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PREFACE 

The Proceedings of the 2nd Japanese-German Symposium on 
Infinite Dimensional Harmonic Analysis 

held from September 20th to September 24th 1999 at the Department of Mathematics 
of Kyoto University reflect the progress of research in harmonic analysis and probability 
theory achieved by a group of Japanese and German mathematicians whose exchange and 
collaboration proved to be vivid and productive over a number of years. In fact, the 1st 
Japanese-German Symposium on the cited topic took place in Tiibingen in 1995, and there 
is a significant enthusiasm to follow the 4-years cycle and to meet in Tiibingen next time. 

The main contributors to the present volume are the participants who gave one-hour 
lectures at the symposium. Since the symposium had been conceived as an open meeting 
it attracted an additional number of Japanese mathematicians who took part in the sci
entific activities. Some of the invited speakers who were unable to participate also kindly 
submitted their papers for the Proceedings. 

The topics discussed during the symposium and dealt with in this volume ranged from 
traditional potential theory to harmonic analysis on manifolds, from classical probability 
theory to quantum stochastic analysis, and from representation theory of locally compact 
groups to spectral analysis of noncommutative structures. Unifying view points became ap
parent whenever algebraic-topological structures including semigroups, groups and vector 
spaces were applied to make probabilistic phenomena more transparent. In the discussions 
following the talks and in individual conversations new aspects of cooperation developed. 

Similar to the Tiibingen Symposium of 1995 the Kyoto Symposium of 1999 has been 
organized within the "German-Japanese Cooperative Science Promotion Program" set up 
by the Japan Society for the Promotion of Science (JSPS) and the German Research Soci
ety (DFG). The generous support of these two agencies is greatly appreciated. Thankfully 
we also acknowledge the financial allowances granted by the Ministry of Science and Re
search of the Land Baden-Wiirttemberg, the Friends of the University of Tiibingen and the 
German-Eastasian Science Forum at Tiibingen, and the technical help offered sur place 
by the Department of Mathematics of Kyoto University and by the Kyoto Convention 
Bureau. 

All contributions to these Proceedings have been refereed. We are grateful to the referees 
for their help, in particular to S.G. Dani, C.F. Dunkl, J. Leslie, G. Ritter, and G. Pap. 

The organizers of the symposium who are identical with the editors of these Proceedings 
extend their heartfelt thanks to all participants, in particular to the contributors to this 
publication which will certainly serve as a reference to current studies in infinite dimen
sional harmonic analysis, but hopefully also as a stimulation for further enrichment of the 
theory. 

Herbert Heyer, Tiibingen 
Takeshi Hirai, Kyoto 
Nobuaki Obata, Nagoya May 2000 



はじめに

この論文集は.1999年9月20日から 9月24日の日程で京都大学理学研究科数学教室

において開催された

第2回日独セミナー「無限次元調和解祈」

の成果をもとに編集されたものである。同セミナーは第 1回日独セミナー「無限次元

調和解析」が 1995年にチュービンゲンにおいて開催されて以来，調和解析と確率論の

関連分野における日独両国の研究グループによる活発な共同研究と研究交流をうけて

企画されたものであり，次回開催を 4年周期で期待する熱気とともに幕を閉じた。

本書の主な著者は，セミナーにおいて 1時間講演をおこなった方々である。それに加

え．このセミナーに対する日本人数学者の関心の高まりを反映している。さらに，セミ

ナーヘの出席がかなわなかった招待講演者で，本書に論文を寄せていただいた方々も

ある。

本書の収録論文からもわかるように，セミナーにおいて謗論された話題は，伝統的な

ポテンシャル理論から多様体上の調和解析，古典確率論から量子確率解析，局所コンパ

クト群の表現論から非可換構造のスペクトル解析，というような広がりを見せた。半

群・群・ベクトル空間などがもつ代数的・位相的構造を応用することで，確率現象をよ

り深く理解するための統一的な観点が浮かぴ上がってきた。講演後の討論や合間の譲

論は，異分野協同から生まれる新しいアイデアを発展させる上で有効であった。

1995年のチュービンゲンにおけるセミナーと同様に，今回 1999年の京都セミナーは，

日本学術振興会 (.JSPS)とドイツ研究協会 (DFG)による日独科学協力事業・セミナー

の一環として実施された。この 2つの機関から受けたすべての援助に対して深い謝意

を表したい。さらに，バーデンヴュルテンベルグ州科学研究省・チュービンゲン大学後

援会・ドイツ東アジア科学フォーラムからの財政援助，及び京都大学理学研究科数学教

室・京都コンベンションピューローの協力に感謝するものである。

本書の収録論文はすべて査読されている。特に， S.G. Dani, C. F. Dunk!, J. Leslie, 

G. Ritter. G. Papの各氏の協力に感謝する。

セミナーの主催者は本論文集の編集も務めた。ここに，あらためて，セミナーに参加

されたすべての方々と，特に，本書に論文を寄せていただいた方々に心からの感謝の意

を表したい。本書が，無限次元調和解析における最新の研究動向を知る上で貴重な文献

となることさらには，この研究領域から多くの実りを得るための一助となることを期

待したし、

2000年 5月

ハーバートハイヤー（チュービンゲン）

平井武（京都）

尾畑伸明（名古屋）



INVITED SPEAKERS 

Sergio Albeverio Institut fiir Angewandte Mathematik, Abteilung fiir Stochastik, 

Universitat Bonn, Wegelerstr. 6, 53115 Bonn, Deutschland 

Asai Arai Department of Mathematics, Hokkaido University, Sapporo 

060-0810, Japan 

Hitoshi Arai Graduate School of Mathematical Sciences, The University of 

Tokyo, Tokyo 153-8914, Japan 

Nobuhiro Asai International Institute for Advanced Studies, Kizu, Soraku-gun, 

Kyoto 619-0225, Japan 

Viacheslav P. Belavkin Mathematics Department, University of Nottingham, 

Nottingham NG7 2RK, UK 

Yukihiro Hashimoto Graduate School of Mathematics, Nagoya University, Nagoya 

464-8602, Japan 

Wilfried Hazod Institut fiir Mathematik, Universitat Dortmund, Campus Nord, 

Vogelpothsweg 87, 44227 Dortmund, Deutschland 

Herbert Heyer Mathematisches Institut, Universitat Ttibingen, Auf der Morgen

stelle 10, 72076 Ttibingen, Deutschland 

Takeyuki Hida Department of Mathematics, Meijo University, Nagoya 468-8502, 
Japan 

Juri Hinz 

Akihito Hora 

Un Cig Ji 

Joe Kamimoto 

Mathematisches Institut, Universitat Ttibingen, Auf der Morgen

stelle 10, 72076 Tlibingen, Deutschland 

Department of Environmental and Mathematical Sciences, 

Okayama University, Okayama 700-8530, Japan 

Graduate School of Mathematics, Nagoya University, Nagoya 

464-8602, Japan 

Department of Mathematics, Kumamoto University, Kumamoto 
860-8555, Japan 



Eberhard Kaniuth 

Takeshi Kawazoe 

Izumi Kubo 

Burkhard Ki.irnmerer 

Aloys Krieg 

Jean Ludwig 

Kyo Nishiyama 

Nobuaki Obata 

Margit Rosler 

Kirniaki Saito 

Michael Schi.irmann 

Hiroaki Shimomura 

Roland Speicher 

Michael Voit 

Hiroshi Yamaguchi 

Hiroshi Yamashita 

Fachbereich 17, Mathematik, Universitii.t-Gesamthochschule 
Paderborn, Warburger Str. 100, 33098 Paderborn, Deutschland 

Department of Mathematics, Keio University at Fujisawa, 
Fujisawa 252-8520 Japan 

Department of Mathematics, Faculty of Science, Hiroshima 
University, 739-8526 Higashi-Hiroshima, Japan 

Mathematisches Institut A, Universitii.t Stuttgart, Pfaffenwald
ring 57 ,70569 Stuttgart, Deutschland 

Lehrstuhl A fiir Mathematik, Technische Hochschule Aachen, 
Templergraben 55, 52062 Aachen, Deutschland 

Departement de Mathematiques, Universite de Metz, Ile du 
Saulcy, 57045 Metz Cedex, France 

Faculty of Integrated Human Studies, Kyoto University, 
Kyoto 606-8501, Japan 

Graduate School of Polymathematics, Nagoya University, 
Nagoya 464-01, Japan 

Zentrum Mathematik, Technische Universitat Miinchen, 
Arcisstr. 21, 80290 Mi.inchen, Deutschland 

Department of Mathematics, Meijo University, Nagoya 
468-8502, Japan 

Institut fi.ir Mathematik und Informatik, Universitii.t Greifs
wald, Jahnstr. 15a, 17487 Greifswald, Deutschland 

Department of Mathematics, Fukui University, Fukui 910-8507, 
Japan 

Mathematisches Institut, Universitii.t Heidelberg, Im Neuen
heimer Feld 288, 69120 Heidelberg, Deutschland 

Mathematisches Institut, Universitii.t Ti.ibingen, Auf der Mor
genstelle 10, 72076 Ti.ibingen, Deutschland 

Department of Mathematics, Josai University, Saitama 
350-0290, Japan 

Division of Mathematics, Graduate School of Science, 
Hokkaido University, Sapporo 060-0810, Japan 



CONTENTS 

Albeverio, S.; Kondratief, Y.G.; Lytvynov, E.; Us, G.F. 

Analysis and geometry on marked configuration spaces 

Arai, A. 
On arithmetic quantum field theory 

Arai, H. 
Harmonic analysis on negatively curved manifolds 

Asai, N.; Kubo, I.; Kuo, Hui-Hsiung 

Characterization of Hida measures in white noise analysis 

Belavkin, V.P. 

On stochastic generators of positive definite exponents 

Franz, U.; Schiirmann, M. 
Levy processes on quantum hypergroups 

Hashimoto, Y. 

Samples of algebraic central limit theorems based on Z/2Z 

Hazod, W. 

Limit laws and semi-stability on infinite dimensional locally compact groups 

Heyer, H. 

Functional central limit theorems for locally compact groups: the use of in

finite dimensional Fourier analysis 

Hida, T. 
Harmonic analysis in complex random systems 

40 

55 

70 

84 

93 

115 

127 

143 

160 

Hinz, J. 167 

Hypergroup actions and wavelets 

Hirai, T.; Shimomura, H.; Tatsuuma, N.; Hirai, E. 177 

On inductive limits of topological algebraic structures in relation to the 

product topologies 

Hora, A. 192 

Scaling limit of the spectral distributions of the Laplacians on large graphs 



Ji, Un Cig; Obata, N. 
Initial value problem for white noise operators and quantum stochastic 

processes 

Kamimoto, J. 

On the regularity of the Bergman kernel on the boundary 

Kaniuth, E. 

