Triple product p－adic L－functions attached to p－adic families of modular forms

大阪大学 福永健吾
Osaka university，Kengo Fukunaga

1 Introduction

In this paper，we present the result［Fuk19，Theorem 5．2．1］．Let p be an odd prime．In ［Hsi17］，Hsieh constructed three－variable p－adic triple product L－functions attached to triples of Hida families．We generalize the result［Hsi17，（1）of Theorem 7．1］axiomatically and con－ struct three－variable p－adic triple product L－functions in the unbalanced case attached to triples $\left(F, G^{(2)}, G^{(3)}\right)$ ．Here，F is a Hida family and $G^{(i)}$ is a more general p－adic family for $i=2,3$ ． For example，we can take Hida families，Coleman families or CM－families as $G^{(i)}$ ．

To state our theorem precisely，we prepare some notation．We denote by $\mathbb{Q}, \mathbb{Q}_{p}$ and \mathbb{C} the fields of rational numbers，p－adic rational numbers and complex numbers respectively．Let \mathbb{Z} and \mathbb{Z}_{p} be the rings of integers and p－adic integers respectively．Throughout this paper，we fix an isomorphism $i_{p}: \overline{\mathbb{Q}}_{p} \cong \mathbb{C}$ over $\overline{\mathbb{Q}}$ ．Here，$\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_{p}$ are the algebraic closures of the fields \mathbb{Q} and \mathbb{Q}_{p} respectively．We denote by \mathbb{A} the adele over \mathbb{Q} ．Let A be a ring．We denote by $a(n, f)$ the n－th coefficient of a formal power series $f \in A \llbracket q \rrbracket$ ，where n is a non－negative integer．Let ω_{p} be the Teichmüler character mod p ．Let $\left(N_{1}, N_{2}, N_{3}\right)$ be a triple of positive integers which are prime to p and $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ a triple of Dirichlet characters of modulo（ $N_{1} p, N_{2} p, N_{3} p$ ）which satisfies the following hypothesis．

Hypothesis（1）．There exists an integer $a \in \mathbb{Z}$ such that $\psi_{1} \psi_{2} \psi_{3}=\omega_{p}^{2 a}$ ．
Let K be a finite extension of \mathbb{Q}_{p} and \mathcal{O}_{K} the ring of integers of K ．We denote by $\Lambda_{K}:=$ $\mathcal{O}_{K} \llbracket \Gamma \rrbracket$ the Iwasawa algebra over \mathcal{O}_{K} ，where $\Gamma:=1+p \mathbb{Z}_{p}$ ．Let \mathbf{I}_{i} be a normal finite flat extension of Λ_{K} for $i=1,2,3$ ．We fix a set of non－zero \mathcal{O}_{K}－algebraic homomorphisms

$$
\mathfrak{X}^{(i)}:=\left\{Q_{m}^{(i)}: \mathbf{I}_{i} \rightarrow \overline{\mathbb{Q}}_{p}\right\}_{m \geq 1}
$$

for $i=1,2,3$ ．Let $G^{(i)} \in \mathbf{I}_{i} \llbracket q \rrbracket$ be a formal series such that the specialization

$$
G^{(i)}(m):=\sum Q_{m}^{(i)}\left(a\left(n, G^{(i)}\right)\right) q^{n} \in \overline{\mathbb{Q}}_{p} \llbracket q \rrbracket
$$

is the Fourier expansion of a normalized cuspidal Hecke eigenform of weight $k^{(i)}(m)$ ，level $N_{i} p^{e^{(i)}(m)}$ and Nebentypus $\psi_{i} \omega_{p}^{-k^{(i)}(m)} \epsilon_{m}^{(i)}$ which is primitive outside of p for each positive integer m ．Here，$k^{(i)}(m)$ and $e^{(i)}(m)$ are positive integers and $\epsilon_{m}^{(i)}$ is a finite character of Γ ．Let $\mathfrak{X}_{\mathbf{I}_{1}}$ be the set of arithmetic points Q with weight $k_{Q} \geq 2$ and a finite part ϵ_{Q} defined in Definition 2．0．1． We take the pair $\left(\mathfrak{X}^{(1)}, G^{(1)}\right)$ to be the pair $\left(\mathfrak{X}_{\mathbf{I}_{1}}, F\right)$ ，where F is a primitive Hida family F of tame level N_{1} and Nebentypus ψ_{1} defined in Definition 2．0．3．We denote by F_{Q} the specialization of F at Q for each $Q \in \mathfrak{X}_{\mathbf{I}_{1}}$ ．Let $R:=\mathbf{I}_{1} \widehat{\otimes}_{\mathcal{O}_{K}} \mathbf{I}_{2} \widehat{\otimes}_{\mathcal{O}_{K}} \mathbf{I}_{3}$ be the complete tensor product of $\mathbf{I}_{1}, \mathbf{I}_{2}$ and \mathbf{I}_{3} over \mathcal{O}_{K} ．We define an unbalanced domain of interpolation points of R to be
$\mathfrak{X}_{R}^{F}:=\left\{\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{\mathbf{I}_{1}} \times \mathfrak{X}^{(2)} \times \mathfrak{X}^{(3)} \left\lvert\, \begin{array}{l}k_{Q_{1}}+k^{(2)}\left(m_{2}\right)+k^{(3)}\left(m_{3}\right) \equiv 0(\bmod 2), \\ k_{Q_{1}} \geq k^{(2)}\left(m_{2}\right)+k^{(3)}\left(m_{3}\right)\end{array}\right.\right\}$.

For each $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$, we denote by $\left(F, G^{(2)}, G^{(3)}\right)(\underline{Q})$ the specialization of the triple $\left(F, G^{(2)}, G^{(3)}\right)$ at \underline{Q}. We define a representation $\Pi_{\underline{Q}}^{\prime}=\pi_{Q_{1}} \boxtimes \pi_{Q_{m_{2}}^{(2)}} \boxtimes \pi_{Q_{m_{3}}^{(3)}}$ of $\left(\mathrm{GL}_{2}(\mathbb{A})\right)^{3}$, where $\left(\pi_{Q_{1}}, \pi_{Q_{m_{2}}^{(2)}}, \pi_{Q_{m_{3}}^{(3)}}\right)$ is the triple of automorphic representation attached to the triple $\left(F, G^{(2)}, G^{(3)}\right)(\underline{Q})$. Let $\left(\chi_{\underline{Q}}\right)_{\mathbb{A}}$ be the adelization of the following Dirichlet character

$$
\chi_{\underline{Q}}:=\omega_{p}^{\frac{1}{2}\left(2 a-k_{Q_{1}}-k^{(2)}\left(m_{2}\right)-k^{(3)}\left(m_{3}\right)\right)}\left(\epsilon_{Q_{1}} \epsilon_{m_{2}}^{(2)} \epsilon_{m_{3}}^{(3)}\right)^{\frac{1}{2}}
$$

for each $\underline{Q}=\left(Q_{1}, Q^{(2)}, Q^{(3)}\right) \in \mathfrak{X}_{R}^{F}$. We set $\Pi_{\underline{Q}}=\Pi_{\underline{Q}}^{\prime} \otimes\left(\chi_{\underline{Q}}\right)_{\mathbb{A}}$ for each $\underline{Q} \in \mathfrak{X}_{R}^{F}$. Let $\epsilon_{l}\left(s, \Pi_{\underline{Q}}\right)$ be the local epsilon factor of Π_{Q} defined in [Ike92, page 227] for each finite prime l. We set $N=N_{1} N_{2} N_{3}$. Let \mathbf{m}_{1} be the unique maximal ideal of \mathbf{I}_{1}. We summarize some hypotheses to state Main Theorem.

Hypothesis (2). The residual Galois representation $\bar{\rho}_{F}:=\rho_{F} \bmod \mathbf{m}_{1}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ attached to F is absolutely irreducible as $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module and p-distinguished in the sense that the semi-simplification of $\bar{\rho}_{F}$ restricted to $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$-module is a sum of two different characters.

