypothesis (2). The residual Galois representation . := pr mod m; : Gal(Q/Q) — GLa(F))
attached to F is absolutely irreducible as Gal(Q/Q)-module and p-distinguished in the sense
that the semi-simplification of pp restricted to Gal(@p/(@p)—module is a sum of two different
characters.

Hypothesis (3). The number ged(Ny, Na, N3) is square free.
Hypothesis (4). For each Q € X}, and for each prime I[N, we have a(1/2,1lg) = 1.

Hypothesis (5). Let ¢ = 2,3 and n a positive integer which is prime to p. There exits an
element (n)¥) € 1, which satisfics

i i i - D (m
QR (@) = ef) (n) (nw, * (n) ™
for each positive integer m.

Hypothesis (6). Leti = 2,3. We have a(p, G (m)) # 0 or GO (m) is primitive for each
positive integer m.

Hypothesis (7). For each prime [|N, the I-th Fourier coefficients of F,G® and G® are non-
zero.

Let L(s,Ilg) be the triple product L-function attached to Ilg defined in §3. Let Qp, be the
canonical period defined in [Hsil7, (1.3)] and €r,, ,(Ilg) the modified p-Euler factor defined in
[Hsil7, (1.2)]. Our main theorem is as follows.

Main Theorem. Let us assume Hypotheses (1)~ (7). Then, there exists an element Eg@)vG@) S
R such that we have the interpolation property :

(L& co (@) = Erg, p(lQ) - =51 =5
G2, \x Q1 P\Q (\/jl)2kQ1Q%Q1
for every Q = (Q1, Qi) QW) € XF,.
Let ( )a, @ Z; — Ag be a group homomorphism defined by (z)a, = [zw, L(2)], where

[zw, 1 (2)] is the group-like element of zw,(z)~* € T in Aj. Let n be a positive integer which is

prime to p. We have Q((n)a, ) = eq(n)(nw, ! (n))*e for each arithmetic point @ € Xr,. Then,

if we take a Hida family as G, (n),,. satisfies the Hypothesis (5).
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2 p-adic families of modular forms

Let K be a finite extension of Q, and Ok the ring of integers of K. Let I be a normal finite
flat extension of the Iwasawa algebra A over Ok. In this section, we recall the definitions of
ordinary I-adic cusp forms, primitive Hida families and congruence numbers attached to Hida
families. Let N be a positive integer which is prime to p. Throughout this section, we assume
that Q,(x) C K for each Dirichlet character y modulo Np. Let A be a subring of Q. We
denote by Si(M,, A) the A-module of cusp forms of weight k, level M and Nebentypus
whose Fourier coefficients at oo are included in A, where k, M are positive integers and 1) is a
Dirichlet character modulo M. We set S, (M, v, B) := Si(M,v, A) ® 4 B for each A-algebra B.

Definition 2.0.1. We call a continuous Ok -algebra homomorphism @ : 1T — Qp an arithmetic
point of weight kg > 2 and a finite part eq : I' — @: if the restriction Q|p : T — @: s given
by Q(x) = a*eeq(w) for each x € T. Here, eg : T — @: is a finite character.

Let X1 be the set of arithmetic points of I. We denote by e the ordinary projection defined
in [Hid85, (4.3)]. We recall the definition of ordinary I-adic cusp forms defined in [Wil88].

Definition 2.0.2. Let x be a Dirichlet character modulo Np. We call a formal power se-

ries £ € I[g] an ordinary I-adic cusp form of tame level N and Nebentypus x if the spe-

cialization fo = ZQ(a(n,f))q” € QM)[q] of £ is the Fourier expansion of an element of
n>0

€Sk, (Np‘”‘Q,Xw;kQ €q, QX)) with eq > 1 for all but a finite number of Q € Xi.

Let S"(N, x,I) be the I-module consisting of ordinary I-adic cusp forms of tame level N
and Nebentypus x. Next, we recall the definition of the Hecke algebra of S°*4(N, y, I). For each
prime [ { Np, we define the Hecke operator Tj € Endy(S°™4(N, x, 1)) at [ to be

Ti(f) =Y _aln, Ti()d"

n>1

for each f € S4(N, x, 1), where

a(n, Ti(f)) = D (Daex(®)b~ alln/v?, f).

b|(n,l)

For each prime | Np, we define the Hecke operator 7} € Endg(S°™4(V, x,I)) at [ to be

Ti(f) =Y alin, f)q"

n>1

for each f € SN, x,I). The Hecke algebra T°"4(N, x,I) is defined by the sub-algebra of
Endr(SY(N, x,I)) generated by T for all primes [. Next, we recall the definition of primitive
Hida families.