Spectral synthesis for L1-algebras and Fourier algebras of locally compact 

groups 

203 

217 

228 

Kawazoe, T. 238 
KA-wavelets on semisimple Lie groups and quasi-orthogonality of matrix 

coefficients 

Krieg, A. 253 
Triple systems of Hecke type and hypergroups 

Ludwig, J. 260 
Irreducible bounded representations of exponential solvable Lie groups 

Nishiyama, K. 278 

Theta lifting of two-step nilpotent orbits for the pair O(p, q) x Sp(2n, R) 

Ri:isler, M. 290 

One-parameter semigroups related to abstract quantum models of Calogero 

type 

Saito, K. 306 
The Levy Laplacian and stochastic processes 

Shimomura, H. 319 

Unitary representations and differential representations of the group of 

diffeomorphisms and its applications 

Speicher, R. 
Free probability theory and free diffusion 

Voit, M. 

A Girsanov-type formula for Levy processes on commutative hypergroups 

334 

346 



Yamaguchi, H. 
On the product of Riesz sets in dual objects of compact groups 

Yamashita, H. 

Two dual pair methods in the study of generalized Whittaker models for 

irreducible highest weight modules 

360 

373 



ANALYSIS AND GEOMETRY 
ON MARKED CONFIGURATION SPACES 

SERGIO ALBEVERIO, YURI KONDRATIEV 

EUGENE LYTVYNOV, AND GEORGI US 

Abstract 

We carry out analysis and geometry on a marked configuration space n~ over a Riemannian 
manifold X with marks from a space M. We suppose that Mis a homogeneous space M of a Lie 
group G. As a transformation group !l on n~ we take the "lifting" ton~ of the action on Xx M of 
the semidirect product of the group Diff0 (X) of diffeomorphisms on X with compact support and 
the group ax of smooth currents, i.e., all C"' mappings of X into G which are equal to the identity 
element outside of a compact set. The marked Poisson measure ;r,, on n~ with Levy measure a 
on X x M is proven to be quasiinvariant under the action of !l. Then, we derive a geometry on 
n~ by a natural "lifting" of the corresponding geometry on Xx M. In particular, we construct a 
gradient ,;;1n and a divergence div0 . The associated volume elements, i.e., all probability measures 
µ on n~ with respect to which ,;;1n and div0 become dual operators on L2(n~; µ), are identified 
as the mixed marked Poisson measures with mean measure equal to a multiple of a. As a direct 
consequence of our results, we obtain marked Poisson space representations of the group !l and its 
Lie algebra a. We investigate also Dirichlet forms and Dirichlet operators connected with (mixed) 
marked Poisson measures. 

1991 AMS Mathematics Subject Classification. Primary 60G57. Secondary 57S10, 54Hl5 

0 Introduction 

In recent years, stochastic analysis and differential geometry on configuration spaces have 
been considerably developed in a series of papers [5-8], see also [37, 2, 3). It has been 
shown, in particular, that the geometry of the configuration space rx over a Rieman
nian manifold X can be constructed via a simple "lifting procedure" and is completely 
determined by the Riemannian structure of X. The mixed Poisson measures are then 
exhibited as the "volume elements" corresponding to the differential geometry introduced 
on r x. Intrinsic Dirichlet forms and operators, their canonical processes, as well as Gibbs 
measures on configuration spaces, their characterization by integration by parts, and the 
corresponding stochastic dynamics are among the problems which have been treated in 
the above framework. 

A starting point for this analysis, more exactly, for the definition of differentiation on 
the configuration space, was the representation of the group of diffeomorphisms Diffo(X) 
on X with compact support that was constructed by G. A. Goldin et al. [18] and A. M. Ver
shik et al. [42] (see also [34, 38, 20]). The construction of this representation used, in turn, 
the fact, following from the Skorokhod theorem, that the Poisson measure is quasiinvariant 
with respect to the group Diffo(X). 



On the other hand, starting with the same work [42], many researchers consider rep
resentations also on marked (in particular, compound) Poisson spaces. In statistical me
chanics of continuous systems, marked Poisson measures and their Gibbsian perturbations 
are used for the description of many concrete models, see e.g. [1 ). Hence, it is natural to 
ask about geometry and analysis on marked Poisson spaces. The first work in this direc
tion was the paper [26), in which, just as in the case of the usual Poisson measure, the 
action of the group Diff0(X) was used for the definition of the differentiation. However, 
this group proved to be too small for reconstructing mixed marked Poisson measures as 
"volume elements," which means that Diffo(X) is to be extended in a proper way, which 
we will describe in the present paper. 

Let us recall that the configuration space r x is defined as the space of all locally finite 
subsets (configurations) in X. Then, the marked configuration space niJ! over X with 
marks from, generally speaking, a manifold lvf is defined as 

niJf := { ('y,s) 1-Y E rx, s EM.,,}, 

where Af'Y stands for the set of all maps "Y 3 x >-+ s., EM. Let a be a Radon measure on 
Xx M such that 'ci(K x M) < oo for each compact KC X and a is nonatomic in X, i.e., 
'ci({x} x M) = 0 for each x EX. Then, one can define on niJ! a marked Poisson measure 
1r;; with Levy measure a. 

Of course, one could consider 1r;; as a usual Poisson measure on the configuration space 
fxxM over the Cartesian product of the underlying manifold X and the space of marks 
M, and study the properties of this measure using the results of [2-5). However, such 
an approach does not distinguish between the two different natures of X and M and the 
different roles that these play in physics. Thus, our aim is to introduce and study such 
transformations of the marked configuration space which do "feel" this difference and lead 
to an appropriate stochastic analysis and differential geometry. 

In our previous paper [24), we were concerned with the model case M = Il4, which 
corresponds, in fact, to the case of a compound Poisson measure. As has been promised 
in [24], we generalize in the present paper the results of [24) to the case where M is a 
homogeneous space of a Lie group a. This situation is natural from the physical point 
of view. For example, one can take X = IR3 and M to be the unit sphere S 2 in IR3, and 
consider any marked configuration ("Y, s) = {(x, s.,).,E.,,} E r!IJ! as a system of particles in 
IR3 situated at the points x of "Y and having spin s., at x E "Y· One has then to take a as 
the rotation group, see e.g. [13]. 

Let ax denote the group of smooth currents, i.e., all C00 mappings X 3 x >-+ 11(x) E a 
which are equal to the identity element of a outside of a compact set (depending on 
17). We define the group 2l as the semidirect product of the groups Diffo(X) and ax: 
for a1 = ('l/.>1,111) and a2 = ('l/.>2,112), where 'l/.>1,1/J2 E Diffo(X) and 1)1,1)2 E ax, the 
multiplication of a1 and a2 is given by 

a1a2 = (1/J101/J2,1)1(11201f;11)). 

The group 2l acts in Xx Mas follows: for any a= (1/J,1)) E 2l 

Xx M 3 (x,m) >-+ a(x,m) = (1j;(x),11('1/.>(x))m) EX x M, 
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where, for g E G and m EM, gm denotes the action of g on m. Since each w E n1;{ can be 
interpreted as a subset of Xx M, the action of 2l can be lifted to an action in n1;{. The 
marked Poisson measure 7r'if is proven to be quasiinvariant under it. Thus, we can easily 
construct, in particular, a representation of 2l in L2(nu). It should be stressed, however, 
that our representation of 2l is reducible, because so is the regular representation of QI in 
L2(u), see subsec. 3.5 in [24] for details. 

Having introduced the action of the group 2l on n1;{, we proceed to derive analysis and 
geometry on fl.1;{ in a way parallel to the works [7, 24], dealing with the usual configuration 
space rx and the marked configuration space n~+, respectively. In particular, we note 
that the Lie algebra a of the group QI is given by a= Vo(X) x C/j'(X; g), where Vo(X) is 
the algebra of C00 vector fields on X having compact support and C/j'(X; g) is the algebra 
of C00 compactly supported functions from X into the Lie algebra g of the group G. For 
each (v, u) Ea, we define the notion of a directional derivative of a function F: n1;{-+ IR 
along (v, u), which is denoted by v>Pu,u)F. We obtain an explicit form of this derivative 

on the special set :FCb°('.D,fl.1;{) of smooth cylinder functions on n1;{, which, in turn, 
motivates our definition of a tangent bundle T(fl.1;{) of n1;{, and of a gradient vnF. We 
note only that the tangent space T..,(fl.1;/) to the marked configuration space n1;{ at a point 
w = ('y,s) E fl.1;{ is given by 

T..,(fl.1;{) := L2(X-+ T(X) + g;-y), 

where + means direct sum. 
Next, we derive an integration by parts formula on fl.1;{, that is, we get an explicit 

formula for the dual operator divn of the gradient vn on n1;{. We prove that the prob
ability measures on n1;{ for which v'n and divn become dual operators (with respect to 
(·, ·)T(n~)) are exactly the mixed marked Poisson measures 

µx,u = ( nzu x(dz), fR+ 
where xis a probability measure on IR+ (with finite first moment) and 7rz'ii is the marked 
Poisson measure on n1;{ with Levy measure zu, z ~ 0. This means that the mixed marked 
Poisson measures are exactly the "volume elements" corresponding to our differential 
geometry on n1;{. 

Thus, having identified the right volume elements on fl.1;{, we introduce for each mea
sure µx,'ii the first order Sobolev space Ht·2 (f!1;/, µx,'ii) by closing the corresponding Dirich
let form 

F,G E :FCb°('.D,fl.1;{), 

on L2(fl.1;/,µx,'if). Just as in the analysis on the usual configuration space, this is the step 
where we really start doing real infinite dimensional analysis. The corresponding Dirichlet 
operator is denoted by Hfx_,,; it is a positive definite selfadjoint operator on L2(f!1;/, µx,'ii ). 

The heat semigroup ( exp(-tHfx,o')) t,::O generated by it is calculated explicitly. The results 

3 



on the ergodicity of this semigroup are absolutely analogous to the corresponding results 
of [7). Particularly, we have ergodicity if and only if µx,u = 11,-a for some z > 0, i.e., µx,u 
is a (pure) marked Poisson measure. 

We also clarify the relation between the intrinsic geometry on n;;f we have constructed 
with another kind of extrinsic geometry on n;;f which is based on fixing the marked 
Poisson measure 11-a and considering the unitary isomorphism between L2(nf;t,1r-a) and 
the corresponding Fock space 

00 

F(L2(X x M;i7)) = ffii2((X x Mt,n!i7®n), 
n=O 

where L2((X x M)n,n!i7®n) is the subspace of symmetric functions from 
L2((X x Mt,n!i7®"). Our main result here is to prove that Hf;_ is unitarily equiva
lent ( under the above isomorphism) to the second quantization ope"rator of the Dirichlet 
operator HJxM on the L2(X x M; i7) space. 

As a consequence of the results of this paper, we obtain a representation on the marked 
Poisson space L2(1r-a) not only of the group 21, but also of its Lie algebra 11. Let us remark 
that the groups of smooth ( as well as measurable and continuous) currents are classical 
objects in representation theory, see e.g. [4, 41, 11, 12, 43, 20) and references therein for 
different representations of these groups. On the other hand, different representations of 
the group 21 and its Lie algebra 11, in the special case G = g = IR, were constructed and 
studied by G. Goldin et al. [17, 19, 16) from the point of view of nonrelativistic quantum 
mechanics. 