Hypothesis (3). The number $\operatorname{gcd}\left(N_{1}, N_{2}, N_{3}\right)$ is square free.
Hypothesis (4). For each $\underline{Q} \in \mathfrak{X}_{R}^{F}$ and for each prime $l \mid N$, we have $\epsilon_{l}\left(1 / 2, \Pi_{\underline{Q}}\right)=1$.
Hypothesis (5). Let $i=2,3$ and n a positive integer which is prime to p. There exits an element $\langle n\rangle^{(i)} \in \mathbf{I}_{i}$ which satisfies

$$
Q_{m}^{(i)}\left(\langle n\rangle^{(i)}\right)=\epsilon_{m}^{(i)}(n)\left(n \omega_{p}^{-1}(n)\right)^{k^{(i)}(m)}
$$

for each positive integer m.
Hypothesis (6). Let $i=2,3$. We have $a\left(p, G^{(i)}(m)\right) \neq 0$ or $G^{(i)}(m)$ is primitive for each positive integer m.
Hypothesis (7). For each prime $l \mid N$, the l-th Fourier coefficients of $F, G^{(2)}$ and $G^{(3)}$ are nonzero.

Let $L\left(s, \Pi_{\underline{Q}}\right)$ be the triple product L-function attached to $\Pi_{\underline{Q}}$ defined in $\S 3$. Let $\Omega_{F_{Q_{1}}}$ be the canonical period defined in $[H \operatorname{si17},(1.3)]$ and $\mathcal{E}_{F_{Q_{1}, p}}\left(\Pi_{\underline{Q}}\right)$ the modified p-Euler factor defined in [Hsi17, (1.2)]. Our main theorem is as follows.
Main Theorem. Let us assume Hypotheses (1)~(7). Then, there exists an element $\mathcal{L}_{G^{(2)}, G^{(3)}}^{F} \in$ R such that we have the interpolation property :

$$
\left(\mathcal{L}_{G^{(2)}, G^{(3)}}^{F}(\underline{Q})\right)^{2}=\mathcal{E}_{F_{Q_{1}}, p}\left(\Pi_{\underline{Q}}\right) \cdot \frac{L\left(\frac{1}{2}, \Pi_{\underline{Q}}\right)}{(\sqrt{-1})^{2 k_{Q_{1}} \Omega_{F_{Q_{1}}}^{2}}}
$$

for every $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$.
Let $\left\rangle_{\Lambda_{K}}: \mathbb{Z}_{p}^{\times} \rightarrow \Lambda_{K}^{\times}\right.$be a group homomorphism defined by $\langle z\rangle_{\Lambda_{K}}=\left[z \omega_{p}^{-1}(z)\right]$, where $\left[z \omega_{p}^{-1}(z)\right]$ is the group-like element of $z \omega_{p}(z)^{-1} \in \Gamma$ in Λ_{K}^{\times}. Let n be a positive integer which is prime to p. We have $Q\left(\langle n\rangle_{\Lambda_{K}}\right)=\epsilon_{Q}(n)\left(n \omega_{p}^{-1}(n)\right)^{k_{Q}}$ for each arithmetic point $Q \in \mathfrak{X}_{\mathbf{I}_{1}}$. Then, if we take a Hida family as $G^{(i)},\langle n\rangle_{\Lambda_{K}}$ satisfies the Hypothesis (5).

$2 p$-adic families of modular forms

Let K be a finite extension of \mathbb{Q}_{p} and \mathcal{O}_{K} the ring of integers of K. Let \mathbf{I} be a normal finite flat extension of the Iwasawa algebra Λ_{K} over \mathcal{O}_{K}. In this section, we recall the definitions of ordinary I-adic cusp forms, primitive Hida families and congruence numbers attached to Hida families. Let N be a positive integer which is prime to p. Throughout this section, we assume that $\mathbb{Q}_{p}(\chi) \subset K$ for each Dirichlet character χ modulo $N p$. Let A be a subring of $\overline{\mathbb{Q}}$. We denote by $\mathcal{S}_{k}(M, \psi, A)$ the A-module of cusp forms of weight k, level M and Nebentypus ψ whose Fourier coefficients at ∞ are included in A, where k, M are positive integers and ψ is a Dirichlet character modulo M. We set $\mathcal{S}_{k}(M, \psi, B):=\mathcal{S}_{k}(M, \psi, A) \otimes_{A} B$ for each A-algebra B.
Definition 2.0.1. We call a continuous \mathcal{O}_{K}-algebra homomorphism $Q: \mathbf{I} \rightarrow \overline{\mathbb{Q}}_{p}$ an arithmetic point of weight $k_{Q} \geq 2$ and a finite part $\epsilon_{Q}: \Gamma \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$if the restriction $\left.Q\right|_{\Gamma}: \Gamma \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$is given by $Q(x)=x^{k_{Q}} \epsilon_{Q}(x)$ for each $x \in \Gamma$. Here, $\epsilon_{Q}: \Gamma \rightarrow \overline{\mathbb{Q}}_{p}^{\times}$is a finite character.

Let $\mathfrak{X}_{\mathbf{I}}$ be the set of arithmetic points of \mathbf{I}. We denote by e the ordinary projection defined in [Hid85, (4.3)]. We recall the definition of ordinary \mathbf{I}-adic cusp forms defined in [Wil88].

Definition 2.0.2. Let χ be a Dirichlet character modulo Np. We call a formal power series $\mathbf{f} \in \mathbb{I} \llbracket q \rrbracket$ an ordinary \mathbf{I}-adic cusp form of tame level N and Nebentypus χ if the specialization $\mathbf{f}_{Q}:=\sum_{n \geq 0} Q(a(n, \mathbf{f})) q^{n} \in Q(\mathbf{I}) \llbracket q \rrbracket$ of \mathbf{f} is the Fourier expansion of an element of $e \mathcal{S}_{k_{Q}}\left(N p^{e Q_{Q}}, \chi \omega_{p}^{-k_{Q}} \epsilon_{Q}, Q(\mathbf{I})\right)$ with $e_{Q} \geq 1$ for all but a finite number of $Q \in \mathfrak{X}_{\mathbf{I}}$.

Let $\mathbf{S}^{\text {ord }}(N, \chi, \mathbf{I})$ be the \mathbf{I}-module consisting of ordinary I-adic cusp forms of tame level N and Nebentypus χ. Next, we recall the definition of the Hecke algebra of $\mathbf{S}^{\text {ord }}(N, \chi, \mathbf{I})$. For each prime $l \nmid N p$, we define the Hecke operator $T_{l} \in \operatorname{End}_{\mathbf{I}}\left(\mathbf{S}^{\text {ord }}(N, \chi, \mathbf{I})\right)$ at l to be

$$
T_{l}(f)=\sum_{n \geq 1} a\left(n, T_{l}(f)\right) q^{n}
$$

for each $f \in \mathcal{S}^{\text {ord }}(N, \chi, \mathbf{I})$, where

$$
a\left(n, T_{l}(f)\right)=\sum_{b \mid(n, l)}\langle b\rangle_{\Lambda_{K}} \chi(b) b^{-1} a\left(l n / b^{2}, f\right) .
$$

For each prime $l \mid N p$, we define the Hecke operator $T_{l} \in \operatorname{End}_{\mathbf{I}}\left(\mathbf{S}^{\text {ord }}(N, \chi, \mathbf{I})\right)$ at l to be

$$
T_{l}(f)=\sum_{n \geq 1} a(l n, f) q^{n}
$$

for each $f \in \mathcal{S}^{\text {ord }}(N, \chi, \mathbf{I})$. The Hecke algebra $\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})$ is defined by the sub-algebra of $\operatorname{End}_{\mathbf{I}}\left(\mathbf{S}^{\operatorname{ord}}(N, \chi, \mathbf{I})\right)$ generated by T_{l} for all primes l. Next, we recall the definition of primitive Hida families.
Definition 2.0.3. We call an element $\mathbf{f} \in \mathbf{S}^{\text {ord }}(N, \chi, \mathbf{I})$ a primitive Hida family of tame level N and Nebentypus χ if the specialization \mathbf{f}_{Q} is the Fourier expansion of an ordinary p-stabilized cuspidal newform for all but a finite number of $Q \in \mathfrak{X}_{\mathbf{I}}$.