Definition 2.0.3. We call an element £ € SN, x.I) a primitive Hida family of tame level
N and Nebentypus x if the specialization fq is the Fourier expansion of an ordinary p-stabilized
cuspidal newform for all but a finite number of Q € Xy.

Next, we recall the definition of the congruence number. Let F' € S°"4(N, x,I) be a prim-
itive Hida family which satisfies Hypothesis (2). Let Ap : T"4(N,x,I) — I be an I-algebra
homomorphism defined by Ap(T") = a(1,T(F)) for each T € T°"4(N, y,I). Let mp be a unique
maximal ideal of T**4(N, x,I) which contains KerAp. Let T*Y(N, x,I)m, be the localization of



TN, x,T) by mp. Let Am, : TN, X, D)m, — I be the restriction of Ap to T"YN, x, ) -
By [Hid88a, Corollary 3.7], there exists a finite dimensional FracI-algebra B and an isomorphism

A TN, x, I)m, ®1 Fracl = FracI & B

such that (preg,er © )\)\Tord(N%I)mF = Amj, Where prg, g : Fracl © B — Fracl is the projection
to the first part.

Definition 2.0.4. Lel prp.,.g (resp. prg) be the projection from Fracl & B to Fracl (resp. B).
We put h(FracI) := pri,.g © MTYN, X, Dm,) and h(B) := prg o (TYN, \,Dm,). We
define the module of congruence for ' to be

C(F) := h(FracI) @ h(B)/MNTYN, X, Dm,)-

Let
1p € TYN, x, Dmp @1 Fracl
be the idempotent element corresponded to (1,0) € FracI& B by A. Let Ann(C(F)) :={a €I
aC(F) = {0}} be the annihilator of C'(F). By [Wil95, Corollary 2, page 482], T"4(N, x, Dmp
is a Gorenstein ring. Hence, by [Hid88b, Theorem 4.4], the annihilator Ann(C'(F)) is generated
by an element.

Definition 2.0.5. We call a generator ng of Ann(C(F)) a congruence number of F.

Next, we introduce general p-adic families of modular forms. We fix a set of non-zero
continuous O-algebraic homomorphisms

X ={Qm:I— @p}mzb

Then, we define the specialization of an element G = Za(n, G)¢" € I]q], at Q. € X to be
n>0
Gg,, = ZQm(a(n7 G))q" € Qm(D[q]. Let x be a Dirichlet character modulo Np.
n>0

Definition 2.0.6. We call an element G € 1[q] a primitive p-adic families of tame level N and
Nebentypus x attached to X if Gq,, is the Fourier expansion of a cuspidal Hecke eigenform of

weight kg, , level Np®@m and Nebentypus Xw;k("m €Q,, which is primitive outside of p for each
positive integer m > 1. Here, kg, and eq,, are positive integers and €q,, s a finite character
of L.

3 Triple product L-functions

Let (g1, 92, g3) be a triple of primitive forms of weight (k1, k2, k3), level (M7, M3, M3) and Neben-
typus (X1, X2, %3). We assume that there exists a Dirichlet character x such that y1x2x3 = Y.
Let (71,72, 73) be a triple of automorphic representations of GL2(A) attached to (g1, g2,¢93). In
this section, we recall the definition of the triple product L-function attached to the automorphic
representation

II:=m & (x)a X X3,
where ()4 is the adelization of y. We define the triple product L-function L(s,II) to be

L(s,II) = H L,(s,1I), Re(s) > 1,

v:place

where L,(s,1II) is the GCD local triple product L-function defined in [PSR87] and [Ike92]. Let
I be a prime. The local L-function L;(s,II) at | can be written by the form 1/P(p~*), where
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P(T) € C[T] such that P(0) = 1. By the result of [Tke98], the archimedean factor Lo (s,1I) can
be written by the form