Finally, we note that, in a way parallel to the work [8), the results of the present 
paper can be generalized to the interaction case where, instead of the Poisson measure 7ru, 
describing a system of free particles, one takes its Gibbsian perturbation-more exactly, 
a marked Gibbs measure on n:;t of Ruelle type (see [28, 29)). 

1 Marked Poisson measures 

I.I Marked configuration space 

Let X be a connected, oriented C00 non-compact Riemannian manifold. The configuration 
space r x over X is defined as the set of all locally finite subsets in X: 

rx := { "Y c XI#(, n K) < oo for each compact Kc X }, 

where #( ·) denotes the cardinality of a set. One can identify any "Y E r x with the positive 
integer-valued Radon measure 

Lex EM(X), 
xE; 

where E,,E0 c:,, := zero measure and M(X) denotes the set of all positive Radon measures 
on B(X). 

4 



Let also M be a connected oriented C00 (compact or non-compact) Riemannian man
ifold. The marked configuration space n1j over X with marks from M is defined as 

n1;! == { w = ( ,, s) I , E r x, sE M-, } , 

where M-, stands for the set of all maps,:) x ,-; m EM. Equivalently, we can define n1j 
as the collection of subsets in X x M having the following properties: 

n1;! = { w c x x M I a) \l(x, m), (x', m') E w: (x, m}-/- (x', m'} => x-/- x'} 
b)PrxwErx ' 

where Prx denotes the projection of the Cartesian product of X and M onto X. Again, 
each w E n1j can be identified with the measure 

L "(z,m) E M(X X M). 
(z,m)Ew 

It is worth noting that, for any bijection </>: Xx M -t Xx M, the image of the 
measure w(•) under the mapping</>, (</>'w)(·), coincides with (</>(w)}(·}, i.e., 

Ww)(·) = (</>(w))(·), 

where </>(w) = { cf,(x, m) J (x, m) E w} is the image of w as a subset of X x M. 
Let Bc(X) and Oc(X) denote the families of all Borel, resp. open subsets of X that have 

compact closure. Let also Bc(X x M) denote the family of all Borel subsets of Xx M 
whose projection on X belongs to Bc(X). 

Denote by Co,b(X x M) the set of real-valued bounded continuous functions f on 
X x M such that supp f E Bc(X x M). As usually, we set for any f E Co,b(X x M) and 
w E f!1j 

(J,w) = 1 J(x,m)w(dx,dm) = L J(x,m). 
XxM (z,m)Ew 

We note that, because of the definition of n1j, there are only a finite number of addends 
in the latter series. 

Now, we are going to discuss the measurable structure of the space n1j. We will use 
a "localized" description of the Borel er-algebra B(f!1;!) over n1j. 

For A E Oc(X), define 

nf := { w E n1;! I Prxw c A} 

and for n E Z+ = {O, 1, 2, ... } 

nf (n) := { w E nf I #(w) = n }. 

It is obvious that 
00 

nf = LJ n*1 (n). 
n=O 

5 



Let Am1t :=Ax M (i.e., Amk is the set of all "marked" elements of A) and let 

A::,k := { ((x1, m1), ... , (xn, mn)) E A::,k Ix; f. Xk if j f. k }. 

There is a bijection 

given by 

(1.1) 

where 6n is the permutation group over {l, ... , n}. On A::,k/6n one introduces the related 
metric 

where cl" is the metric on A::,k driven from the original metrics on X and M. Then, 
A::,k/6n becomes an open set in A::,k/6n and let B(A::,k/6n) be the trace a-algebra 
on A::,k/6n generated by B(A::,k/6n). Let then B(nf (n)) be the image a-algebra of 
B(A::,k/6n) under the bijection rtJ and let B(nf) be the a-algebra on nf generated by 
the usual topology of (disjoint) union of topological spaces. 

For any A E Oc(X), there is a natural restriction map PA: ni{ >-+ nf defined by 

0.i{ 3 wt-+ PA(w) :=wnAmk E O.f. 

The topology on ni{ is defined as the weakest topology making all the mappings PA 
continuous. The associated a-algebra is denoted by B(Oi{). 

For each BE Bc(X x M), we introduce a function Ns: ni{ • Z+ = {0, 1, 2, ... } such 
that 

Ns(w) := #(w n B), (1.2) 

Then, it is not hard to see that B(O.i{) is the smallest a-algebra on ni{ such that all the 
functions NB are measurable. 

1.2 Marked Poisson measure 

In order to construct a marked Poisson measure, we fix: 
(i) an intensity measure a on the underlying manifold X, which is supposed to be a 

nonatomic Radon one, 
(ii) a non-negative function 

X x B(M) 3 (x, ti) >-+ p(x, ti) E IR+ 

such that, for a-a.a. x EX, p(x, •) is a finite measure on M. 
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Now, we define a measure a on (Xx M, B(X x M}) as follows: 

'ii(A) = i p(x, dm} (f(dx}, A E B(X x M). (1.3} 

We will suppose that the measure a is infinite and for any A E Bc(X) 

(1.4) 

i.e., p(x, M) E Ltoc((f). 
Now, we wish to introduce a marked Poisson measure on nf (cf. e.g. (23, 22]}. To 

this end, we take first the measure a®n on (Xx M)n, and for any A E Oc(X), a®n can 
be considered as a finite measure on A;:.k. Since (f is nonatomic, we get 

a®n(A;:.k \ X;:.k) = 0 

and we can consider a®n as a measure on (A;:.k/6n, B(A;:.k/6n)) such that 

Denote by aA,n := a®n o (.C~"))-1 the image measure on nf (n) under the bijection 
(1.1). Then, we can define a measure,\~ on nf by 

where aA,o := e0 on nf (0) = {0}. The measure,\~ is finite and >-i(nf) = e"("m•l. 
Hence, the measure 

is a probability measure on B(O.f ). It is not hard to check the consistency property of the 
family {7ri I A E Oc(X)} and thus to obtain a unique probability measure 71".; on B(0.1) 
such that 

A E Oc(X}. 

This measure 71".; will be called a marked Poisson measure with Levy measure a. 
For any function <p E Co,b(X x M), it is easy to calculate the Laplace transform of the 

measure 71"if 

e,.~(cp):= f e<l",W)11"cr(dw}=exp( f (el"(:r,m)_l)a(dx,dm}). (1.5} lnr lxxM 
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Example 1.1 Let p(x, •) = em(·), where mis some fixed point of Mand x EX. Then, 
'if = a 0 em and 'lru = 1r" is just the Poisson measure on (r x, B(r x)) with intensity a. 

Example 1.2 Let p(x, •) = r(•), x EX, where r is a finite measure on (M, B(M)). Now, 
'if = a = a 0 r and 'lru coincides with the marked Poisson measure under consideration in 
(26] (in the case where M is a manifold). Notice that the choice of 'if = a as a product 
measure means a position-independent marking, while the choice of a general 'if of the 
form {1.3) leads to a position-depending marking. 

2 Transformations of the marked Poisson measure 

2.1 Group of transformations of the marked configuration space 

We are looking for a natural group Qt of transformations of n'j such that 

(i) 'lru is Q!-quasiinvariant; 

(ii) Qt is big enough to reconstruct 'lru by the Radon-Nikodym density dda•1r-a, where a 
'lrq 

runs through Qt. 

Let us recall that in the work (26] the group Diffo{X) was taken as Qt, just in the same 
way as in the case of the usual Poisson measure (7]. Here, Diffo{X) stands for the group of 
diffeomorphisrns of X with compact support, i.e., each 'If; E Diffo(X) is a diffeomorphism 
of X that is equal to the identity outside a compact set {depending on 'If;). The group 
Diffo{X) satisfies (i). However, unlike the case of the Poisson measure, the condition (ii) 
is not satisfied, because, for example, in the case where 'if= a®r, there is no information 

about the measure r that is contained in d'lf;d•1ru, see [26]. Therefore, just as in the case 
'lrq 

of (24], we need a proper extension of the group Diffo(X). 
In what follows, we will suppose that M is a homogeneous space of a Lie group G (see 

e.g. (10]). Let us recall that this means the existence of a C00 mapping 8: G x M • M 
satisfying the following conditions: 

(i) If e is the unity element of the group G, then 

8(e,m) = m for all m EM; 

(ii) If91,92 E G, then 

8(91, 1/(92, m)) = 8(9192, m) for all m EM; 

(iii) For arbitrary m1, m2 EM, there exists 9 E G such that 8(9, mi) = m2. 

For any 9 E G, we will denote by 89 : M • M the mapping given by 89 {m): = 8(9, m); 
then 89 defines a diffeomorphism of M. 
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Let us fix an arbitrary point mo EM and let H be the isotropy group of M: 

H := { g E GI 09 (mo) =mo}. 

Then, the homogeneous space M can always be identified with the factor space G / H 
(endowed with the unique corresponding C00 manifold structure), i.e., M = G/H. 

Let us consider the group of smooth currents, i.e., all C00 mappings X 3 x >--+ 71(x) E G, 
which are equal to e outside a compact set (depending on 71). A multiplication 711712 in 
this group is defined as the pointwise multiplication of the mappings 1/1 and 1/2· In the 
representation theory this group is denoted by Gx, or C0 (X; G). 

The group Diffo(X) acts in Gx by automorphisms: for each,/; E Diffo(X), 

Gx 3 1/ ~ 0:(,/;)11 := 1/ o ,/J-1 E Gx. 

Thus, we can endow the Cartesian product of Diffo(X) and Gx with the following multi
plication: for a1 = (,/;1,1/1), a2 = (,/;2,112) from Diffo(X) x Gx 

a1a2 = (,/;10,/)2,1/1(112 o,/)11)) 

and obtain a semidirect product 

Diff0 (X) x Gx =: 21 
"' 

of the groups Diffo(X) and QX. 
The group 21 acts in Xx Min the following way: for any a=(,/;, 11) E 21 

Xx M 3 (x, m) i-+ a(x, m) = (,J;(x), 0(17(,J;(x)), m)) EX x M. (2.1) 

If id denotes the identity diffeomorphism of X and e is the function identically equal to e 
on X, then we will just identify,/; with (,J;,e) and 1/ with (id, 17). The action (2.1) of an 
arbitrary a=(,/;, 71) can be represented as 

(x,m) >--+ a(x,m) = 17,J;(x,m), 

where 

,p(x, m) = (,p(x), m), 

17(x, m) = (x, 0(17(x), m)). 