Next, we recall the definition of the congruence number. Let $F \in \mathbf{S}^{\text {ord }}(N, \chi, \mathbf{I})$ be a primitive Hida family which satisfies Hypothesis (2). Let $\lambda_{F}: \mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I}) \rightarrow \mathbf{I}$ be an \mathbf{I}-algebra homomorphism defined by $\lambda_{F}(T)=a(1, T(F))$ for each $T \in \mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})$. Let \mathbf{m}_{F} be a unique maximal ideal of $\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})$ which contains $\operatorname{Ker} \lambda_{F}$. Let $\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}$ be the localization of
$\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})$ by \mathbf{m}_{F}. Let $\lambda_{\mathbf{m}_{F}}: \mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}} \rightarrow \mathbf{I}$ be the restriction of λ_{F} to $\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}$. By [Hid88a, Corollary 3.7], there exists a finite dimensional FracI-algebra B and an isomorphism

$$
\lambda: \mathbf{T}^{\mathrm{ord}}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}} \otimes_{\mathbf{I}} \operatorname{Frac} \mathbf{I} \cong \operatorname{Frac} \mathbf{I} \oplus B
$$

such that $\left.\left(\operatorname{pr}_{\mathrm{FracI}} \circ \lambda\right)\right|_{\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}}=\lambda_{\mathbf{m}_{F}}$, where $\mathrm{pr}_{\mathrm{FracI}}: \operatorname{Frac} \mathbf{I} \oplus B \rightarrow \operatorname{FracI}$ is the projection to the first part.

Definition 2.0.4. Let $\mathrm{pr}_{\text {Fracl }}$ (resp. pr_{B}) be the projection from $\operatorname{Frac} \mathbf{I} \oplus B$ to FracI (resp. B). We put $h(\operatorname{FracI}):=\operatorname{pr}_{\text {FracI }} \circ \lambda\left(\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}\right)$ and $h(B):=\operatorname{pr}_{B} \circ \lambda\left(\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}\right)$. We define the module of congruence for F to be

$$
C(F):=h(\operatorname{Frac} \mathbf{I}) \oplus h(B) / \lambda\left(\mathbf{T}^{\mathrm{ord}}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}\right)
$$

Let

$$
1_{F} \in \mathbf{T}^{\mathrm{ord}}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}} \otimes_{\mathbf{I}} \operatorname{Frac} \mathbf{I}
$$

be the idempotent element corresponded to $(1,0) \in \operatorname{FracI} \oplus B$ by λ. Let $\operatorname{Ann}(C(F)):=\{a \in \mathbf{I} \mid$ $a C(F)=\{0\}\}$ be the annihilator of $C(F)$. By [Wil95, Corollary 2, page 482], $\mathbf{T}^{\text {ord }}(N, \chi, \mathbf{I})_{\mathbf{m}_{F}}$ is a Gorenstein ring. Hence, by [Hid88b, Theorem 4.4], the annihilator $\operatorname{Ann}(C(F))$ is generated by an element.

Definition 2.0.5. We call a generator η_{F} of $\operatorname{Ann}(C(F))$ a congruence number of F.
Next, we introduce general p-adic families of modular forms. We fix a set of non-zero continuous \mathcal{O}_{K}-algebraic homomorphisms

$$
\mathfrak{X}:=\left\{Q_{m}: \mathbf{I} \rightarrow \overline{\mathbb{Q}}_{p}\right\}_{m \geq 1} .
$$

Then, we define the specialization of an element $G=\sum_{n \geq 0} a(n, G) q^{n} \in \mathbf{I} \llbracket q \rrbracket$, at $Q_{m} \in \mathfrak{X}$ to be $G_{Q_{m}}:=\sum_{n \geq 0} Q_{m}(a(n, G)) q^{n} \in Q_{m}(\mathbf{I}) \llbracket q \rrbracket$. Let χ be a Dirichlet character modulo $N p$.
Definition 2.0.6. We call an element $G \in \mathbf{I} \llbracket q \rrbracket$ a primitive p-adic families of tame level N and Nebentypus χ attached to \mathfrak{X} if $G_{Q_{m}}$ is the Fourier expansion of a cuspidal Hecke eigenform of weight $k_{Q_{m}}$, level $N p^{e_{Q_{m}}}$ and Nebentypus $\chi \omega_{p}^{-k_{Q_{m}}} \epsilon_{Q_{m}}$ which is primitive outside of p for each positive integer $m \geq 1$. Here, $k_{Q_{m}}$ and $e_{Q_{m}}$ are positive integers and $\epsilon_{Q_{m}}$ is a finite character of Γ.

3 Triple product L-functions

Let $\left(g_{1}, g_{2}, g_{3}\right)$ be a triple of primitive forms of weight $\left(k_{1}, k_{2}, k_{3}\right)$, level $\left(M_{1}, M_{2}, M_{3}\right)$ and Nebentypus $\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$. We assume that there exists a Dirichlet character χ such that $\chi_{1} \chi_{2} \chi_{3}=\chi^{2}$. Let $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ be a triple of automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ attached to $\left(g_{1}, g_{2}, g_{3}\right)$. In this section, we recall the definition of the triple product L-function attached to the automorphic representation

$$
\Pi:=\pi_{1} \otimes(\chi)_{\mathbb{A}} \boxtimes \pi_{2} \boxtimes \pi_{3}
$$

where $(\chi)_{\mathbb{A}}$ is the adelization of χ. We define the triple product L-function $L(s, \Pi)$ to be

$$
L(s, \Pi)=\prod_{v: \text { place }} L_{v}(s, \Pi), \operatorname{Re}(s)>1
$$

where $L_{v}(s, \Pi)$ is the GCD local triple product L-function defined in [PSR87] and [Ike92]. Let l be a prime. The local L-function $L_{l}(s, \Pi)$ at l can be written by the form $1 / P\left(p^{-s}\right)$, where
$P(T) \in \mathbb{C}[T]$ such that $P(0)=1$. By the result of [Ike98], the archimedean factor $L_{\infty}(s, \Pi)$ can be written by the form

$$
L_{\infty}(s, \Pi):=\Gamma_{\mathbb{C}}\left(s+\frac{w}{2}\right) \prod_{i=1}^{3} \Gamma_{\mathbb{C}}\left(s+1-k_{i}^{*}\right)
$$

where $w=k_{1}+k_{2}+k_{3}-2, k_{i}^{*}=\frac{k_{1}+k_{2}+k 3}{2}-k_{i}$ and $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$. By [Ike92, Proposition 2.5], the function $L(s, \Pi)$ is continued to the entire \mathbb{C}-plane analytically and by [Ike92, Proposition 2.4], the function $L(s, \Pi)$ satisfies the functional equation

$$
L(s, \Pi)=\epsilon(s, \Pi) L(1-s, \Pi)
$$

where $\epsilon(s, \Pi)$ is the global epsilon factor defined in [Ike92, page 230]. The epsilon factor $\epsilon(s, \Pi)$ can be decomposed by the product of the local epsilon factors

$$
\epsilon(s, \Pi)=\prod_{v: \text { place }} \epsilon_{v}(s, \Pi)
$$

and it is known that $\epsilon_{v}\left(\frac{1}{2}, \Pi\right) \in\{ \pm 1\}$.