3
w *
Loo(s,11) :=Te(s + 5) lec(s +1—k),
where w = ky + ko + k3 — 2, kf = w — k; and I'c(s) = 2(2m)~*I'(s). By [Ike92, Propo-
sition 2.5], the function L(s,II) is continued to the entire C-plane analytically and by [Ike92,
Proposition 2.4]; the function L(s,II) satisfies the functional equation

L(s,II) = e(s,IT)L(1 — s,1I),

where €(s,11) is the global epsilon factor defined in [Ike92, page 230]. The epsilon factor (s, II)
can be decomposed by the product of the local epsilon factors

e(s, 1) = [] eu(s.10)

v:place

and it is known that €,(3,1I) € {£1}.

4 Construction of p-adic triple product L-functions

Let K be a finite extension of Q, and I; a normal finite flat extension of Ax for ¢ =1,2,3. We
fix a triple of Dirichlet characters (11, %2, 13) of modulo (N1p, Nop, N3p), where Nj is a positive
integer which is prime to p for i = 1,2,3. Let F € S°"(Ny,v1,1;) be a primitive Hida family
defined in Definition 2.0.3. Let G e I;[¢q] be a p-adic family of tame level N; and Nebentypus
1; attached to

X0 ={QW) 1, — Qulm>1

for ¢ = 2,3. In this section, we prove Main theorem and construct the p-adic triple product L-
function attached to (F, G(2>,G(3)). For simplicity, we assume N; = Ny = N3 = 1. Further, we
assume that the triple (F, G®), G®)) satisfies Hypothesis (1)~ (7). We set R := 1,0, .80, I3
and

kg, + k@ (m2) + k3 (m3z) =0 (mod 2), }

Fo_Jo_ @ H®) @ o ¥
e {Q (Qua i) € n x| 8 L) 0L 40 (o)

We define a formal operator Ug, € Endr(R[q]) to be
Unry(f) = Y alpn, f)a"
n>0
for each f =3", sqa(n, f)g" € R[q]. Let © : Z; — R* be a character defined by

1

0(2) = 1wy *(2) ()1, 2 ((2)@ () )73,

for each z € Z), where (2)1, is the image of (z)4, by the natural inclusion Ax < I;. For each
fe Za(n, £)¢" € R[q], we define a ©-twisted form f|[©] € R[g] to be

n>0

71101 = 30 (m)-an. ))q".

pin



We set d 1= 4. For each Q = (Q1,Q%), Q%)) € X, we have f|[0)(Q) = d"2(f(Q)|[Og]) with
the Dirichlet character N

i

—a—ro 1 _1
@Q = wle Qeé)lesnz : 657311 %

where ro = 1(kg, — k@ (mg) — k) (m3)). Here, f(Q Q)|[O¢] is the twisted cusp form by the

Dirichlet character ©q. We regard G® and G® as elements of R[q] by natural embeddings

I, = Rand I3 < R. We set H := G® - (G®)|[0]) € R[q]. We define the Maass-Shimura
differential operator d to be

zml/_ ((‘fz %Im(z))

for each non-negative integer k. Further, we set 6" := 0py2m—2...0kt20k, where m is a non-
negative integer. We denote by H the holomorphic projection from the space of nearly holo-
morphic modular forms to modular forms defined in [Shi76]. Let mp be the maximal ideal of
R.

Lemma 4.0.1. Let Q = (Q1, 5,%; 531) € XE. We fix a finite extension L of K such that
Oy, contains Q1(I1), 5,2 (I2) and QES;(Ig). Then, the sequence {Uﬁ!,pH(Q)}nZI converges in
OLlq] by the mp-adic topology and the limit of the sequence equals to the Fourier expansion
of e’H(G@)(mg)éz%)<mg)G(3) (m3)|0q) € eSky, (P°2 ,¢1w£QleQ1,L), with eq, = max{l,me, }.
Here, me, s the p-power of the conductor of €q, -

Proof. Tt is known that H(Q) is a Fourier expansion of a p-adic modular form and by [Hid85,
Lemma 5.2], we have

H(Q) = H(GP (m2)5,5 ., P (m3)|0g) + dlgg) € Lldl,

where g, € L[q] is a p-adic modular form. By [Hid85, (6.12)], ed = 0 and we have e (Q) =
eH(GP (my)6, ) (mn) G P (m3)|©g). Further, by [Hid85, (4.3)], the sequence {UR',H(Q)}n>1

converges in Op[q] by the mp-adic topology and the limit of the sequence equals to eH(Q).
We have completed the proof. |

To construct a triple product p-adic L-function Lg(g)A’ e € R, we prove the following lemma
and proposition.