For any a= (,/;, 11) E 21, denote Ka := K,t, U Kry, where K,t, and Kry are the minimal 
closed sets in X outside of which ,/; = id and 1/ = e, respectively. Evidently, [(0 E Bc(X), 

a(Ka)mk = (Ka)mk, 

and a is the identity transformation outside (Ka)mk• 
Now, let us recall some known facts concerning quasiinvariant measures on homoge

neous spaces (see e.g. [45, 44]). 
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Theorem 2.1 Suppose G is a Lie group and H its subgroup, and let dg, oa and dh, on 
be fixed Haar measures and modular functions on G and H, respectively. Then: 

(i) for every measure µ on G / H that is quasiinvariant with respect to the action of G on 
G / H, there exists a measurable positive function ~ on G verifying 

and 

on(h) 
~(gh) = oa(h) ~(g), g E G, h EH, 

r f(g)~(g) dg = r µ(dgH) r f(gh) dh, 
fa fain fn 

f E Co(G), 

(2.2) 

(2.3) 

where Co ( G) denotes the set of continuous functions on G with compact support; for 
each g E G the Radon-Nikodym density is given by 

pl;(gH) ·= dg* µ (gH) = ~(g-lg) 
g • dµ ~(g) ' gHEG/H; 

(ii) there exists a quasiinvariant measure .>. on G / H such that the function 

is differentiable on G x G/H. 

Remark 2.1 We recall that the modular function oa(·) of a Lie group G is defined from 
the equality r; dg = oa(g) dg, where dg is the Haar measure on G (i.e., a fixed left-invariant 
measure on G) and r9 denotes the right translation on G, i.e., g >-t r9g = gg. 

We fix the measure .X on M = G/H from Theorem 2.1, (ii). As easily seen from 
Theorem 2.1 (i), any quasiinvariant measure on Min equivalent to.>.. 

Remark 2.2 If H = {e}, i.e., M = G, then we can choose.>. to be the Haar measure 
dg on G. Moreover, if oa(h) = on(h) for all h E H (and only in this case) there exists 
a A being invariant with respect to the action of G on M. The latter condition holds 
automatically if G is unimodular, that is, oa(g) = 1 for all g E G. This, in turn, holds for 
all compact and simple Lie groups. 

In what follows, we will suppose that the measure u is equivalent to the Riemannian 
volume v on X: u(dx) = p(x) v(dx) with p > 0 v-a.s., and that for v-a.a. x E X p(x, •) is 
equivalent to the measure .>.: 

p(x, dm) = p(x, m) .X(dm) with p(x, m) > 0 .>.-a.a. m EM. 

Thus, the measure u can be written in the form 

u(dx, dm) = p(x)p(x, m) v(dx) .X(dm). 
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The condition o'(Amk) < oo, A E Bc(X), implies that the function 

q(x, m) := p(x}p(x, m) 

satisfies 

Noting that 

we easily deduce the following 

(2.4} 

Proposition 2.1 The measure a' is Qi-quasiinvariant and for any a = (1/J, 11) E Qt the 
Radon-Nikodym density is given by 

{ 

"( ) ·- d(a*o')( ) _ q(1p-1(x),8(11-1(x},m)) ·\ () }.!!() 
Pa x, m .- au x, m - q(x, m) p 1/ X 'm V X ' 

if_(x,m) E {O < q(x,m) < oo} n {O < q(1jJ- 1(x),8(11-1(x},m)) < oo}, 
p~(x,m) = 1, otherwise, 

where J:f is the Jacobian detenninant of 1jJ ( w.r.t. the Riemannian volume v). 

We give two examples of the above construction, which are important from the point 
of view of the marked configuration space analysis. We refer the reader to e.g. [44, 45] for 
further examples. 

Example 2.1 Let G = IR+ be the dilation group (e.g. [15]}, i.e., the multiplication in this 
group is given by the usual multiplication of numbers. As a homogeneous space M we 
take G itself, by identifying the action of the group with the multiplication in it. As a 
quasiinvariant measure >. on M we can take the restriction to IR+ of the Lebesgue measure 
on IR. 

The analysis and geometry on the marked configuration space o~+ were studied in our 
previous work (24]. Here we only mention that the choice M = IR+ leads (via a natural 
isomorphism) to the class of compound Poisson measures. In other words, each mark 
s., E IR+ corresponding to x E X describes the charge of the measure 

w = (,,s) = L s.,1::., E M(X) 
zEX 

at the point x (or, in the case where X = IR, the value of the jump of the process at x). 

Example 2.2 Let G = O(d + 1) be the (d + 1)-dimensional orthogonal group and let 
M = Sd be the d-dimensional unit sphere in ]R<l+l with the natural action of the group 
O(d + 1) on Sd, see e.g. [13, 44, 45]. As >. we take the surface measure on Sd, which is 
invariant w.r.t. the action of O(d + 1). From the point of view of statistical mechanics, a 
mark s., E Sd describes in this example the spin of the particle at the point x. 
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2.2 2!-quasiinvariance of the marked Poisson measure 

Any a E 21 defines by (2.1) a transformation of X x M, and, consequently, a has the 
following "lifting" from X x M to nijf: 

nijf 3 w ....+ a(w) = { a(x,m) I (x,m) E w} E nf. (2.5) 

(Note that, for a given w E nf, a(w) indeed belongs to nf and coincides with w for all 
but a finite number of points.) The mapping (2.5) is obviously measurable and we can 
define the image a*-ir-;; as usually. The following proposition is an analog of a corresponding 
fact about Poisson measures. 

Proposition 2.2 For any a E 21, we have 

Proof. The proof is the same as for the usual Poisson measure -iru with intensity <1 and 
1/J E Diffo(X) (e.g., [7]), one has just to calculate the Laplace transform of the measure 
a*-ir-;; for any f E Co,b(X x M) and to use the formula (1.5). • 
Proposition 2.3 The marked Poisson measure -ir-;; is quasiinvariant w.r.t. the group 21, 
and for any a E 21 we have 

d(a*-ir-;;) (w) = TI -;;( ) 
d-ir- Pa x,m. 

u (x,m)Ew 

(2.6) 

Proof The result follows from Skorokhod theorem on absolute continuity of Poisson 
measures (see, e.g., [39, 40]). • 

Remark 2.3 Notice that only a finite (depending on w) number offactors in the product 
on the right hand side of (2.6) are not equal to one. 

3 The differential geometry of marked configuration spaces 

3.1 The tangent bundle of nijf 
Let us denote by Vo(X) the set of C00 vector fields on X (i.e., smooth sections of T(X)) 
that have compact support. Let g denote the Lie algebra of G and let C8°(X; g) stand for 
the set of all C00 mappings of X into g that have compact support. Then 

a:= Vo(X) x C8°(X;g) 

can be thought of as a Lie algebra corresponding to the Lie group 2!. More precisely, for 
any fixed v E Vo(X) and for any x EX, the curve 

lR. 3 t t-+ 1/Jf(x) EX 
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is defined as the solution of the following Cauchy problem 

{ 
~,g(x) = v('l/!;(x)), 

1/!0(x) = x. 
(3.1) 

Then, the mappings { 1/Jf, t E IR.} form a one-parameter subgroup of diffeomorphisms in 
Diffo(X) (see, e.g., [10]): 

l)v't E IR 'I/Jr E Diffo(X), 

2)v't1, t2 E JR l/Jf1 ° 1/!;2 = l/Jr1 +t2 • 

Next, for each function u E Co'(X; g), x E X, and t E lR, we set 1/r(x) := exp(tu(x)), 
where g 3 Y >-+ exp YE a is the exponential mapping (see, e.g., (45]). Hence, for a fixed 
x EX, {flr(x), t E IR.} is a one-parameter subgroup of a and 

1/o(x) = e, 

~ 11r(x)lt=D = u(x). 
(3.2) 

Let us recall a fundamental theorem in the theory of Lie groups. 

Theorem 3.1 There exists a neighborhood U of the zero in g and a neighborhood O of 
the unit element e in a such that exp: U -t O is an analytic dijfeomorphism. 

i,From this theorem, we conclude that, for each fixed u E Co'(X; g), there exists c > 0 
such that for any t E (-c,e) the mapping X 3 x >-+ T/r(x) Ea belongs to ax, which 
yields, in turn, that f/r E ax for all t E IR, and moreover 11r is a one-parameter subgroup 
ofax. 

Thus, for an arbitrary (v,u) Ea, we can consider the curve {(l/Jf,1/rl, t E JR} in 21. 
Hence, to any w E fl/;! there corresponds the following curve in nf: 

JR 3 t 1-t (1/J;,17r)w E nf. 
Define now for a function F: n'.l{-+ IR the directional derivative of F along (v,u) as 

provided the right hand side exists. We will also denote by v'~ and v'~ the directional 
derivatives along (v, 0) and (0, u), respectively. 

Absolutely analogously, one defines for a function cp: Xx M -t IR. the directional 
derivative of cp along (v, u): 

(3.3) 
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Then, for a continuously differentiable function tp, we have from (2.1), (3.1), (3.2), and 
(3.3) 

(v'~:f ip)(x,m) = ¾tp((,j,1(x),0(11f(,j,r(x)),m)l 1=0 

= ¾tp(,J,Hx),m)lt=O + ¾tp(x,0(7Jf(x),m))l 1=0 

+ ¾tp(x, 0(11g(,t,;'(x)), m))lt=O 

= (v'xip(x,m),v(x))T.(X) + (v'Gip(x,0(e,m)),u(x))g 

= (v'XxM tp(x, m), (v(x), u(x)))T(•.m)(XxM)· (3.4) 

Here, T(z,m)(X x M) := T,.(X) + g and vxxM := (v'x, VM), where v'x denotes the 
gradient on X and 

f?M J(m) = vG j(e, m), 

j(g,m) := J(0(g,m)), g E G, m EM, 

v 0 being the gradient on G. 

Remark 3.1 Notice that upon (3.5) we have, for a fixed u E g, 

(VM J(m), u)9 = (VG J(0(e, m)), u)g 

= ftJ(0(et",m))Jt=O 

= (v'M J(m), (Ru)(m))Tm(M), 

(3.5) 

(3.6) 

where v'M denotes the usual gradient on M, and the vector field Ru on Mis given by 

(3.7) 

Let us introduce a special class of "nice functions" on nw. Denote by '.D the set of 
all C00-functions tp on Xx M such that the support of tp is in 80 (X x M), and tp and 
all its vxxM derivatives are bounded. Next, let Cb(JRN) stand for the space of all C00-

functions on JRN which together with all their derivatives are bounded. Then, we can 
introduce :FCb('.D, nW) as the set of all functions F: nw ....+ JR of the form 

F(w) = 9F( ('Pl ,w), ... , ('PN ,w) ), wEfl.W, (3.8) 

where 'PI, ... ,'PN E '.D and 9F E Cb(IRN) (compare with [7]). :FCb('.D, nr) will be called 
the set of smooth cylinder functions on fl.~. 