4 Construction of p-adic triple product L-functions

Let K be a finite extension of \mathbb{Q}_{p} and \mathbf{I}_{i} a normal finite flat extension of Λ_{K} for $i=1,2,3$. We fix a triple of Dirichlet characters $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ of modulo $\left(N_{1} p, N_{2} p, N_{3} p\right)$, where N_{i} is a positive integer which is prime to p for $i=1,2,3$. Let $F \in \mathcal{S}^{\text {ord }}\left(N_{1}, \psi_{1}, \mathbf{I}_{1}\right)$ be a primitive Hida family defined in Definition 2.0.3. Let $G^{(i)} \in \mathbf{I}_{i} \llbracket q \rrbracket$ be a p-adic family of tame level N_{i} and Nebentypus ψ_{i} attached to

$$
\mathfrak{X}^{(i)}:=\left\{Q_{m}^{(i)}: \mathbf{I}_{i} \rightarrow \overline{\mathbb{Q}}_{p}\right\}_{m \geq 1}
$$

for $i=2,3$. In this section, we prove Main theorem and construct the p-adic triple product L function attached to $\left(F, G^{(2)}, G^{(3)}\right)$. For simplicity, we assume $N_{1}=N_{2}=N_{3}=1$. Further, we assume that the triple $\left(F, G^{(2)}, G^{(3)}\right)$ satisfies Hypothesis (1) $\sim(7)$. We set $R:=\mathbf{I}_{1} \widehat{\otimes}_{\mathcal{O}_{K}} \mathbf{I}_{2} \widehat{\otimes}_{\mathcal{O}_{K}} \mathbf{I}_{3}$ and
$\mathfrak{X}_{R}^{F}:=\left\{\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{\mathbf{I}_{1}} \times \mathfrak{X}^{(2)} \times \mathfrak{X}^{(3)} \left\lvert\, \begin{array}{l}k_{Q_{1}}+k^{(2)}\left(m_{2}\right)+k^{(3)}\left(m_{3}\right) \equiv 0(\bmod 2), \\ k_{Q_{1}} \geq k^{(2)}\left(m_{2}\right)+k^{(3)}\left(m_{3}\right)\end{array}\right.\right\}$.
We define a formal operator $\mathbf{U}_{R, p} \in \operatorname{End}_{R}(R \llbracket q \rrbracket)$ to be

$$
\mathbf{U}_{R, p}(f)=\sum_{n \geq 0} a(p n, f) q^{n}
$$

for each $f=\sum_{n \geq 0} a(n, f) q^{n} \in R \llbracket q \rrbracket$. Let $\Theta: \mathbb{Z}_{p}^{\times} \rightarrow R^{\times}$be a character defined by

$$
\Theta(z)=\psi_{1} \omega_{p}^{-a}(z)\langle z\rangle_{\mathbf{I}_{1}}{ }^{\frac{1}{2}}\left(\langle z\rangle^{(2)}\langle z\rangle^{(3)}\right)^{-\frac{1}{2}}
$$

for each $z \in \mathbb{Z}_{p}^{\times}$, where $\langle z\rangle_{\mathbf{I}_{1}}$ is the image of $\langle z\rangle_{\Lambda_{K}}$ by the natural inclusion $\Lambda_{K} \hookrightarrow \mathbf{I}_{1}$. For each $f \in \sum_{n \geq 0} a(n, f) q^{n} \in R \llbracket q \rrbracket$, we define a Θ-twisted form $f \mid[\Theta] \in R \llbracket q \rrbracket$ to be

$$
f \mid[\Theta]=\sum_{p \nmid n} \Theta(n) \cdot a(n, f) q^{n}
$$

We set $d:=\frac{d}{d q}$. For each $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$, we have $f \mid[\Theta](\underline{Q})=d^{r} \underline{Q}\left(f(\underline{Q}) \mid\left[\Theta_{\underline{Q}}\right]\right)$ with the Dirichlet character

$$
\Theta_{\underline{Q}}=\psi_{1} \omega_{p}^{-a-r_{\underline{Q}}} \epsilon_{Q_{1}} \epsilon_{m_{2}}^{(2)} e^{-\frac{1}{2}} \epsilon_{m_{3}}^{(3)^{-\frac{1}{2}}}
$$

where $r_{\underline{Q}}=\frac{1}{2}\left(k_{Q_{1}}-k^{(2)}\left(m_{2}\right)-k^{(3)}\left(m_{3}\right)\right)$. Here, $f(\underline{Q}) \mid\left[\Theta_{\underline{Q}}\right]$ is the twisted cusp form by the Dirichlet character $\Theta_{\underline{Q}}$. We regard $G^{(2)}$ and $G^{(3)}$ as elements of $R \llbracket q \rrbracket$ by natural embeddings $\mathbf{I}_{2} \hookrightarrow R$ and $\mathbf{I}_{3} \hookrightarrow R$. We set $H:=G^{(2)} \cdot\left(G^{(3)} \mid[\Theta]\right) \in R \llbracket q \rrbracket$. We define the Maass-Shimura differential operator δ_{k} to be

$$
\delta_{k}:=\frac{1}{2 \pi \sqrt{-1}}\left(\frac{\partial}{\partial z}+\frac{k}{2 \sqrt{-1} \operatorname{Im}(z)}\right)
$$

for each non-negative integer k. Further, we set $\delta_{k}^{m}:=\delta_{k+2 m-2} \ldots \delta_{k+2} \delta_{k}$, where m is a nonnegative integer. We denote by \mathcal{H} the holomorphic projection from the space of nearly holomorphic modular forms to modular forms defined in [Shi76]. Let \mathbf{m}_{R} be the maximal ideal of R.

Lemma 4.0.1. Let $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$. We fix a finite extension L of K such that \mathcal{O}_{L} contains $Q_{1}\left(\mathbf{I}_{1}\right), \bar{Q}_{m_{2}}^{(2)}\left(\mathbf{I}_{2}\right)$ and $Q_{m_{3}}^{(3)}\left(\mathbf{I}_{3}\right)$. Then, the sequence $\left\{U_{\mathbf{R}, p}^{n!} H(\underline{Q})\right\}_{n \geq 1}$ converges in $\mathcal{O}_{L} \llbracket q \rrbracket$ by the \mathbf{m}_{R}-adic topology and the limit of the sequence equals to the Fourier expansion of $e \mathcal{H}\left(G^{(2)}\left(m_{2}\right) \delta_{k^{(3)}\left(m_{3}\right)}^{R_{Q}} G^{(3)}\left(m_{3}\right) \mid \Theta_{\underline{Q}}\right) \in e S_{k_{Q_{1}}}\left(p^{e Q_{Q_{1}}}, \psi_{1} \omega_{p}^{k_{Q_{1}}} \epsilon_{Q_{1}}, L\right)$, with $e_{Q_{1}}:=\max \left\{1, m_{\epsilon_{Q_{1}}}\right\}$. Here, $m_{\epsilon_{Q_{1}}}$ is the p-power of the conductor of $\epsilon_{Q_{1}}$.
Proof. It is known that $H(\underline{Q})$ is a Fourier expansion of a p-adic modular form and by [Hid85, Lemma 5.2], we have

$$
H(\underline{Q})=\mathcal{H}\left(G^{(2)}\left(m_{2}\right) \delta_{k^{(3)}\left(m_{3}\right)}^{r_{\underline{Q}}} G^{(3)}\left(m_{3}\right) \mid \Theta_{\underline{Q}}\right)+d\left(g_{\underline{Q}}^{\prime}\right) \in L \llbracket q \rrbracket,
$$

where $g_{\underline{Q}}^{\prime} \in L \llbracket q \rrbracket$ is a p-adic modular form. By $[\operatorname{Hid} 85,(6.12)]$, ed $=0$ and we have $e H(\underline{Q})=$ $e \mathcal{H}\left(G^{(2)}\left(m_{2}\right) \delta_{k^{(3)}\left(m_{3}\right)}^{r_{\underline{Q}}} G^{(3)}\left(m_{3}\right) \mid \Theta_{\underline{Q}}\right)$. Further, by [Hid85, (4.3)], the sequence $\left\{U_{R, p}^{n!} H(\underline{Q})\right\}_{n \geq 1}$ converges in $\mathcal{O}_{L} \llbracket q \rrbracket$ by the \mathbf{m}_{R}-adic topology and the limit of the sequence equals to $e H(\underline{Q})$. We have completed the proof.