Lemma 4.0.2. There exists a unique element H*Y € R[q] such that the specialization of
H at each Q= (Ql,sz,QSSZ) € XL equals to the Fourier expansion of the modular form

H(GD (m2)5,5) (. GP (1) Og).

Proof. Let I be the ideal of R generalized by KerQl,KerQﬁz and Kengi for each @ =

(@1, Q%l, 52;) € Z{g. We denote by B the sct of finite intersections of I for Q € %g. Then,

we can easily check that NyeqJ = {0}. Further, we have the natural isomorphism R = 1&1 (R/
Jes
J). In particular, we have

Rlq] = lim Rq] ®r (R/J).

JeB

For each J = ﬁ'"llQ € B, it suffices to prove that there exists a unique element Hg ord
R[q] ®r (R/J) such that the image of 75" by the natural embedding iy : Rq] @r (R/. ])
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m
m

H(R[q]] ®r R/Iq ) equals to [e(H(QZ))} L The uniqueness of H$'4 is trivial. We prove the
i=1 =
existence of H3.

Let p; : Rlqg] — R ®g (R/J) be the natural projection. If J = Ig for Q € X, we

have IEII D J(U}%pr ) = eH(Q) by Lemma 4.0.1. We assume that there exist elements H$"d =
lim p,(UR,H) € R[q] ® (R/J) and H3 = lim py(Up,H) € R[q] ® (R/.J') for a pair
n—00 ’ n—o0 B

(J,J") € B x B. We define the R-linear map:

(Bla] @r (B/D) x (Rla] @ (R/T)) % (Rlg] ©r (R/] + 7))
(av b) — a—>b

Then, we have iy (H3Y, HEY) = lim Z:J_’J/(pJ(UEIPH),pJ/(UE!pH)) = 0. Further, since
n—00 ? ?

Ker iy = Rlq] ®@r (R/J N .J'), there exists a unique element H3Y,, € Rlq] ®r (R/J N J')
such that the image of H3Y,, in (R[¢] @& (R/J)) x (Rlq] @r (R/J")) equals to (HF, H$Y). In
particular, we have Hf}rde, = le pmJ/(UEEPH). Then, for each J = NjL,Ig € B, there exists

a unique element H9' € R[q] @ g (R/.J) such that the image of H9'¥ by the natural embedding
m

is: Rld @r (RJ) — [[(Rldl ©r R/Iq,) cauals to [e(H(Q,))]
i=1

proof. a

m

. We have completed the
1

i=

Proposition 4.0.3. The power series H? is an element of S™(N,¢1,1;)®r, R.

Proof. We identify the Iwasawa algebra Ax with Ok [X] by the isomorphism [1+p] — 1+ X
and we regard I; as the normal finite flat extension of Ok [X;] for i = 1,2,3. Let ay,aq,...,ay,
be a base of R over Ry = Og[X1, X2, X3]. We put

Hord _ i[{(z)az
i=1

where H® € Ry[q] for each i = 1,...,n. We put I = FracR and Ly = FracRy. Let Trr/pL, :
L — Ly be the trace map and a7, a3, ..., «; be the dual base of a;, s ..., a, with respect to
Trp/p,-Then, we have

HO(Q) = Tre(H(Q)a:(Q))

for all but a finite number of @ = (Q1, S,Qli 522) € X%. Further, Tr(H(Q)a; (Q)) is the Fourier

expansion of an element of eSk, (Np®@, EQlwle_le ,Q(R)). It suffices to prove

H(l) € Sord(1, djla OKHXIH)®OK[X1HRO

foreachi=1,...,n. '
For each positive integers msg, ms, let H,(,i;ms € Ok [bgl,bgi][[Xlﬂ[[q]] be the specialization
of H® at (QSZZ, 53)3)7 where bE,?Z = QE?;Z(.XQ) and bEf’?ﬂ = Qsﬂ (X3). First, we prove H,(,%Jng IS