For any FE :FCb('.D,f!f) of the form (3.8) and a given (v,u) Ea, we have, just as 
in [7), 

F((,Pi', l)r)w) = 9F( ('P1, (,Pi', 7Jf )w), ... , ('PN, (-iPi', 7Jf )w)) 
= 9F( ('P1 o (,PL 1)r),w), ... , ('PN o (,Pi', 7)f), w) ), 
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and therefore 
N 

(v'f.,uiF)(w) = L irF ( (cp1, w), ... , (cpN, w)) (v'i:r 'Pj, w). (3.9) 
j=l J 

In particular, we conclude from (3.9) that 

v'f.,u) = v'~ + v'~. (3.10) 

The expression of v'f.,a) on smooth cylinder functions motivates the following defini
tion. 

Definition 3.1 The tangent space T.,(nif) to the marked configuration space nif at a 
point w = (-y, s) E nf;/ is defined as the Hilbert space 

T.,(nf;/) : = £ 2(X • T(X) + g;-y) 
= L2(X • T(X);-y) tll £2(X • g;-y) 

= EB [T,,(X) $ g] 

with scalar product 

(VJ, V.;)Tw(nf) = l ((VJ(x)r,(X), V.;(x)r,(X))T,(X) + (VJ(x)0 , V.;(x)0 ) 0 )-y(dx) 

= L ((VJ(x)r.(X), V.;(x)r.(x))T,(X) + (VJ(x)0, V.;(x)0)0), (3.11) 

where VJ, V.; E T.,(n¥) and V.,(x)r.(X) and V.,(x)0 denote the projection of 
V.,(x) E T,,(X)+g onto T.,(X) and g, respectively. (Notice that the tangent space T.,(n¥) 
depends only on the -y coordinate of w.) The corresponding tangent bundle is 

T(nif) = U T.,(n¥). 
wEf!~ 

As usually in Riemannian geometry, having directional derivatives and a Hilbert space 
as a tangent space, we can introduce a gradient. 

Definition 3.2 We define the intrinsic gradient v'n of a function F: nf;/ • JR as the 
mapping 

n¥ ::1 w i-+ (v'n F)(w) E T.,(nif) 
such that, for any (v,u) Ea, 

(v'f.,uiF)(w) = ((v'n F)(w), (v, u))rw(n¥)' 

By (3.9) and (3.4) we have, for an arbitrary FE FCb°('.O, n¥) of the form (3.8) and 
each w = (-y,s) E f!f, 

N 

(v'nF)(w;x) = L ~~~ ((cp1,w), ... , (cpN,w))v'XxMcp1(x,s.,), x E -y. (3.12) 
j=l J 
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3.2 Integration by parts and divergence on the marked Poisson space 

Let the marked configuration space nlj be equipped with the marked Poisson measure 
'lru• We strengthen the condition {2.4) by demanding that 

{3.13) 

Here, HJ·2 (X x M) denotes the local Sobolev space of order 1 constructed with respect 
to the gradient vxxM in the space L?0 c(X; 11) 0 L2(M; >-), i.e., HJ•2 (X x M) consists of 
functions f defined on X x M such that, for any set A E Bc{X x M), the restriction of 
f to A coincides with the restriction to A of some function <p from the Sobolev space 
H1•2 (X x M) constructed as the closure of'.l) with respect to the norm 

ll'Plli,2 := r (1vx,p{x,m)l}.(X) + IVM<p{x,m)I~ + J,p(x,s)l2)11(dx).\{dm). 
fxxM 

Additionally, we will suppose that, for each A E Bc{X), 

JV0p"•(e, ·)Jg E L1(Amk, a), 

where, as before, 
dg*.\ 

p"·(g,m) = d,\ {m). 

The set :FC{;" ('.JJ,D.lj) is a dense subset in the space 

L2(D.lj, B(D.fj), 1r:u) =: L2 (1r:u). 

(3.14) 

For any (v,u) E a, we have a differential operator in L2(1r:u) on the domain 
:FC{;"('.JJ, n~) given by 

:FC{;"('.JJ, D.lj) 3 Ft-+ Vfv,uJF E L2 (1r:u), 

Our aim now is to compute the adjoint operator Vfv~u) in L2 (1r:u). This corresponds, of 
course, to the deriving of an integration by parts formula with respect to the measure 1r:u· 

But first we present the corresponding formula on Xx M. 

Definition 3.3 For any (v, u) E a, the logarithmic derivative of the measure a along 
(v,u) is defined as the following function on Xx M: 

/3r.,u) := /3! + K, 
with 

;;( ) (v'Xq{x,m) ( )) . x ( ) f3v x, m = ( ) , v x + div v x , 
q x,m T.(X) 

divx = div~ being the divergence on X w.r.t. 11, and 

-M 
u (v' q(x,m) ) G ~ f3u(x,m) = ( ) ,u(x) + (v' p (e,m),-u{x)) 0 • 

q x,m 0 
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Upon (3.13), we conclude that, for each (v, u) Ea, the function v'(x)\f log q is quadrat
ically integrable with respect to the measure a, and therefore, si;;ce the support of 
v7fxf1logq belongs to Bc(X x M), this function is from L1(X x M,a). Thus, in virtue 

of ;he condition (3.14), we get the inclusion /3[.,u) E L1(X x M, a). 
By using standard arguments, one shows the following 

Lemma 3,1 (Integration by parts formula on Xx M) For all cp1, cp2 E '.D, we have 

{ (v'fxff cpi)(x, m)cp2(x, m) a(dx, dm) = 
lxxM v,u 

= - { 'Pl (x, m)(v't,:r cp2)(x, m) a(dx, dm) 
lxxM 

-lxM cp1(x,s)cp2(x,s)/1fv,u)(x,m)a(dx,dm). 

Remark 3.2 The function (v'Gp>-(e, m), -u(x))9 , which appears in the definition of /3! 
is, for each fixed x EX, the divergence on M with respect to the measure>. of the vector 
field Ru(x) on M defined by (3.7), see Remark 3.1. Indeed, for any u E g and for an 
arbitrary/ from C0 (M)-the space of all C 00 functions on M with compact support, we 
have 

L v~ /(m) >.(dm) = L (v'M /(m), (Ru)(m))rm(M) >.(dm) 

= L ftJ(B(exp(tu),m))lt=O >.(dm) 

= r /(m) _dd p'\exp(tu), m)lt=O >.(dm) }M t 

= L J(m)(v7°p>-(e, m), u)9 >.(dm). 

Definition 3.4 For any (v, u) E a, the logarithmic derivative of the marked Poisson 
measure 1r; along (v, u) is defined as the following function on Of: 

(3.15) 

A motivation for this definition is given by the following theorem. 

Theorem 3.2 (Integration by parts formula) For all F1, F2 E :FCf ('.D, n1} and 
each (v, u) Ea, we have 
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or 

v'f.~u) = -v'f.,u) - sz:.u)(w) (3.17) 

as an operator equality on the domain .rcr(1>,!1if) in L2(1ru). 

Proof. Because of (3.10), the formula (3.17) will be proved if we prove it first for the 
operator v'~, i.e., when u(x) = 0, and then for the operator V~, i.e., when v(x) = 0 E 
T,,(X) for all x EX. We present below only the proof for v'~, since the proof for v'~ is 
basically the same as that of the integration by parts formula in case of Poisson measures 
[7]. 

By Proposition 2.2, we have for all u E C/j'(X; g) 

f F1(11r(w))F2(w)1ru(dw) = f F1(w)F2(11~1(w))1r11••u(dw). ¼ ¼ ' 
Differentiating this equation with respect to t, interchanging d/ dt with the integrals and 
setting t = 0, the l.h.s. becomes the 1.h.s. of (3.16). To see that the r.h.s. then also 
coincides with the r.h.s. of (3.16), we note that 

and by Proposition 2.3 

ft[d:!/(w)]lt=o= L ftP~r(x,m),_ 
(z,m)Ew t-0 

= -(,B~,w) = -si•(w). • 
Definition 3.5 For a vector field 

V: nif :) w ,_, V.., E T..,(nif), 

the divergence div~, V is defined via the duality relation 

f (V..,, v'n F(w))T. (nM)1r;;(dw) = - f F(w)(div~- V)(w) 1ru(dw) lnr w X lnr V 

for all FE .rcr (1>,!1if), provided it exists (i.e., provided 

is continuous on L2(1r;;)). 

A class of smooth vector fields on nif for which the divergence can be computed in 
an explicit form is described in the following proposition. 
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Proposition 3.1 For any vector field 

N 

Vw(x) = L Fj(w)(vj(x), Uj(x)), wEfl¥, xEX, 
j=l 

with Fj E FC~('.D,fl¥), (vj,Uj) Ea, j = l, ... ,N, we have 

N N 

(div~. V)(w) = L (v'fv;,u;)Fi)(w) + LB(~,u;)(w)Fj(w) 
j=l j=I 

N N 

'°'n '°'" = L...J(v' Fj(w),(vj,Uj))Tw(nr) + LJ(/3(v;,u;)'w)Fj(w). 
J=l J=l 

Proof. Due to the linearity of vn, it is sufficient to consider the case N = 1, i.e., Vw(x) = 
F1(w)(v(x),u(x)). By Theorem 3.2, we have for all F2 E FC~('JJ,fl1) 

-l)Vw, vnF2(w))Tw(nrJ11'"(dw) = - lM F1(w)v'fv,u)F2(w)1r;;(dw) 
X X 

= { (v'fvu)Fi)(w)F2(w)1r.,(dw) + { Fi(w)F2(w)Bc•u)(w)1r.,(dw), 
ln11 ' lnr v, 

which yields 

(div~. V)(w) = v'fv,u)F1(w) + B(:,u)(w)F1(w) 
n -= (v' F1(w),(v,u))Tw(nr) + (/3(v,u),w)F1(w). • 

Remark 3.3 Extending the definition of Bw• in (3.15) to the class of vector fields V = 
Ef=l F; 0 (vj, Uj) by 

N N 

B~•(w) := L(.Br,,;,u;)•w)Fj(w) + L (vfv;,u;)F;)(w), 
i=l j=l 

we obtain that 

In particular, if (v,u) Ea, it follows, for the "constant" vector field Vw = (v,u) on flf, 
that 

div~.(v,u)(w) = (div§xM(v,u),w), 

where div§xM (v, u) = /3[.,u) is the divergence on Xx M of (v, u) w.r.t. a: 

{ (v'XxM ,p(x, m), (v(x), u(x)))~<• m)(XxM) a(dx, dm) 
lxxM · 

= - { ,p(x,m)( div§xM(v,u))(x,m)a(dx,dm), 
lxxM 

'PE 'JJ. 
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3.3 Integration by parts characterization 

In the works [7, 8] it was shown that the mixed Poisson measures are exactly the "volume 
elements" corresponding to the differential geometry on the configuration space rx. Now, 
we wish to prove that an analogous statement holds true in our case of nlj for mbced 
marked Poisson measures. 