To construct a triple product p-adic L-function $L_{G^{(2)}, G^{(3)}}^{F} \in R$, we prove the following lemma and proposition.
Lemma 4.0.2. There exists a unique element $H^{\text {ord }} \in R \llbracket q \rrbracket$ such that the specialization of $H^{\text {ord }}$ at each $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$ equals to the Fourier expansion of the modular form $e \mathcal{H}\left(G^{(2)}\left(m_{2}\right) \delta_{k^{(3)}\left(m_{3}\right)}^{\underline{\gamma_{Q}}} G^{(3)}\left(m_{3}\right) \mid \Theta_{\underline{Q}}\right)$.
Proof. Let $I_{\underline{Q}}$ be the ideal of R generalized by $\operatorname{Ker} Q_{1}, \operatorname{Ker} Q_{m_{2}}^{(2)}$ and $\operatorname{Ker} Q_{m_{3}}^{(3)}$ for each $\underline{Q}=$ $\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$. We denote by \mathfrak{B} the set of finite intersections of $I_{\underline{Q}}$ for $\underline{Q} \in \mathfrak{X}_{R}^{F}$. Then, we can easily check that $\cap_{J \in \mathfrak{B}} J=\{0\}$. Further, we have the natural isomorphism $R \cong \lim _{j \in \mathfrak{B}}(R /$ $J)$. In particular, we have

$$
R \llbracket q \rrbracket \cong \lim _{\underset{J}{\tilde{\mathcal{B}}}} R \llbracket q \rrbracket \otimes_{R}(R / J)
$$

For each $J=\cap_{i=1}^{m} I_{Q_{i}} \in \mathfrak{B}$, it suffices to prove that there exists a unique element $H_{J}^{\text {ord }} \in$ $R \llbracket q \rrbracket \otimes_{R}(R / J)$ such that the image of $H_{J}^{\text {ord }}$ by the natural embedding $i_{J}: R \llbracket q \rrbracket \otimes_{R}(R / J) \hookrightarrow$
$\prod_{i=1}^{m}\left(R \llbracket q \rrbracket \otimes_{R} R / I_{\underline{Q}_{i}}\right)$ equals to $\left[e\left(H\left(\underline{Q}_{i}\right)\right)\right]_{i=1}^{m}$. The uniqueness of $H_{J}^{\text {ord }}$ is trivial. We prove the existence of $H_{J}^{\text {ord }}$.

Let $p_{J}: R \llbracket q \rrbracket \rightarrow R \otimes_{R}(R / J)$ be the natural projection. If $J=I_{\underline{Q}}$ for $\underline{Q} \in \mathfrak{X}_{R}^{F}$, we have $\lim _{n \rightarrow \infty} p_{J}\left(U_{R, p}^{n!} H\right)=e \mathcal{H}(\underline{Q})$ by Lemma 4.0.1. We assume that there exist elements $H_{J}^{\text {ord }}=$ $\lim _{n \rightarrow \infty} p_{J}\left(U_{R, p}^{n!} H\right) \in R \llbracket q \rrbracket \otimes(R / J)$ and $H_{J^{\prime}}^{\text {ord }}=\lim _{n \rightarrow \infty} p_{J^{\prime}}\left(U_{R, p}^{n!} H\right) \in R \llbracket q \rrbracket \otimes\left(R / J^{\prime}\right)$ for a pair $\left(J, J^{\prime}\right) \in \mathcal{B} \times \mathcal{B}$. We define the R-linear map:

$$
\begin{array}{ccc}
\left(R \llbracket q \rrbracket \otimes_{R}(R / J)\right) \times\left(R \llbracket q \rrbracket \otimes_{R}\left(R / J^{\prime}\right)\right) & \xrightarrow{i_{J, J^{\prime}}} & \left(R \llbracket q \rrbracket \otimes_{R}\left(R / J+J^{\prime}\right)\right) \\
(a, b) & \longmapsto & a-b
\end{array} .
$$

Then, we have $i_{J, J^{\prime}}\left(H_{J}^{\text {ord }}, H_{J^{\prime}}^{\text {ord }}\right)=\lim _{n \rightarrow \infty} i_{J, J^{\prime}}\left(p_{J}\left(U_{R, p}^{n!} H\right), p_{J^{\prime}}\left(U_{R, p}^{n!} H\right)\right)=0$. Further, since Ker $i_{J, J^{\prime}} \cong R \llbracket q \rrbracket \otimes_{R}\left(R / J \cap J^{\prime}\right)$, there exists a unique element $H_{J \cap J^{\prime}}^{\text {ord }} \in R \llbracket q \rrbracket \otimes_{R}\left(R / J \cap J^{\prime}\right)$ such that the image of $H_{J \cap J^{\prime}}^{\text {ord }}$, in $\left(R \llbracket q \rrbracket \otimes_{R}(R / J)\right) \times\left(R \llbracket q \rrbracket \otimes_{R}\left(R / J^{\prime}\right)\right)$ equals to ($\left.H_{J}^{\text {ord }}, H_{J^{\prime}}^{\text {ord }}\right)$. In particular, we have $H_{J \cap J^{\prime}}^{\text {ord }}=\lim _{n \rightarrow \infty} p_{J \cap J^{\prime}}\left(U_{R, p}^{n!} H\right)$. Then, for each $J=\cap_{i=1}^{m} I_{\underline{Q}_{i}} \in \mathcal{B}$, there exists a unique element $H_{J}^{\text {ord }} \in R \llbracket q \rrbracket \otimes_{R}(R / J)$ such that the image of $H_{J}^{\text {ord }}$ by the natural embedding $i_{J}: R \llbracket q \rrbracket \otimes_{R}(R / J) \hookrightarrow \prod_{i=1}^{m}\left(R \llbracket q \rrbracket \otimes_{R} R / I_{\underline{Q}_{i}}\right)$ equals to $\left[e\left(H\left(\underline{Q}_{i}\right)\right)\right]_{i=1}^{m}$. We have completed the proof.
Proposition 4.0.3. The power series $H^{\text {ord }}$ is an element of $\mathbf{S}^{\text {ord }}\left(N, \psi_{1}, \mathbf{I}_{1}\right) \widehat{\otimes}_{\mathbf{I}_{1}} R$.
Proof. We identify the Iwasawa algebra Λ_{K} with $\mathcal{O}_{K} \llbracket X \rrbracket$ by the isomorphism $[1+p] \mapsto 1+X$ and we regard \mathbf{I}_{i} as the normal finite flat extension of $\mathcal{O}_{K} \llbracket X_{i} \rrbracket$ for $i=1,2,3$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be a base of R over $R_{0}=\mathcal{O}_{K} \llbracket X_{1}, X_{2}, X_{3} \rrbracket$. We put

$$
H^{\mathrm{ord}}=\sum_{i=1}^{n} H^{(i)} \alpha_{i}
$$

where $H^{(i)} \in R_{0} \llbracket q \rrbracket$ for each $i=1, \ldots, n$. We put $L=\operatorname{Frac} R$ and $L_{0}=\operatorname{Frac} R_{0}$. Let $\operatorname{Tr}_{L / L_{0}}$: $L \rightarrow L_{0}$ be the trace map and $\alpha_{1}^{*}, \alpha_{2}^{*}, \ldots, \alpha_{n}^{*}$ be the dual base of $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}$ with respect to $\operatorname{Tr}_{L / L_{0}}$. Then, we have

$$
H^{(i)}(\underline{Q})=\operatorname{Tr}\left(H(\underline{Q}) \alpha_{i}^{*}(\underline{Q})\right)
$$

for all but a finite number of $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$. Further, $\operatorname{Tr}\left(H(\underline{Q}) \alpha_{i}^{*}(\underline{Q})\right)$ is the Fourier expansion of an element of $e \bar{S}_{k_{Q_{1}}}\left(N p^{e_{Q_{1}}}, \epsilon_{Q_{1}} \psi_{1} \omega_{p}^{-k_{Q_{1}}}, \underline{Q}(R)\right)$. It suffices to prove

$$
H^{(i)} \in \mathbf{S}^{\operatorname{ord}}\left(1, \psi_{1}, \mathcal{O}_{K} \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K} \llbracket X_{1} \rrbracket} R_{0}
$$

for each $i=1, \ldots, n$.
For each positive integers m_{2}, m_{3}, let $H_{m_{2}, m_{3}}^{(i)} \in \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket \llbracket q$ be the specialization of $H^{(i)}$ at $\left(Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right)$, where $b_{m_{2}}^{(2)}:=Q_{m_{2}}^{(2)}\left(X_{2}\right)$ and $b_{m_{3}}^{(3)}:=Q_{m_{3}}^{(3)}\left(X_{3}\right)$. First, we prove $H_{m_{2}, m_{3}}^{(i)} \in$ $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$. We define a subset $\mathfrak{X}_{m_{2}, m_{3}}^{F}$ of arithmetic points of \mathbf{I}_{1} to be

$$
\mathfrak{X}_{m_{2}, m_{3}}^{F}:=\left\{Q \in \mathfrak{X}_{\mathbf{I}_{1}} \mid\left(Q, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}\right\} .
$$

