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CONGRUENCE PROPERTIES OF ENDO-CLASSES 
AND THE LOCAL JACQUET-LANGLANDS CORRESPONDENCE 

by 

Vincent Secherre 

These are notes from a lecture I gave at RIMS, Kyoto, for the conference Analytic, geometric 
and p-adic aspects of automorphic forms and L-functions, from 20 to 24 January, 2020. I wish to 
thank the organizers of this conference. These notes are intended to be a survey of recent results 
that have been published in [31]. 

Notation 

Let us fix some notation: 

- F is a non-Archimedean locally compact field of residual characteristic p, 

- Fis a separable closure of F, 
- Wp is the Weil group of F/F, 
- Jp is the inertia subgroup of Wp, that is its unique maximal compact subgroup, 
- '.Pp is the wild inertia subgroup of Wp, that is its unique maximal pro-p-subgroup. 

1. Irreducible representations of the Weil group 

Given an irreducible smooth complex representation a ofWp, its restriction to '.Pp decomposes 
into a direct sum of finitely many irreducible representations of '.Pp. These irreducible represen­
tations form a single Wp-orbit under the conjugacy action, denoted Op(a). All representations 
in this orbit occur in the restriction of a to '.Pp with the same multiplicity m = m(a). 

Fix o: E Op(a). Its stabilizer in Wp is equal to Wr for a uniquely determined tamely ramified, 
finite extension T of F contained in F. The representation a extends (non-canonically) to an ir­
reducible representation p of Wr, The representation a can then be written: 

where T is an irreducible representation of Wr trivial on Pr= '.Pp, of dimension m, uniquely de­
termined up to isomorphism, and where lndr;P denotes induction from Wr to Wp. 
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2. Cuspidal representations of GLn(F) 

On the other hand, consider cuspidal irreducible smooth complex representations of the group 
G = GLn(F) for some n? 1. Bushnell and Kutzko have constructed in [8] an explicit family of 
pairs (J, ..X), where J is an open, compact mod centre subgroup of G and A is an irreducible re­
presentation of J, such that: 

- the compact induction of A from J to G is irreducible and cuspidal for all pairs (J, ..X), 
- any cuspidal irreducible representation of G occurs this way, for a pair (J, ..X), uniquely de-

termined up to G-conjugacy. 

These pairs have the following properties: 

(1) The group J has a unique maximal compact subgroup J 0 and a unique maximal normal 
pro-p-subgroup J 1 . 

(2) The restriction of A to J 1 is a multiple of a single irreducible representation T/· 

(3) The representation T/ extends (non-canonically) to a representation ,-;, of J, and A is iso­
morphic to ,-;, ® { for a uniquely determined irreducible representation { of J trivial on J 1 . 

(4) The representation T/ is constructed as a Heisenberg representation from a character 0 of 
a smaller open subgroup H 1 <;; J 1 such that J 1 / H 1 is a finite-dimensional lF p-symplectic space. 

We denote by e(G) the set of all characters 0 obtained this way when one varies the pairs (J, ..X), 
and by e(F) the union of e(GLn(F)) for all n? 1. Bushnell and Henniart ([4]) equipped the set 
e(F) with an equivalence relation called endo-equivalence. Equivalence classes for this relation 
are called endo-classes. The set c(F) of endo-classes only depends on F. 

Remark 2.1. - When one fixes n, two characters 0, 01 E e(GLn(F)) defined on H1, H'1 res­
pectively are endo-equivalent if and only if there is a g E GLn(F) such that 0' = 0Y on H'1 n H 1Y. 

The endo-class of any character 0 as above occurring in a cuspidal irreducible representation 
1r of G will be denoted 0 ( 1r). 

3. The Ramification Theorem 

We now consider the local Langlands correspondence 1r - L1r (see [21, 17, 18]) between iso­
morphism classes of cuspidal irreducible representations of GLn(F) and isomorphism classes of 
irreducible n-dimensional representations of WF. 

Theorem 3.1 ([6]). - Let 1r1, 1r2 be cuspidal irreducible representations of GLn1 (F), GLn2 (F) 
respectively, and set cr1 = L1r1 and cr2 = L1r2. Then: 

4. Inner forms and the local Jacquet-Langlands correspondence 

More generally, the classification of cuspidal representations by compact induction, as well as 
the notion of endo-classes, also works for inner forms of general linear groups ([2, 16, 26, 27, 



146

CONGRUENCE PROPERTIES OF ENDO-CLASSES 

28, 29, 3]). It is natural to ask whether there exists, for inner forms, an analogue of Bushnell­
Henniart's Ramification Theorem 3.1. 