We start with a lemma that describes a as the unique (up to a constant) measure on 
X x M with respect to which the divergence div:xM is the dual operator of the gradient 
'ilXxM, 

Lemma 3.2 Let the conditions (3.13) and (3.14) hold. Then, for every A E Oc(X) the 
measures za, z > 0, are the only positive Radon measures { on Amk such that div:xM 
is the dual operator on L2(Amk; {) of vx xM when considered with the domains V0(A) x 
C5"'(A;g), resp. Cllb(Amk) (i.e., the set of all (v,u) Ea, resp. <p E '.!J with support in A, 
resp. Amk). ' 

Proof. In virtue of the conditions (3.13) and (3.14), the lemma is obtained in complete 
analogy with Remark 4.1 (iii) in [8]. Indeed, let q1(x, m) and q2(x, m) be two densities 
w.r.t. 11 ©>.for which the logarithmic derivatives coincide. Then, we get 

V;logq1(x,m) = V;logq2(x,m), 

V~Jogq1(x,m) = V~logq2(x,m), 

which yields respectively 

q1(x,m) = q2(x,m)c(m), 

v E Vo(X), 

u E C0 (A; g), 11@>.-a.s., 

q1(x,m) = q2(x,m)c(x) 110>.-a.s. 

Therefore, Q1 (x, m) = const q2(x, m) 11 © >.-a.s. • 
Let x be a probability measure on (IR+,B(IR+)). Then, we define a mixed marked 

Poisson measure as follows: 

µx,q = { 1r,u x(dz). JR+ (3.18} 

Here, 'lrQ'q denotes the Dirac measure on n1;/ with mass in w = {0}. Let M1(fllj), 
IE [1,oo), denote the set of all probability measures on {f!1J/,B(f!lj)) such that 

{ l(J,w)I' µ(dw) < 00 for all f E Co,b(X X M), f ~ o. 
ln1;1 

Clearly, µx,q E M1{fl1;/) if and only if 

{ z1 x(dz) < oo. 
JR+ 
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We define (IbP)" to be the set of all µ E M 1 (ngf) with the property that w >-+ (P&,,u), w) 
is µ-integrable for all (v, u) E a and which satisfy (3.16) with µ replacing rr-;; for all 
F1,F2 E FC{;"('.D,nf), (v,a) E g. We note that (3.16) makessenseonlyforsuchmeasures 

and that B"[;.u) depends only on a not on rr-;;. Obviously, since v'~.:f obeys the product 

rule for all (v, u) Ea, we can always take F2 = 1. Furthermore, (IbP)" is convex. 

Theorem 3.3 Let the condition (3.13) and (3.14) be satisfied. Then, the following con
ditions are equivalent: 
(i) µ E (IbP)"; 
(ii)µ=µ,,,-;; for some probability measure x on (IR+, B(IR+)) satisfying (3.19) with l = 1. 

Proof. The part (ii)*(i) is trivial. The proof of (i)*(ii) goes along absolutely analogously 
to that in the particular case where G = M = IR+, see [24]. • 

As a direct consequence of Theorem 3.3, we obtain 

Corollary 3.1 The extreme points of (IbP)" are exactly 'Trz"if, z :::: 0. 

3.4 A lifting of the geometry 

Just as in the case of the geometry on the configuration space, we can present an inter
pretation of the formulas obtained in subsections 3.1-3.3 via a simple "lifting rule." 

Suppose that f E Co,b(X x M), or more generally f is an arbitrary measurable func
tion on X x M for which there exists ( depending on f) A E Bc(X) such that supp f C Amk• 
Then, f generates a (cylinder) function on nf by the formula 

L1(w) := (f,w), 

We will call L f the lifting of f. 
As before, any vector field (v, u) Ea, 

w E nf. 

(v, u): X 3 x >-+ (v(x), u(x)) E T(x,m)(X X M) = T.,(X) + g, 

can be considered as a vector field on nf (the lifting of (v, u)), which we denote by L(v,u)' 

L(v.u): nf 3 w = h, s} t-+ {x >-+ (v(x), u(x))} E Tw(ng{) = L 2(X-+ T(X) + g; 7). 

For (v1, u1), (v2, u2) Ea, the formula (3.11) can be written as follows: 

i.e., the scalar product of lifted vector fields is computed as the lifting of the scalar product 

This rule can be used as a definition of the tangent space T.., (nf). 
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The formula (3.9) has now the following interpretation: 

(v'f. u)L'P)(w) = LvxxM,.(w), 
1 (v,u) T 

cpE'.D, wen:ef, (3.20) 

and the "lifting rule" for the gradient is given by 

(v'0L,p){'-t,s): 1 3 x t-+ v'XxMcp(x,s.,). (3.21) 

As follows from (3.15), the logarithmic derivative B(:,u): nf • JR is obtained via the 

lifting procedure of the corresponding logarithmic derivative .Bf.,u): X x M • IR, namely, 

B("; u)(w) = Lp• (w), 
• (v,u) 

or equivalently, one has for the divergence of a lifted vector field: 

div~. L(v,a) = Ldiv:"" (v, a). (3.22) 

We underline that by (3.20) and (3.21) one recovers the action of v'f.,a) and v'n on all 

functions from :FC{:' ('.D, nf) algebraically from requiring the product or the chain rule 
to hold. Also, the action of div~. on more general cylindrical vector fields follows as in 
Remark 3.3 if one assumes the usual product rule for div"~ to hold. 

4 Representations of the Lie algebra a of the group 2i 

Using the !2l-quasiinvariance of iru, we can define the unitary representation of the group 
!2l = Diff0(X) x ax in the space L2(iru). Namely, for a E !2l, we define the unitary operator 

Q 

da-hiru 
(V,,5 (a)F)(w) := F(a(w)) d1ru (w), 

Then, we have 

As has been noted in Introduction, this representation is reducible, cf. [24] 
As in subsec. 3.1, to any vector field v E Vo(X) there corresponds a one-parameter 

subgroup of diffeomorphisms ,pf, t E JR. It generates a one-parameter unitary group 

v,,.(,pn := exp[itJ,,.(v)], t E IR, 

where J,,. ( v) denotes the selfadjoint generator of this group. Analogously, to a subgroup 
17)', u E C0 (X;g), there corresponds a one-parameter unitary group 

V.-r.(1Jr) := exp[itl,.,(u)] 

with a generator l,.5 (u). 
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Proposition 4.1 For any v E Vo(X) and u E Co'(X;g), the following operator equalities 
on the domain :FC{;°('D, n¥) hold: 

J",(v) =iv'~+ ~B;•, 
I ( ) - ~ v'n ..!:_ B"• n;;:U-i u+2i u· 

Proof. These equalities follow immediately from the definition of the directional derivatives 
v'~ and v'~, Theorem 3.2, and the form of the operators V1r.(..Pn and V:-..(0f). • 

For any (v, u) Ea, define an operator 

'R.,,..(v,u) := J,,.,(v) +I1r;;(u). 

By Proposition 4.1, 

( 1 n 1 ,r-
'R.,,.. v,u) = iv'(v,u) + 2iB(:,u)' 

We wish to derive now a commutation relation between these operators. 

Lemma 4.1 The Lie-bracket [(v1, u1), (v2, u2)] of the vector fields (vi, u1), (v2, u2) E a, 
i.e., a vector field from a such that 

v'XxM = v'XxM v'XxM _ v'XxM v'XxM on'!) 
((v1,u1),(v2,u2)) (v1,u,) {v2,u2) (v2,u2) (v1,u,) ' 

is given by 

[(v1,u1), (v2,u2)] = ([v1,v2], v':,u2 - v';,u1 + [u1,u2]), 

where [ v1, v2] is the Lie-bracket of the vector fields vi, v2 on X, 

[u1,u2](x) = [u1(x),u2(x)] 

(the latter being the Lie-bracket on g of u1(x), u2(x) E g), and v'Ju is the derivative in 
direction v of a g-valued function u on X. 

Proof First, we have on 'D: 

v':, v';, - v';, v':, = v'~1,v2)• 

Next, using (3.5), 

V~ f(x, m) = (v'G i(x,e, m), u(x))g, 

and so 

cv:;;v~ -v~vt;)f(x, m) 

vi, v2 E Vo(X). 

j(x,g,m) := f(x,0(g,m)), 

= (v'G j(x, e, m), [u1 (x), u2(x)])9 
-M = v'(u,,u,Jf(x, m), 
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Finally, 

('\l;V~ -V~V;)J(x,m) 

= (Vx (VG ](x, e, m), u(x)) 9 , v(x)h.(X) 

- (VG(vx ](x,e,m),v(x))r.(X),u(x))9 

= (VXVG ](x, e, m), v(x) 0 u(x))r.(X)®g + (VG f(x, e,m), v;u(x)) 9 

- (VGvx ](x,e,m),u(x) ®v(x))g®T.(X) 
G • X ~M = (V f(x, e, m), V v u(x))9 = V v*uf(x, m), 

v E Vo(X), u E Co'°(X; g). (4.3) 

The equalities (4.1)-(4.3) yield the lemma. • 
Proposition 4.2 For arbitrary (v1,u1), (v2,u2) Ea, the following operator equality holds 
on :Fq0 ('.Il,n~): 

In particular, 

(J,,.,(vi),J,,0 (v2)] = -iJ,,0 ([v1,v2]), 

[J,,.(u1),l,,0 (u2)] = -J,,0 ([u1, u2]), 

[J,,.,(v),I,,0 (u)] = -iJ,,0 (V;u), 

v1,v2 E Vo(X), 

u1,u2 E Co'°(X;g), 

v E Vo(X), u E Co'°(X; g). 

Proof. First we note that Lemma 4.1 and (3.9) immediately imply 

vf.,,u,)vr..,u,) -vr. •. u,)vr.,,u,) = vuv,,u,),(v,,u2)] on .rcr('.IJ,n~)

Therefore, by using the chain rule, we conclude that the lemma will be proved if we show 
that 

1Tir•a.e. 

But upon the representation 

B(;,u)(w) = (V;logq+ V~logq+divx v + (VGi'(e,m),-u(x))9,w) 

and Remark 3.2, we easily derive (4.4) again from Lemma 4.1. • 

(4.4) 

Thus, the operators n,,.,(v,u), (v,u) Ea, give a marked Poisson space representation 
of the Lie algebra a of the group 2l. 
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5 Intrinsic Dirichlet forms on marked Poisson spaces 

5.1 Definition of the intrinsic Dirichlet form 

iFrom now on, the underlying space of "nice functions" on X x M will be instead of 'l} 
the space '.iJo := C0 (X x M) consisting of all C00 functions with compact support in 
X x M. Evidently, '.Do is a subset of '.iJ and in the case where M is itself compact '.iJo = 
'l}. Absolutely analogously to :FCh('.iJ,fl:{) one constructs the set :FCb('.iJo,fl:{)(c 
:FCb('.iJ,fl:{)), which is dense in L2 (1ru)- By :FP('.iJo,fl:{) we denote the set of all cylin
der functions of the form (3.8) in which the functions 'Pl, ... , 'PN belong to '.iJo and the 
generating function 9F is a polynomial on JRN, i.e., 9F E P(JRN). Finally, in the same way 
we introduce :FC;'(1J0, fl:{) where 9F E C;'(IRN) (:=the set of all C 00-functions f on IRN 
such that / and its partial derivatives of any order are polynomially bounded). 