Sord(1, 41, Ok [bggl,bg,?;l][[Xlﬂ) We define a subset X%, of arithmetic points of I to be

ma,m3

xb = {Q € Xy,

(Q.Q,Q8) € x4}

For each positive integer k, there exists an arithmetic point @ € Xy, with kg = k. Then, we have
#XF =0, Let 899 Ok[b'2), b\ ][X1][q] be an O [b'2), b\ ][X1]-module consisting

m2,m3 ma,m3



of elements f € Ok [bgl, bgl}[[Xﬂ][[q]] such that, for all but a finite number of Q € X7, .. f(Q)

equals to the specialization of an element of S*4(1, ¢y, © K[b% , bg,?{g][[X 1]) at @. Then, we have
sord(l,wl,OK[biig,be:;][[Xl]]) c sod - and H,(,ZL.)Z,m3 € sod It suffices to prove that we

ma,ms3 mo,msa"

have S'4(1, ¢y, Ok [bﬁ,%g, bggg][[Xl]]) = Sord Let g1,...,gq be elements of S%¢ ~ which are

ma,m3 " m2,m3
(2) )

O K[bmz,bg{g][[X 1]-linear independent. Then, there are positive integers my, ..., mg such that

d = det(a(mi, g;))1<ij<a # 0 € Ok [b7), D[ X1].

mo? Yms

Since #X% = o0, there exists an element Q € XF such that d(Q) # 0. Then, we have

m2,ms3 m2,m3

rankOK[bg;’bgémxlﬂS%img = rankox[b(j;,bﬁgg][[xl]]sord(L 1, Ok [bggbg;z’z][[Xl]])

Then, if we take an clement f € Sord . there exists an element a € Ok [bﬁl,bﬁi][{){l]\{o}
such that af € Sord(l,wl,oK[bﬁﬁl,b£;°;§}ﬂX1}]). Since a has only finite roots, we have f €
Sr(1, 1, O [biah, bl ] [X1]). Then, we have S°(1, ¢y, Orc[bim, bim ] [X1]) = S22 .

For each positive integer ms, let H()"s € O [bgg]ﬂXl, X,] be the specialization of H() at
Q). Next, we prove H(:ma ¢ Sord(l,1/11,OK[bng[Xlﬂ)@oK[bw)]OK[bng[Xgﬂ. We define an
my

OK[bgsi][[Xl,Xgﬂ-module Sord ¢ OK[bssg][[Xl,Xg]] consisting of elements f(X;,X5) such that
f(Xy, 5,2)) € 8or(1,9, Ok [X1]) Ro, Og_for each positive integer m. We have already proved
that HO™ms ¢ Sord. Tt is clear that Sord(l,wl,OK[bS,?;l][[Xl]])@)ok[b%](?;([bﬁﬁl][[Xg]] c sord,

ms
Further, if g1,...,94 € S%‘; are linear independent, there exist positive integers myq,...,mg
such that

d= det(a(’ﬂLi,gj))lSi’de 75 0e OK[bsleXl,XQ]].

We can take a positive integer mso such that d(Xl,bgl) # 0. Then, rank

Sord —
Ok Bi]1X1,X2] 7 ma
Ok[bgé]ﬂxlﬂsord(l,whOK[bﬁg][[Xl]]). We take an element a € (’)K[bgsg][[Xl,Xg]]\{O} such

that aH " € $U(L, gy, O (b X1 B, 151 Orc b5 [X2]- Since we have a(Xy,p™) # 0

for almost all positive integers m, there exists a positive integer k,,, such that H ()ms (X, p’”’) €
Sord(1, 41, Ok [bgg][[Xl]]) for each positive integer m’ > k.

We put Hé” ™= H@ms and ¢, = pFms T for each non-negative integer m. We define a

rank

power series o™ e O [bg{l}[[X 1, X2][¢] inductively for each positive integer m to be
HiD™s (X1, Xo) = (HT (X0, Xo) = 2 (X, 60)) (X = em) ™ € OxIIX, Xa][a]-

By the induction of m, we have H"™ (X1,c1) € 8°4(1, 91, O [bg{l} [X1]) for each non-negative

integer m and [ > m + 1. In particular, if we put Hr(,?nznjl = Hf,?’m3(X1, Cm+1), we have
HOms = Zﬂfgﬁﬂ (X5 —¢;) € S7(1, 4y, OK[bg{i}ﬂXlﬂ)@oK[bggg]OK[bgl}HXZH-
m=1 j=1