Let H = GLm(D) be an inner form of G = GLn(F), where Dis a central division F-algebra of 
reduced degree d such that md = n. The local Jacquet-Langlands correspondence is a bijection 
1r - JL1r between the discrete series of Hand G, characterized by a character identity at elliptic 
regular conjugacy classes ([19, 25, 13, 1]). 

Given a discrete series representation 1r of H, it occurs as a subquotient of the parabolic in­
duction of a cuspidal representation of the form: 

PX1 ®· · · ®PXr 

where r is a divisor of m, p is a cuspidal irreducible representation of GLm;r(D) and x1, ... , Xr 
are unramified characters of GLm;r(D). Define E>(1r) = E>(p). 

Theorem 4.1 ([32, 31, 14]). - The local Jacquet-Langlands correspondence preserves endo­
classes. 

This result is one of the main steps in the explicit description of the local Jacquet-Langlands 
correspondence in terms of Bushnell-Kutzko's simple types ([31, 14]). 

In the sequel, I will explain a crucial step in the proof of this theorem. Surprisingly, it involves 
the modular representation theory of H. 

5. Modular representations of p-adic groups 

Fix a prime number£ different from p and an algebraic closure Fe of Fe, and consider smooth 
Fe-representations of H. As in the complex case, one has Haar measures, normalized parabolic 
induction and restriction functors, cuspidal representations and uniqueness of the cuspidal sup­
port for irreducible representations. Here, as in the complex case, a representation is cuspidal if 
all its proper Jacquet modules are zero or, equivalently, if all its matrix coefficients are compactly 
supported mod centre. However, there is a crucial difference: an irreducible cuspidal representa­
tion may occur as a subquotient of a parabolically induced representation ([33] Corollaire 5). 

Say an irreducible representation of His supercuspidal when it does not occur as a subquotient 
of a parabolically induced representation. For irreducible representations of H, there is a well­
behaved notion of supercuspidal support. 

Theorem 5.1 ([23]). - Let 1r be an irreducible Fe-representation of H. 

(1) There are a Levi subgroup M of H and an irreducible supercuspidal representation p of M 
such that 1r occurs as a subquotient of the parabolic induction of p to H with respect to any pa­
rabolic subgroup with Levi compotent M. 

(2) The pair (M, p) is unique up to H-conjugacy. 

Remark 5.2. - Unlike uniqueness of the cuspidal support, Theorem 5.1 is non-trivial. Unique­
ness of the supercuspidal support also holds for special linear p-adic groups [9] and small unra­
mified unitary groups [20], but is false in general (see [15, 12] for a counterexample in the sym­
plectic group Sps)-
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Based on the well-defined notion of supercuspidal support for the group H, we have the fol­
lowing decomposition theorem. 

Theorem 5.3 ([30]). - The category Rep'ffi/H) of smooth Wt-representations of H decomposes 
into blocks, which correspond bijectively to inertial classes of supercuspidal pairs of H. 

6. Reduction mod £ of representations over £-adic numbers 

Now fix an algebraic closure QR of the field of £-adic numbers and consider smooth Qc-repre­
sentations of H. Let Ze denote the ring of algebraic integers of QR- An irreducible representation 
1r of Hon a Qc-vector space Vis said to be integral if it has an H-stable Ze-lattice L ~ V. We 
have the following p-adic Brauer-Nesbitt principle. 

Proposition 6.1 ([34] 1.9.6). - The Wt-representation L®Wt has finite length. Its semi-sim­
plification only depends on the isomorphism class of 1r, and not on the choice of L. 

The semi-simplification of L @WR will be denoted re( 1r) and called the reduction mod £ of 1r. 

Two integral irreducible representations are said to be congruent if they have the same reduction 
mod£. 

7. Congruence properties of the local Jacquet-Langlands correspondence 

Now replace C by Qe in Paragraphs 3 and 4 by fixing a field isomorphism i : C - QR- Since 
cuspidal representations are characterized by the properties of the support of their matrix coef­
ficients, base change from C to QR perserves cuspidality. One thus gets a local Langlands corres­
pondence between isomorphism classes of cuspidal irreducible Qc-representations of GLn(F) and 
isomorphism classes of irreducible n-dimensional Qr representations of W F. The congruence pro­
perties of this local Langlands correspondence have been studied by Vigneras, Bushnell-Henniart 
and Dat ([35, 7, 10]). 