We have obviously 

:FCb('.iJo, flf) c :FC;'('.iJo, fl:{), 

:FP('.iJo, fl:{) c :FC;'('.iJo, flf), 

and these are algebras with respect to the usual operations. The existence of the Laplace 
transform e1r.U) for each / E Co(X x M) implies, in particular, that :FC;'('.iJo, flf) c 
L2(1ru)-

Definition 5.1 For Fi, F2 E :FC;'('.Do, flf), we introduce a pre-Dirichlet form as 

e;2_(F1,F2) = { (v'nF1(w), v'°F2(w))r, (n") 1ru(dw). • lnr w X 
(5.1) 

Note that, for all F E :FC;' ('.Do, fl:{), the formula (3.12) is still valid and therefore, 
for F1 = 9F, ( ('P1, ·), ... , ('PN, ·)) and F2 = 9F2 ((6, ·), ... , (~K, ·)) from :FCf ('Do, fl:{), we 
have 

(v'n F1 (w), v7n F2(w))Tw(nf) = 
N K 

= LL 8::' (('P1,w), .. •, ('PN,w)) 8J~• ((6,w), ... , (~K,w)) x 
j=l k=l J 

x l (v'XxM ,Pj(X, s,,), y7XxM ~k(X, s,,))Tc,,,,)(XxM) 7(dx) 

N K 

= LL 8::'((,p1,w), ... ,(,pN,W))8:::c(6,w), ... ,(fa,w)) X 

j=l k=l J 

X ((v'XxM 'Pj, y7XxM ~k)T(XxM), w). 

Since for ,p, ~ E '.Do, the function 

(v'XxM ,p(x, m), y7XxM ~(x, m))T(,,m)(XxM) = 
= (v'x ,p(x, m), ,;;;;,X ~(x, m))T.(X) + (f::JM ,p(x, m), f::JM ~(x, m)) 9 

25 

(5.2) 



belongs to '.Do, we conclude that 

('v°F1(·), 'v0 (-)F2(·)}r(nr) E L1(ir;;:), 

and so ( 5 .1) is well defined. 
We will call ef;_ the intrinsic pre-Dirichlet form corresponding to the marked Poisson 

measure ir;;: on nef. In the next subsection we will prove the closability of e;/.,. 

5.2 Intrinsic Dirichlet operators 

We start with introducing the pre-Diricltlet operator corresponding to the measure a on 
Xx Mand to the gradient vxxM, 

efxM (cp, () := lxM ('vXxM cp(x, m), vXxM ((x, m})T(,,m)(XxM) a(dx, dm), (5.3) 

where cp, ( E '.Do, This form is associated with the Diriclilet operator 

Hf xM := Hf+ Ht1 

on '.Do which satisfies 

efxM(cp,() = (HfxMcp,()L2(o'), 

(5.4) 

(5.5) 

Here, Hf and Ht1 are the Dirichlet operators of vx and vM, respectively. Evidently, 

Hfcp(x,m) = -Axcp(x,m)-('vxlogq(x,m), Vxcp(x,m)}T.(X), (5.6) 

where Ax denotes the Laplace-Beltrami operator corresponding to 'vx. 
Let us calculate the operator Ht1. Suppose f E '.Do and WE Co(X x M;g). Analo

gously to Remark 3.1, we conclude 

(VM f(x, m), W(x, m})9 = (v'M /(x,m), (RW)(x, m))Tm(M), (5.7) 

where RWE C0 (X x M;TM) is given by 

d 
X x M 3 (x, m) >-+ (RW)(x, m) := dt0(exp(tW(x, m}}, m}lt=O E TmM. (5.8} 

Therefore, using the integration by parts formula on M for a vector field with a compact 
support, we get 

f (VM f(x, m), W(x, m)) 9 a(dx, dm) 
fxxM 

= - f f(x, m) [ divM (RW)(x, m) 
fxxM 

+ (v'M log q(x, m), (RW)(x, m))Tm(M)] a(dx, dm) 

= - f f(x,m)[ divM(RW)(x,m) + (VMlogq(x,m), W(x,m))9] a(dx,dm), 
fxxM 
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where divM is the divergence on M with respect to the usual gradient 'ilM and the measure 
>.. Thus, the divergence cfu.lf on Xx M w.r.t. the gradient fJM and the measure 'ii is 
given by 

cfu.lf W(x, m) = divM (RW)(x, m) + (VM logq(x, m), W(x, m))0 • 

In particular, the divergence cfu,M w.r.t. the measure v(dx) >.(dm) equals 

cfu,MW(x, m) = divM (RW)(x, m). (5.9) 

It is easy to see that, for f E '.Do, W = fJM f E Co'(X x M; g), and so we have finally 

H/f f = cfu,MVM f = _JiM f - (VM logq, vM /)g, f E '.Do, (5.10) 

where 

JiM f = cfu,Mi;JM f := divM (R(flM f)). (5.11) 

The closure of the form e{xM on 

L2(X x M; 'ii) =: L2 (u) 

is denoted by ( e{ x M, D ( e{ x M)). This form generates a positive selfadjoint operator in 
L2(u) (the so-called Friedrichs extension of H{xM, see e.g. [9]). For this extension we 
preserve the notation H{xM and denote the domain by D(H{xM). 

Let us introduce a differential operator H~. on the domain :FC;=:'('.Do, n:t) which is 
given on any FE :FCf ('.Do,n:t) of the form (3.8) by the formula 

(H~_F)(w) : = - t /2
: ((rp1,w), · · ·, ('Pn,w))(('iJXxM 'Pi, 'iJXxM\Ok)T(XxM),w) 

(f i1k=l r; rk 

N 8F XxM + L cJr. ((\01,w), ... , (\On,w))(H;; \O;,w). (5.12) 
;~1 ' 

Since 

('iJXxM logq, 'iJXxM\Oj)T(XxM) E £2(u) n Ll(u) 

(see condition (3.13)), the r.h.s. of (5.12) is well defined as an element of L2(ir;;). The 
following theorem implies, in particular, that H~. is well defined as a linear operator on 
:FCf ('.Do,nW), i.e., independently of the representation of Fas in (3.8). 

Theorem 5.1 The operator H~. is associated with the intrinsic Dirichlet form e~. in the 
sense that, for all Fi, F2 E :FC{:' ('.Do, n:t) 

f~,(F1,F2) = (H~,F1,F2)L2(ir,), (5.13) 

or 

H~. = -div~. vn on :FC{:'('.Do,n:t). 

We call H~. the intrinsic Dirichlet operator of the measure ir;;. 
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Lemma 5.1 For any cp E ::Oo and WE C/f'(X x M;g), we have 

<livM (cpW)(x, m) = (VMcp(x, m), W(x, m))0 + cp(x, m)<livMW(x, m). 

Proof. By (5.7), (5.8), and (5.9) 

<livM (cpW)(x, m) = divM [~ 0(exp(tcp(x,m)W(x, m)), m)lt=o] 

= divM [cp(x, m) ~ 0(exp(tW(x, m)), m)lt=o] 

M d I = (v' cp(x, m), dt 0(exp(tW(x, m)), m) t=o)Tm(M) 

+ cp(x, m) divM [~0(exp(tW(x, m)), m)lt=o] 

d I -M = dt cp(x,0(exp(tW(x, m)), m)) t=O + cp(x, m)div W(x, m) 

= (VMcp(x,m), W(x,m))0 +cp(x,m)<livMW(x,m). • 

Proof of Theorem 5.1. For shortness of notations we will prove the formula (5.13) in the 
case where Fi,F2 E .rCr(::oo,!1i1') are of the form 

However, it is a trivial step to generalize the proof to general Fi, F2. 
Let A E Oc(X) be chosen so that the supports of the functions cp and { are in Amk• 

Then, by (5.1), (5.2), and the construction of the marked Poisson measure 

e~- (Fi, F2) = f 9F, ( (cp,w) )9F2 ( ({,w) )((v'XxM cp, vXxM {)T(XxM),w) 1fu(dw) 
f? lnr 

00 
1 1 = -eci(A,.k) L 1 9F, (cp(xi, mi)+···+ cp(xn, mn)) 

n=l n. A;,k 

X9F2(e(x1,mi) + ... +e(xn,mn)) 

X [ t(vXxM cp(x;,m;), vxxM e(x;, m;))T(,,,m,)(XxM)] u(dxi, dmi) · · · o'(dx1, dmi) 

= e-ci(Amk) f 2.1 t(v'fxM gp1 (cp(xi, m1) + · · · + cp(Xn, mn)), 
n=l n! A~k i=l 

v'f xM 9F2 ({(x1, mi)+···+ {(xn, mn)))T<,,,m,>(XxM) o'(dxi, dmi) · · · o'(dx,., dm,.), 

where vfxM denotes the vxxM gradient in the (x;, m;) variables. Therefore, by using 
(5.10) and Lemma 5.1, we proceed in the calculation of e~.,(Fi, F2) as follows: 

= e-ci(Amk) f ¼i (" [tH~XxM);gp,(cp(xi,mi) + ... + cp(x,.,mn))] X 

n=l jAmk i=l 
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oo [ n = -eu(Amk) L ~ 1 Lg}, (cp(x1, mi)+···+ cp(Xn, mn)) X 
n=l n. A;:.k i=l 

x ("ilXxM cp(x;, m;), "ilXxM cp(x;, m;))rc,,,m;)(XxM) 

+ 9F, (cp(x1, m1) + · · · + cp(xn, mn))H{xMcp(x;, m;)] X 

XgF,(~(x1, m1) + · · · + ~(Xn, mn)) o'(dx1, dm1) · · · o'(dxn, dmn) 

= { H~_F1 (w)F2(w) ir;;(dw). • 
ln1;.t ·~ 

Remark 5.1 The operator Hf;_ can be naturally extended to cylinder functions of the 
form • 

F(w) := e(,p,w), cp E '.Do, w E fl/j, 

since such F belong to L2 ( ir;;). We then have 

Hn e<,p,w) _ (HXxM,~ - l"ilXxM,~12 w) e(,p,w) "• - u .,, .,, T(XxM)• · (5.14) 

As an immediate consequence of Theorem 5.1 we obtain 

Corollary 5.1 (efi.,.r'Ch°('.Oo,Oi!')) is closable on L2(ir;;). Its closure (efi.,D(efi.)) is 
associated with a positive definite self adjoint operator, the Friedrichs extension of Hf;_, 
which we also denote by Hfi. (and its domain by D(Hi)). • 

Clearly, "iln also extends to D(ei). We denote this extension by "iln. 

Corollary 5.2 Let 

F(w) := 9F((cpi,w), ... , ('l'N,w)), w E !!¥, 
'Pl,···, 'i'N E D(ef xM), 9F E Ch°(!R.N). 