For each positive integer k, there exists an arithmetic point $Q \in \mathfrak{X}_{\mathbf{I}_{1}}$ with $k_{Q}=k$. Then, we have $\# \mathfrak{X}_{m_{2}, m_{3}}^{F}=\infty$. Let $\mathbf{S}_{m_{2}, m_{3}}^{\text {ord }} \subset \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket \llbracket q \rrbracket$ be an $\mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket$-module consisting
of elements $f \in \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket \llbracket q \rrbracket$ such that, for all but a finite number of $Q \in \mathfrak{X}_{m_{2}, m_{3}}^{F}, f(Q)$ equals to the specialization of an element of $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$ at Q. Then, we have $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right) \subset \mathbf{S}_{m_{2}, m_{3}}^{\text {ord }}$ and $H_{m_{2}, m_{3}}^{(i)} \in \mathbf{S}_{m_{2}, m_{3}}^{\text {ord }}$. It suffices to prove that we have $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)=\mathbf{S}_{m_{2}, m_{3}}^{\text {ord }}$. Let g_{1}, \ldots, g_{d} be elements of $\mathbf{S}_{m_{2}, m_{3}}^{\text {ord }}$ which are $\mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket$-linear independent. Then, there are positive integers m_{1}, \ldots, m_{d} such that

$$
d=\operatorname{det}\left(a\left(m_{i}, g_{j}\right)\right)_{1 \leq i, j \leq d} \neq 0 \in \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket
$$

Since $\# \mathfrak{X}_{m_{2}, m_{3}}^{F}=\infty$, there exists an element $Q \in \mathfrak{X}_{m_{2}, m_{3}}^{F}$ such that $d(Q) \neq 0$. Then, we have

$$
\operatorname{rank}_{\mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket} \mathbf{S}_{m_{2}, m_{3}}^{\mathrm{ord}}=\operatorname{rank}_{\mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket} \mathbf{S}^{\operatorname{ord}}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)
$$

Then, if we take an element $f \in \mathbf{S}_{m_{2}, m_{3}}^{\text {ord }}$, there exists an element $a \in \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket \backslash\{0\}$ such that af $\in \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$. Since a has only finite roots, we have $f \in$ $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$. Then, we have $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{2}}^{(2)}, b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)=\mathbf{S}_{m_{2}, m_{3}}^{\text {ord }}$.

For each positive integer m_{3}, let $H^{(i), m_{3}} \in \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1}, X_{2} \rrbracket$ be the specialization of $H^{(i)}$ at $Q_{m_{3}}^{(3)}$. Next, we prove $H^{(i), m_{3}} \in \mathbf{S}^{\operatorname{ord}}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right]} \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{2} \rrbracket$. We define an $\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1}, X_{2} \rrbracket$-module $\mathbf{S}_{m_{3}}^{\text {ord }} \subset \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1}, X_{2} \rrbracket$ consisting of elements $f\left(X_{1}, X_{2}\right)$ such that $f\left(X_{1}, b_{m}^{(2)}\right) \in \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K} \llbracket X_{1} \rrbracket\right) \otimes_{\mathcal{O}_{K}} \mathcal{O}_{\overline{\mathbb{Q}}_{p}}$ for each positive integer m. We have already proved that $H^{(i), m_{3}} \in \mathbf{S}_{m_{3}}^{\text {ord }}$. It is clear that $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right]} \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{2} \rrbracket \subset \mathbf{S}_{m_{3}}^{\text {ord }}$. Further, if $g_{1}, \ldots, g_{d} \in \mathbf{S}_{m_{3}}^{\text {ord }}$ are linear independent, there exist positive integers m_{1}, \ldots, m_{d} such that

$$
d=\operatorname{det}\left(a\left(m_{i}, g_{j}\right)\right)_{1 \leq i, j \leq d} \neq 0 \in \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1}, X_{2} \rrbracket .
$$

We can take a positive integer m_{2} such that $d\left(X_{1}, b_{m_{2}}^{(2)}\right) \neq 0$. Then, $\operatorname{rank}_{\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right]\left[X_{1}, X_{2}\right]} \mathbf{S}_{m_{3}}^{\text {ord }}=$ $\operatorname{rank}_{\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right\rceil \llbracket X_{1} \rrbracket} \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$. We take an element $a \in \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1}, X_{2} \rrbracket \backslash\{0\}$ such that $a H^{(i), m_{3}} \in \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right]} \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{2} \rrbracket$. Since we have $a\left(X_{1}, p^{m}\right) \neq 0$ for almost all positive integers m, there exists a positive integer $k_{m_{3}}$ such that $H^{(i), m_{3}}\left(X_{1}, p^{m^{\prime}}\right) \in$ $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$ for each positive integer $m^{\prime} \geq k_{m_{3}}$.

We put $H_{0}^{(i), m_{3}}:=H^{(i), m_{3}}$ and $c_{m}=p^{k_{m_{3}}+m}$ for each non-negative integer m. We define a power series $H_{m}^{(i), m_{3}} \in \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1}, X_{2} \rrbracket \llbracket q \rrbracket$ inductively for each positive integer m to be

$$
H_{m}^{(i), m_{3}}\left(X_{1}, X_{2}\right):=\left(H_{m-1}^{(i), m_{3}}\left(X_{1}, X_{2}\right)-H_{m-1}^{(i), m_{3}}\left(X_{1}, c_{m}\right)\right)\left(X_{2}-c_{m}\right)^{-1} \in \mathcal{O}_{K}\left[b_{m_{3}}^{(3)} \rrbracket X_{1}, X_{2} \rrbracket \llbracket q \rrbracket\right.
$$

By the induction of m, we have $H_{m}^{(i), m_{3}}\left(X_{1}, c_{l}\right) \in \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right)$ for each non-negative integer m and $l \geq m+1$. In particular, if we put $H_{m, m+1}^{(i), m_{3}}:=H_{m}^{(i), m_{3}}\left(X_{1}, c_{m+1}\right)$, we have

$$
H^{(i), m_{3}}=\sum_{m=1}^{\infty} H_{m, m+1}^{(i), m_{3}} \prod_{j=1}^{m}\left(X_{2}-c_{j}\right) \in \mathbf{S}^{\mathrm{ord}}\left(1, \psi_{1}, \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right]} \mathcal{O}_{K}\left[b_{m_{3}}^{(3)}\right] \llbracket X_{2} \rrbracket
$$

Next, we prove $H^{(i)} \in \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K} \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}} \mathcal{O}_{K} \llbracket X_{2}, X_{3} \rrbracket$. By the same way as above, we can take a non-zero element $a \in \mathcal{O}_{K} \llbracket X_{1}, X_{2}, X_{3} \rrbracket \backslash\{0\}$ such that $a H^{(i)}$ is an element of $\mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K} \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}} \mathcal{O}_{K} \llbracket X_{2}, X_{3} \rrbracket$. Further, there exists a positive integer k which satisfies $H^{(i)}\left(X_{1}, X_{2}, p^{m}\right) \in \mathbf{S}^{\text {ord }}\left(1, \psi_{1}, \mathcal{O}_{K} \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}} \mathcal{O}_{K} \llbracket X_{2} \rrbracket$ for each $m \geq k$. We put $H_{0}^{(i)}:=H^{(i)}$ and $c_{m}^{\prime}=p^{k+m}$ for each non-negative integer m. We define a power series $H_{m}^{(i)} \in \mathcal{O}_{K} \llbracket X_{1}, X_{2}, X_{3} \rrbracket \llbracket q \rrbracket$ inductively for each positive integer m to be

$$
H_{m}^{(i)}:=\left(H_{m-1}^{(i)}\left(X_{1}, X_{2}, X_{3}\right)-H_{m-1}^{(i)}\left(X_{1}, X_{2}, c_{m}^{\prime}\right)\right)\left(X_{3}-c_{m}^{\prime}\right)^{-1} \in \mathcal{O}_{K} \llbracket X_{1}, X_{2}, X_{3} \rrbracket \llbracket q .
$$

Then, we have

$$
H^{(i)}=\sum_{m=0}^{\infty} H_{m}^{(i)}\left(X_{1}, X_{2}, c_{m+1}^{\prime}\right) \prod_{j=1}^{m}\left(X_{3}-c_{j}^{\prime}\right) \in \mathbf{S}^{\mathrm{ord}}\left(1, \psi_{1}, \mathcal{O}_{K} \llbracket X_{1} \rrbracket\right) \widehat{\otimes}_{\mathcal{O}_{K}} \mathcal{O}_{K} \llbracket X_{2}, X_{3} \rrbracket
$$

We have completed the proof.
Definition 4.0.4. We define an element $L_{G^{(2), G^{(3)}}}^{F} \in R$ to be

$$
L_{G^{(2)}, G^{(3)}}^{F}:=a\left(1, \eta_{F} 1_{F}\left(H^{\mathrm{ord}}\right)\right)
$$

Here, 1_{F} is the idempotent element defined in §2 and η_{F} is the congruence number defined in Definition 2.0.5.