For the local Jacquet-Langlands correspondence, one first has to check that the set of Qe-re­
presentations of H coming from a discrete series complex representation by base change from C 
to QR does not depends on the choice of i. This comes from the fact that discrete series complex 
representations can be characterized as Langlands quotients of certain induced representations. 

Theorem 7.1 ([11, 24, 31]). - Let 1r, 1r' be integral discrete series Qrrepresentations of H. 

(1) JL1r and JL1r1 are integral, and they are congruent if and only if 1r, 1r' are congruent. 
(2) r£eL1r) and r£eL1r1 ) are in the same block of ReP'ffi/G) if and only if re(1r) and re(1r') are 

in the same block of ReP'ffie(H). 

8. Linked representations 

Now go back to complex representations. 

Definition 8.1. - Let 1r, 1r' be discrete series complex representations of H. They are: 
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(1) I-linked if there are a prime number£ =fa p and an isomorphism of fields i: (C ""Qi£ such 
that rt(i*7r) and rt(i*7r') are in the same block of Repii<)H). 

(2) linked if there are discrete series representations 7ro, ... , 'Irr of H such that 7ro = 7r, 'Irr = 7r1 

and 7r;, 'lri-1 are I-linked for all i E {1, ... , r }. 

Any two linked discrete series representations of H have the same endo-class. The following 
theorem says that the converse is true. 

Theorem 8.2 ([31]). - Two complex discrete series representations of H and linked if and 
only if they have the same endo-class. 

Putting all these results together, we get: 

Corollary 8.3. - Let 'If, 7r1 be discrete series complex representations of H. Then 'If, 7r1 have 
the same endo-class if and only if JL7r, JL7r, have the same endo-class. 

It follows that, given a discrete series complex representation 7r of H, the endo-class ee£7r) 
only depends on 0(7r). This defines a map from the set of endo-classes of discrete series rep­
resentation of H to that of endo-classes of discrete series representation of G, and one verifies 
that this map is bijective. Moreover, varying n and the inner form, one gets a bijective map: 

jp:0>->JL9 

from e(F) to itself. Theorem 4.1 is then equivalent to saying that this map is the identity. 

9. The restriction map 

Let K be a finite, tamely ramified extension of F contained in F. Associated with it, there is 
the set e(K) of K-endo-classes. It corresponds, via the Ramification Theorem 3.1, to the set of 
WK-conjugacy classes of irreducible representations of 'YK = 'Yp. Bushnell-Henniart ([4]) have 
defined a surjective map: 

PK/F : e(K) ----> e(F) 

called the restriction map. It corresponds, through the local Langlands correspondence, to pas­
sing from WK-conjugacy classes to Wp-conjugacy classes of irreducible representations of 'J'p. 

10. The last step 

Given an endo-class 0 E e(F), there exists an m ;;, 1 such that the group H = GLm(D) has 
a cuspidal representation ;r with the following properties: 

(1) the endo-class of 7r is equal to 0, 
(2) the transfer JL7r is a cuspidal representation of G = GLn(F), with n = md. 

Let K be the unique finite unramified extension of F contained in F of degree the torsion number 
of 7r, that is the number of unramified characters x of H such that 7rX ""7r. This number only 
depends on n and e. Choose an endo--class w E e(K) whose restriction to e(F) is equal to e. 
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Following Bushnell-Henniart's analysis of the traces of 7f and JLK at certain well chosen elliptic 
regular conjugacy elements in terms of types ([5]), one get the following result: 

Proposition 10.1 ([5] 6, [31] 7, [14] 4). - One has jp0 = PK/F(jK"iJ!). 

Fix an F-embedding of Kin Mm(D), and let HK be the centralizer of Kin H. Define GK 
similarly. Let p be a cuspidal representation of HK of endo-class "iJ!. The endo-class of its transfer 
to GK is thus jK"iJ!. 

Dotto's idea ([14]) is to choose the integer m ~ 1 so that GK and HK are K-isomorphic. (For 
instance, choose m large enough so that GK and HK are both split over K.) We thus may iden­
tify GK and HK so that p is isomorphic to its transfer to GK. This gives us j K "iJ! = "iJ!. Applying 
the restriction map and Proposition 10.1, we get the desired identity jp0 = PKjF("iJ!) = 0. 
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