Next, we prove H® ¢ 89(1, 41, O [X1]) R0, Ok [X2, X3]. By the same way as above,
we can take a non-zero element a € Og[X7, X2, X3]\{0} such that aH® is an element of
SO (1,41, O [X1]) R0, Ok [ X2, X3]. Further, there exists a positive integer k which satisfies
HO (X, Xy, p™) € 879(1, by, Ok [X1])B o, Ok [Xa] for each m > k. We put HS” := H® and
¢, = p"+™ for each non-negative integer m. We define a power series HSY € O [ X1, X5, X3][q]
inductively for each positive integer m to be

HS) = (HY (X1, X2, X3) — HY (X1, Xa, ) (X5 — ¢)) 7! € Ok[ X1, Xa, X3][q]-
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Then, we have

HOD =3 "HW (X1, Xa, ) [ [(Xs = &) € 87(1, 01, Ok [X1]) B0, Ok [Xa, X3].
m=0 j=1
We have completed the proof. ]

Definition 4.0.4. We define an element L, ae € R to be

G(2),
Lgm),c(s) =a(l, ”/Flp(Hord)).

Here, 1 is the idempotent element defined in §2 and nr is the congruence number defined in
Definition 2.0.5.

By [Hid85, Proposition 4.5] and [Ich08, Theorem 1.1] , we have the interpolation formula of
Lo g However, we omit the detail of the proof of the interpolation formula. Let QFQ1 be
the canonical period defined in [Hsil7, (1.3)] and £r, ,(Tlg) the modified p-Euler factor defined
in [Hsil7, (1.2)]. B

Proposition 4.0.5. We assume Hypotheses (1)~ (7). Then, there exists an element LL,2) ) €
R such that we have the interpolation property :

( (Q)) =¢&p (H ) —(%7 )
2 3 s :

G2 .G®) Q1-P\HQ ( /—1)2le92£21

for every Q = ((;21, (2) (3)) S %1

5 Examples

In this subsection, we give examples of the triple (I;, (), G() which satisfy Hypothesis (5), (6)
and (7). As a first example, we can take families of CM forms of weight 1. Let L be a quadratic
imaginary extension of Q with a discriminant D. We assume that D is square-free and prime
to p. Let f be an integral ideal of O such that f is prime to Dp. We assume that N(§) is
square-free, where N is the absolute norm. Let €(f(p)’) be the class ray group modulo f(p)?
over L for each j > 0. By the class field theory, €(f(p)*°) = liHmQ(f(p)j) is a Zy-module of rank
320
2. Let Aj be the torsion part of €(f(p)>°) and x : A} — C* be a primitive character. Here, a
primitive character means that it is not induced by any character from Ay for f C §. Let L_/L
be the anticyclotomic extension of L. By the class ficld theory, the Galois group Gal(L /L)
is a direct summand of the Zy-torsion free part of €(f(p)>). Let pr; : €(f(p)>) — Aj and
pr_ : €(f(p)>) — Gal(LZ /L) be the natural projections to Aj and Gal(LZ, /L) respectively.
Let E be a finite Galois extension of @, such that the image of Aj by x is contained in £. We
define a group homomorphism

U &(f(p)>®) — Op[Gal(L,/L)]*

to be ¥(a) = x(pr(a))[pr_(a)] for a € €(f(p)>). Let Jg,) be the group which consists of
fractional ideals a of L which is prime to f(p). For each finite prime ideal [, we denote by L; the
completion of L by [. Let O, be the integers of L; and 7 a generator of the maximal ideal of
Or,,. We define a group homomorphism

U 2 Jjp) — Op[Gal(L,,/L)]"



to be U*(a H Wy(m"), where U = H\I/l and a = H . We put
Uf(p) "i(p)