By [Hid85, Proposition 4.5] and [Ich08, Theorem 1.1], we have the interpolation formula of $L_{G^{(2)}, G^{(3)}}$. However, we omit the detail of the proof of the interpolation formula. Let $\Omega_{F_{Q_{1}}}$ be the canonical period defined in $[H \operatorname{si17},(1.3)]$ and $\mathcal{E}_{F_{Q_{1}, p}}\left(\Pi_{\underline{Q}}\right)$ the modified p-Euler factor defined in $[\mathrm{Hsi17},(1.2)]$.
Proposition 4.0.5. We assume Hypotheses (1)~ (7). Then, there exists an element $\mathcal{L}_{G^{(2)}, G^{(3)}}^{F} \in$ R such that we have the interpolation property :

$$
\left(\mathcal{L}_{G^{(2)}, G^{(3)}}^{F}(\underline{Q})\right)^{2}=\mathcal{E}_{F_{Q_{1}}, p}\left(\Pi_{\underline{Q}}\right) \cdot \frac{L\left(\frac{1}{2}, \Pi_{\underline{Q}}\right)}{(\sqrt{-1})^{2 k_{Q_{1}} \Omega_{F_{Q_{1}}}^{2}}}
$$

for every $\underline{Q}=\left(Q_{1}, Q_{m_{2}}^{(2)}, Q_{m_{3}}^{(3)}\right) \in \mathfrak{X}_{R}^{F}$.

5 Examples

In this subsection, we give examples of the triple $\left(\mathbf{I}_{i}, \mathfrak{X}^{(i)}, G^{(i)}\right)$ which satisfy Hypothesis (5), (6) and (7). As a first example, we can take families of CM forms of weight 1 . Let L be a quadratic imaginary extension of \mathbb{Q} with a discriminant D. We assume that D is square-free and prime to p. Let \mathfrak{f} be an integral ideal of \mathcal{O}_{L} such that \mathfrak{f} is prime to $D p$. We assume that $\mathrm{N}(\mathfrak{f})$ is square-free, where N is the absolute norm. Let $\mathfrak{C}\left(\mathbf{f}(p)^{j}\right)$ be the class ray group modulo $\mathbf{f}(p)^{j}$ over L for each $j \geq 0$. By the class field theory, $\mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right)={\underset{j \geq 0}{\lim } \mathfrak{C}\left(\mathfrak{f}(p)^{j}\right) \text { is a } \mathbb{Z}_{p} \text {-module of rank }{ }^{\text {-m }} \text {. }}^{\text {. }}$
2. Let $\Delta_{\mathfrak{f}}$ be the torsion part of $\mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right)$ and $\chi: \Delta_{\mathfrak{f}} \rightarrow \mathbb{C}^{\times}$be a primitive character. Here, a primitive character means that it is not induced by any character from $\Delta_{\mathfrak{f}^{\prime}}$ for $\mathfrak{f} \subsetneq \mathfrak{f}^{\prime}$. Let L_{∞}^{-} / L be the anticyclotomic extension of L. By the class field theory, the Galois group Gal $\left(L_{\infty}^{-} / L\right)$ is a direct summand of the \mathbb{Z}_{p}-torsion free part of $\mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right)$. Let $\operatorname{pr}_{\mathfrak{f}}: \mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right) \rightarrow \Delta_{\mathfrak{f}}$ and $\mathrm{pr}_{-}: \mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right) \rightarrow \operatorname{Gal}\left(L_{\infty}^{-} / L\right)$ be the natural projections to $\Delta_{\mathfrak{f}}$ and $\operatorname{Gal}\left(L_{\infty}^{-} / L\right)$ respectively. Let E be a finite Galois extension of \mathbb{Q}_{p} such that the image of Δ_{f} by χ is contained in E. We define a group homomorphism

$$
\Psi: \mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right) \rightarrow \mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket^{\times}
$$

to be $\Psi(a)=\chi\left(\operatorname{pr}_{\mathfrak{f}}(a)\right)\left[\operatorname{pr}_{-}(a)\right]$ for $a \in \mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right)$. Let $J_{\mathfrak{f}(p)}$ be the group which consists of fractional ideals \mathfrak{a} of L which is prime to $\mathfrak{f}(p)$. For each finite prime ideal \mathfrak{l}, we denote by $L_{\mathfrak{l}}$ the completion of L by \mathfrak{l}. Let $\mathcal{O}_{L_{\mathfrak{l}}}$ be the integers of $L_{\mathfrak{l}}$ and $\pi_{\mathfrak{l}}$ a generator of the maximal ideal of $\mathcal{O}_{L_{\mathrm{I}}}$. We define a group homomorphism

$$
\Psi^{*}: \mathrm{J}_{\mathfrak{f}(p)} \rightarrow \mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket^{\times}
$$

to be $\Psi^{*}(\mathfrak{a})=\prod_{\nmid \mathfrak{f}(p)} \Psi_{\mathfrak{l}}\left(\pi_{\mathfrak{l}}^{n_{\mathfrak{l}}}\right)$, where $\Psi=\prod_{\mathfrak{l}} \Psi_{l}$ and $\mathfrak{a}=\prod_{\mathfrak{l} f(p)} \mathfrak{l}^{n_{\mathfrak{l}}}$. We put

$$
F_{\Psi}=\sum_{\mathfrak{a} \nmid f(p)} \Psi^{*}(\mathfrak{a}) q^{\mathrm{N}(\mathfrak{a})}
$$

where \mathfrak{a} runs through integral ideals of L which are prime to $\mathfrak{f}(p)$. Let $\epsilon: \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rightarrow \overline{\mathbb{Q}}^{\times}$be a finite character. We denote by $P_{\epsilon}: \mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket \rightarrow \overline{\mathbb{Q}}_{p}$ the \mathcal{O}_{E}-algebra homomorphism defined by $P_{\epsilon}([w])=\epsilon(w)$ for $w \in \operatorname{Gal}\left(L_{\infty}^{-} / L\right)$. It is known that for each finite character ϵ : $\operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rightarrow \overline{\mathbb{Q}}^{\times}$, the series $f_{\epsilon}:=P_{\epsilon}\left(F_{\Psi}\right) \in P_{\epsilon}\left(\mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket\right) \llbracket q \rrbracket$ is the Fourier expansion of a classical modular form of weight 1 and level $(-D) \mathrm{N}(\mathbf{f}) p^{e_{\epsilon}}$, where e_{ϵ} is a positive integer (cf. [Miy06, Theorem 4.8.2]). By the definition, f_{ϵ} is the CM-form. We remark that the p-th coefficient $a\left(p, F_{\Psi}\right) \in \mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket$ of F_{Ψ} is zero by the definition. However, if $\epsilon: \operatorname{Gal}\left(L_{\infty}^{-} /\right.$ $L) \rightarrow \overline{\mathbb{Q}}^{\times}$is primitive and the conductor is sufficiently large, it is known that f_{ϵ} is a primitive form (cf. [Miy06, Theorem 4.8.2]). Then, if we put $\mathfrak{X}:=\left\{\operatorname{Ker} P_{\epsilon} \mid f_{\epsilon}\right.$ is primitive $\}$, the cardinality of \mathfrak{X} is not finite, and the triple $\left(\mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket, \mathfrak{X}, F_{\Psi}\right)$ satisfies the condition (6). Further, it is not difficult to prove that the triple $\left(\mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket, \mathfrak{X}, F_{\Psi}\right)$ satisfies the condition (5). Let $\operatorname{pr}_{\mathbb{A}^{\times}}: \mathbb{A}^{\times} \rightarrow \mathfrak{C}\left(\mathfrak{f}(p)^{\infty}\right)$ be the natural projection defined by the class field theory. We denote by $j_{p}: \mathbb{Q}_{p}^{\times} \hookrightarrow \mathbb{A}^{\times}$the natural injection. If we put $\langle n\rangle=n \omega_{p}(n)^{-1} \Psi\left(\left[\operatorname{pr}_{\mathbb{A}} \times \circ\right.\right.$ $\left.\left.j_{p}\left(n \omega_{p}(n)^{-1}\right)\right]\right)^{-1} \in \mathcal{O}_{E} \llbracket \operatorname{Gal}\left(L_{\infty}^{-} / L\right) \rrbracket^{\times}$for each positive integer n which is prime to $p,\langle n\rangle$ satisfies the condition of (5). Since $D \mathrm{~N}(\mathbf{f})$ is square-free, by [Miy06, Theorem 4.6.17], F_{Ψ} satisfies Hypothesis (7).