Fy = Z\I, N(u

atf(p)

where a runs through integral ideals of L which are prime to §(p). Let ¢ : Gal(LL /L) — Q" be
a finite character. We denote by P, : Og[Gal(L /L)] — @p the Og-algebra homomorphism
defined by P.([w]) = e(w) for w € Gal(Ly /L). It is known that for each finite character e :
Gal(Lg,/L) — Q" the series f. := P.(Fy) € P.(Og[Gal(LZ,/L)])[q] is the Fourier expansion
of a classical modular form of weight 1 and level (—D)N(f)p®, where e, is a positive integer
(cf. [Miy06, Theorem 4.8.2]). By the definition, f, is the CM-form. We remark that the p-th
coefficient a(p, Fy) € Op[Gal(Ly /L)] of Fy is zero by the definition. However, if € : Gal(L__/
L) — @X is primitive and the conductor is sufficiently large, it is known that f. is a primitive
form (cf. [Miy06, Theorem 4.8.2]). Then, if we put X := {KerP. | f. is primitive}, the
cardinality of X is not finite, and the triple (Og[Gal(Lo /L)], X, Fy) satisfies the condition
(6). Further, it is not difficult to prove that the triple (Og[Gal(L /L)], X, Fy) satisfies the
condition (5). Let pryx : A* — &(f(p)>°) be the natural projection defined by the class field
theory. We denote by j, : QX < A* the natural injection. If we put (n) = nwy(n) *¥([pry« o
Jp(nwy(n)™H])™! € Op[Gal(Ly/L)]* for each positive integer n which is prime to p, (n)
satisfies the condition of (5). Since DN(f) is square-free, by [Miy06, Theorem 4.6.17], Fyg
satisfies Hypothesis (7).

As a second example of (I;, X G®), we give Coleman families. For an clement z € K and
e € p?, we denote by B[z, €]k the closed ball of radius € and center x, seen as a K-affinoid space.
We denote by Ap[y ¢, the ring of analytic functions on B[z, €]; and by A%[x,E]K the subring of
power bounded elements of Ag, o, . We remark that if ¢ € K, the ring A%[x,f]K is isomorphic
to the ring

Or (e YT — 1)) = Za" (e (1T - x))n € Okle ' (T — 2)] nli_>n;o |anl, =0
n>0

Let M be a positive integer which is prime to p and square-free. Let €); be a Dirichlet character
mod M. Let f be a p-stabilized newform of weight kg, level Mp , slope a < kg — 1 and
Nebentypus E]\/[w;‘)_ko where 0 < i < p — 1. Further, we assume that a(p, f)? # ear(p)p*o~! if
i = 0. Then, by Coleman in [Col97], there exists an element ¢ € p@ N K and a series

G € Ay a, ldl

such that the specialization G(k) of G at k is the Fourier expansion of a normalized Hecke
eigenform of weight k, level Mp, slope a and Nebentypus ewa,_k for each positive integer
k € Blko, €]k (K) which is greater than « + 1. Further, we prove in [Fuk19, A2.7] that we can
take a sufficiently small e such that G(k) is a p-stabilized newform for each positive integer
k € Blko, €| (K) which is greater than o + 1. If we put X = ¢ (1" — kg), we can regard
the Coleman series G as a series G(X) in Og[X]. Let k € Blko, €|k (K) be a positive integer
which is greater than o + 1. If we put by = e '(k — ko), G(by,) is the Fourier expansion of a
p-stabilized newform of weight k, level Mp, slope a and Nebentypus € szi)‘k . We denote by
Py, : Og[X] — K the continuous Og-algebra homomorphism defined by Py (X) = by. We define
X to be the set consisting of Py, for each positive integer k € Blko, €] x (K) which is greater than
a + 1. Then, the triple (Ox[X], %, G(X)) satisfies Hypothesis (6). We check that the triple
(Ok[X],%X,G(X)) satisfies Hypothesis (5). Let exp(z) and log(z) be the formal exponential
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series and log series in K[z] defined by

1
exp(e) =3 o,

n>0

log(z) :Z ﬂx"

n>1
We fix an isomorphism A = Og[X] defined by [1 + p] — X + 1 and we define a formal series

(n)":= (n)a, (1 + p)*exp(eXlog(1 +p)) — 1)

for each positive integer n which is prime to p. We remark that since we have [p™|, < [m!|,
for each positive integer m, the series (n)’ is contained in Ok [X]. Further, for each positive
integer n which is prime to p, the series (n)" satisfies the condition of Hypothesis (5). Since M
is square-free, by [Miy06, Theorem 4.6.17], G(X) satisfies Hypothesis (7).
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