As a second example of $\left(\mathbf{I}_{i}, \mathfrak{X}^{(i)}, G^{(i)}\right)$, we give Coleman families. For an element $x \in K$ and $\epsilon \in p^{\mathbb{Q}}$, we denote by $\mathcal{B}[x, \epsilon]_{K}$ the closed ball of radius ϵ and center x, seen as a K-affinoid space. We denote by $\mathcal{A}_{\mathcal{B}[x, \epsilon]_{K}}$ the ring of analytic functions on $\mathcal{B}[x, \epsilon]_{K}$ and by $\mathcal{A}_{\mathcal{B}[x, \epsilon]_{K}}^{0}$ the subring of power bounded elements of $\mathcal{A}_{\mathcal{B}[x, \epsilon]_{K}}$. We remark that if $\epsilon \in K$, the ring $\mathcal{A}_{\mathcal{B}[x, \epsilon]_{K}}^{0}$ is isomorphic to the ring

$$
\mathcal{O}_{K}\left\langle\epsilon^{-1}(T-x)\right\rangle=\left\{\left.\sum_{n \geq 0} a_{n}\left(\epsilon^{-1}(T-x)\right)^{n} \in \mathcal{O}_{K} \llbracket \epsilon^{-1}(T-x) \rrbracket\left|\lim _{n \rightarrow \infty}\right| a_{n}\right|_{p}=0\right\}
$$

Let M be a positive integer which is prime to p and square-free. Let ϵ_{M} be a Dirichlet character $\bmod M$. Let f be a p-stabilized newform of weight k_{0}, level $M p$, slope $\alpha<k_{0}-1$ and Nebentypus $\epsilon_{M} \omega_{p}^{i-k_{0}}$ where $0 \leq i \leq p-1$. Further, we assume that $a(p, f)^{2} \neq \epsilon_{M}(p) p^{k_{0}-1}$ if $i=0$. Then, by Coleman in [Col97], there exists an element $\epsilon \in p^{\mathbb{Q}} \cap K$ and a series

$$
G \in \mathcal{A}_{\mathcal{B}\left[k_{0}, \epsilon\right]_{K}}^{0} \llbracket q \rrbracket
$$

such that the specialization $G(k)$ of G at k is the Fourier expansion of a normalized Hecke eigenform of weight k, level $M p$, slope α and Nebentypus $\epsilon_{M} \omega_{p}^{i-k}$ for each positive integer $k \in \mathcal{B}\left[k_{0}, \epsilon\right]_{K}(K)$ which is greater than $\alpha+1$. Further, we prove in [Fuk19, A2.7] that we can take a sufficiently small ϵ such that $G(k)$ is a p-stabilized newform for each positive integer $k \in \mathcal{B}\left[k_{0}, \epsilon\right]_{K}(K)$ which is greater than $\alpha+1$. If we put $X=\epsilon^{-1}\left(T-k_{0}\right)$, we can regard the Coleman series G as a series $G(X)$ in $\mathcal{O}_{K} \llbracket X \rrbracket$. Let $k \in \mathcal{B}\left[k_{0}, \epsilon\right]_{K}(K)$ be a positive integer which is greater than $\alpha+1$. If we put $b_{k}=\epsilon^{-1}\left(k-k_{0}\right), G\left(b_{k}\right)$ is the Fourier expansion of a p-stabilized newform of weight k, level $M p$, slope α and Nebentypus $\epsilon_{M} \omega_{p}^{i-k}$. We denote by $P_{k}: \mathcal{O}_{K} \llbracket X \rrbracket \rightarrow K$ the continuous \mathcal{O}_{K}-algebra homomorphism defined by $P_{k}(X)=b_{k}$. We define \mathfrak{X} to be the set consisting of P_{k} for each positive integer $k \in \mathcal{B}\left[k_{0}, \epsilon\right]_{K}(K)$ which is greater than $\alpha+1$. Then, the triple $\left(\mathcal{O}_{K} \llbracket X \rrbracket, \mathfrak{X}, G(X)\right)$ satisfies Hypothesis (6). We check that the triple $\left(\mathcal{O}_{K} \llbracket X \rrbracket, \mathfrak{X}, G(X)\right)$ satisfies Hypothesis (5). Let $\exp (x)$ and $\log (x)$ be the formal exponential
series and \log series in $K \llbracket x \rrbracket$ defined by

$$
\begin{aligned}
\exp (x) & =\sum_{n \geq 0} \frac{1}{n!} x^{n} \\
\log (x) & =\sum_{n \geq 1} \frac{(-1)^{n-1}}{n} x^{n}
\end{aligned}
$$

We fix an isomorphism $\Lambda_{K} \cong \mathcal{O}_{K} \llbracket X \rrbracket$ defined by $[1+p] \mapsto X+1$ and we define a formal series

$$
\langle n\rangle^{\prime}:=\langle n\rangle_{\Lambda_{K}}\left((1+p)^{k_{0}} \exp (\epsilon X \log (1+p))-1\right)
$$

for each positive integer n which is prime to p. We remark that since we have $\left|p^{m}\right|_{p} \leq|m!|_{p}$ for each positive integer m, the series $\langle n\rangle^{\prime}$ is contained in $\mathcal{O}_{K} \llbracket X \rrbracket$. Further, for each positive integer n which is prime to p, the series $\langle n\rangle^{\prime}$ satisfies the condition of Hypothesis (5). Since M is square-free, by [Miy06, Theorem 4.6.17], $G(X)$ satisfies Hypothesis (7).

References

[Col97] R. F. Coleman. p-adic Banach spaces and families of modular forms. Invent. Math., 127(3):417-479, 1997.
[Fuk19] K. Fukunaga, Triple product p-adic L-function attached to p-adic families of modular forms, arXiv:1909.03165.
[Hid85] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I, Inventiones Math., 79 (1985), 159-195.
[Hid88a] H. Hida, On p-adic hecke algebras for GL(2) over totally real fields, Annals of Mathematics 128 (1988), 295-384.
[Hid88b] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 3, 1-83.
[Hsi17] M.-L. Hsieh, Hida families and p-adic triple product L-functions, AJM, to appear.
[Ich08] A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 (2008), no. 2, 281-307.
[Ike92] T. Ikeda, On the location of poles of the product L-functions, Comp. Math. 83(1992), 187-237.
[Ike98] T. Ikeda, On the gamma factor of the triple L-function II, J. Reine Angew. Math. 499 (1998) 199-223.
[Miy06] T. Miyake, Modular forms, english ed. Springer Monographs in Mathematics, SpringerVerlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815.
[PSR87] I. I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions, Comp. Math. 64 (1987), 31-115.
[Shi76] G.Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. math. 29 (1976), 783-804.
[Wil88] A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529-573.
[Wil95] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551.