(5.15) 

Then FE D(efi.) and 

N 

("il°F)(w;x) = L :F (('1'1,w), ... , (cpN,w))"ilxxMcp1(x,s.,). 
j=l J 

Proof. By approximation this is an immediate consequence of (3.12) and the fact that, for 
all I~ i ~ N, 

(5.16) 
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Remark 5.2 Let µv,u E M2(fl~) be given as in {3.18). Then, by Theorem 3.2, (ii)=>(i), 
all results above are valid with µv,'ii replacing 1r-;;. By {5.12) we have 

H;/0 =H~"•" on.rCf'('.iJ0,n~). 

We note that the r.h.s. of (5.12) only depends on a and the Riemannian structure of 
Xx M. The respective Friedrichs extension on L2(µv,u) is again denoted by H~•·•' how
ever it does necessarily not coincide with Hf •. 

5.3 The heat semigroup and ergodicity 

The results of this subsection are obtained absolutely analogously to the corresponding 
results of the paper [7], so we omit the proofs. 

For µx,'ii E M2(flf) let Ti?K,.(t) := exp(-tH~K,.), t > 0. Define 

E('.01, fl~) = I. h. { exp( (log(l + r,o), ·)) I \0 E '.01 }, 

where J.h. means the linear hull and 

'.01 := { \0 E D(H{xM) n L1(a) I H{xM\O E L1(a) 
and -5::; \0::;; 0 for some 5 E (0,1) }. 

Proposition 5.1 Let µx,u be as in (3.18). Assume that H{xM is conservative, i.e., 

f (H{xM r,o)(x, m) a(dx, dm) = 0 
fxxM 

for all \0 E D(H{xM) n L1(a) such that H{xM\O E L 1(a), and suppose 
that (H{xM, '.Do) is essentially se/fadjoint on L2(a). Then 

Tfw,,(t)exp((log(l +r,o),·)) = exp((log(l + e-tHf"M r,o),·)), 

E('.01, flf) C D(H~x.,), and 

H~x,• exp( (log(l + r,o), ·)) 

= ((1 +r,o)-1H{xM\O,·)exp((log(l +r,o),·)), 

(5.17) 

Remark 5.3 (i) The condition of essential selfadjointness of H{xM on '.Do is fulfilled if 
X is complete and l.0-;;IT(XxM) E Lf0c(X x M; m 0 .>.) for some p,:: dim(X) + 1. 

(ii) Since (exp(-tH{xM)bo is sub-Markovian (i.e., 0 $ exp(-tH{xM)\O::; 1 for all 
t > 0 and \0 E L2(a), 0::,; \0 $ 1), because (e{xM,D(e{xM)) is a Dirichlet form, by a 
simple approximation argument Proposition 5.1 implies that the equality (5.17) holds for 
t > 0 and all \0 E L1(a), -1 < \0 $ 0. 
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Theorem 5.2 Let the conditions of Proposition 5.1 hold. Then E('.D1, ngf) is an operotor 
core for the Friedrichs extension naH,O on L2(µx,-,;). (In other words: 
(HaH,.,E('.D1,nr)) is essentia//y selfadjoint on L2(µx,-,;).) 

Theorem 5.3 Suppose that the conditions of Theorem 3.3 and Proposition 5.1 hold. Then 
the Jo/lowing assertions are equivalent: 

(i) µx,',; = 11"z',f for some z > 0. 
(ii) (E;l,,,., D(EaH,ii)) is irreducible (i.e., for F E D(EaH,.), t:aH,O (F, F) = 0 implies that 

F = canst). 
(iii) (T£2H,,(t))t>o is irreducible (i.e., ifG E L2 (µx,-,;) such thatT£IH,.(t)(GF) = GT£IH,,(t)F 

for all FE L""'(µx,-,;), t > 0, then G = canst). 
(iv) If FE L2(µx,-,;) such that Tf},,,.(t)F = F for all T > 0, then F =canst. 

(v) T£IH,Jt) ~ 1 and ergodic (i.e., 

J (r;L_.(t)F- I Fdµx,q) 
2
dµx,q-+ 0 as t-+ 0 

for all FE L2(µx,-,;)). 
(vi) If FE D(HaH,.) with naH,ii = 0, then F =canst. 

Remark 5.4 Let us consider the diffusion process Pon X x M associated to the Dirichlet 
form ( t:f xM, D( E{ x M) ). This process can be interpreted as distorted Brownian motion 
on the manifold Xx M. More precisely, the diffusion of points x E X is associated to 
the Dirichlet form of the measure c,, so that it is distorted Brownian motion on X, and 
the diffusion of marks s.,, x E X, is associated to the VM-Dirichlet form of the measure 
p(x,dm) on M. 

The existence of a diffusion process P corresponding to the Dirichlet form 
(E{},,_.,D(EaH)) follows from (31], and its identification with the independent infinite 
particle process (on Xx M) may be proved by the same arguments as in [7]. By analogy 
with the case of the process P on X x M, one can call P distorted Brownian motion on 
nf. 

6 Intrinsic Dirichlet operator and second quantization 

In this section, we want to describe the Fack space reali2ation of the marked Poisson 
spaces and show that H;I, is the second quantization of the operator HfxM. 

6.1 Marked Poisson gradient and chaos decomposition 

Let us define another "gradient" on functions F: nr -+ JR, which has specific useful 
properties on the marked Poisson space. 

Definition 6.1 For any FE .:FCf('.Do,nf) we define the marked Poisson gradient v'MP 
as 

(v'MP F)(w, (x, m)) := F(w + e(:z:,m)) - F(w), w Erl.~, (x,m) EX x M. 
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Let us mention that the operation 

nf 3 w f-f w + "(o:,m) E nf 

is a 1Tif-a.e. well-defined map because of the property 

1ru({w = ('-y,s) E nf Ix E -y}) = O 

for an arbitrary x E X (which easily follows from the construction of 1Tif ). We consider 
vMP as a mapping 

vMP: .:FC;'('.Do,nW) 3 F f-f vMPF E L2 (o')®L2(1ru) 

that corresponds to using the Hilbert space L2 (o') as a tangent space at any point w E nf. 
Thus, for any <p E '.Do, we can introduce the directional derivative 

("'v~p F)(w) = (vMP F(w), 'P)L•(u) 

= { (F(w + "(o:,mJ) - F(w))cp(x, m) o'(dx, dm). 
fxxM 

The most important feature of the marked Poisson gradient is that it produces (via 
a corresponding "integration by parts formula") the orthogonal system of Char lier poly
nomials on (nf, B(flf), 1Tif ). Below, we describe this construction in detail using the 
isomorphism between L2(1ru) and the symmetric Fock space (see [21, 25, 30)) 

Let .:F(L2(o')) denote the symmetric Fock space over L2(o'): 

where 

00 

.:F(L2(o')) := E9.:Fn(L2(o'))n!, 
n=O 

.rn(L2(o')) := (L2(o'))®n = t2((X x Mt, a®n), 

.:Fo(L2(o')) := IR, 

nEN, 

® denoting the symmetric tensor product. Thus, for each F = (!(n))~0 E .:F(L2(o')) 

00 

IIFJl}(L2(u)) = L iJ<nllt2(if®nJn!. 
n=O 

By .:Ffin('.Do) we denote the dense subset of .:F(L2(o')) consisting of finite sequences 

(f(nl);(=O• n E Z+, such that each j(nJ belongs to .:Fn('.Do) := a.'.D~", then-th symmetric 
algebraic tensor power of '.Do: 

a.'.Df" := l.h.{cp1®···®cpn I 'Pi E '.Do}. 

In virtue of the polarization identity, the latter set is spanned just by the vectors of the 
form cp®" with <p E '.Do. 
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Now, we define a linear mapping 

N 

:Ffin('.Oo) 3 F = u(n)):=O >-+IF= (IF)(w) = L QnU(nl;w) E :FP(Do, nf) (6.1) 
n=O 

by using the following recursion relation: 

Qn+1(cp®(n+l);w) = Qn(cp®n;w}((w,cp) - (cp}o') 

- nQn(cp®(n-l)0(cp2}, w} - nQn-1(cp®(n-l)i w)(cp2)o', 

Qo(l, w} = 1, cp E Do. (6.2) 

Here, we have set (cp)" := J cp dJi. Notice that, since Do is an algebra under pointwise 
multiplication of functions, the latter definition is correct. 

It is not hard to see that the mapping (6.1) is one-to-one. Moreover, the following 
proposition holds: 

Proposition 6.1 The mapping ( 6.1) can be extended by continuity to a unitary isomor
phism between the spaces :F(L2 (o')) and L2 (7ro')-

For each cp E Do, let us define the creation and annihilation operators in :F(L2(o')) by 

1/J E Do. 

We will denote by the same letters the images of these operators under the unitary I. 

Proposition 6.2 We have, for each cp E Do, 

In particular, 

w E n?j. 

Finally, for each cp E Do we introduce the Poisson exponential 

where 

Exp cp = (~ cp®n) oo . 
n. n=O 

Then, one can show that, for cp > -1, 

e(cp;w) = exp [(log(l +cp),w)-(cp)o'], wen?f. (6.3) 
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6.2 Second quantization on the marked Poisson space 

Let B be a contraction on L2(a), i.e., BE .C(L2(a), L2(a)), IIBII ::; 1. Then, we can define 
the operator ExpB as the contraction on :F(L2(a)) given by 

ExpB r Fn(L2(a)) := B@· · · ® B (n times), n EN, 

ExpB r :Fo(L2 (a)) := 1. 

For any selfadjoint positive operator A in L2(a), we have a contraction semigroup 
e-tA, t ~ 0, and it is possible to introduce a positive selfadjoint operator d Exp A as the 
generator of the semigroup Exp(e-tA ), t ~ O: 

Exp(e-tA) = exp(-tdExpA). (6.4) 

The operator dExpA is called the second quantization of A. We denote by H;,;;P the 
image of the operator dExpA in the marked Poisson space L2{1r;;). 

Theorem 6.1 Let '.Do C Dom A. Then, the symmetric bilinear form corresponding to the 
operator H;:!P has the following representation: 

(6.5) 

Remark 6.1 The bilinear form (6.5) uses the marked Poisson gradient ,;:,-MP and a coef
ficient operator A > 0. We will call 

e~PA(F1,F2) = ( (vMPF,AvMPa)L•(u)1Tu(dw) 
v, ln';.! 

the marked Poisson pre-Dirichlet form with coefficient A. 

Proof of Theorem 5.1. The proof is analogous to that of Theorem 5.1 in [7]. Using again 
the fact that '.Oo is an algebra under pointwise multiplication, one easily concludes that, 
for any F E :FP('.Oo, n1]/) and any w E n1]/, the gradient ,;:,-MP F(w, (x, m)) is a function 
in '.Oo and hence 

(vMPF,AvMPG)L'{u) E .:FP('.Oo,n1J/), 

so that the form (6.5) is well-defined. Then, one verifies the formula {6.5) by using Propo
sitions 5.1, 5.2 and the explicit formula for dExpA on .:Fn{'.Oo): 

dExpAcp®n = n(Acp)©cp®(n-l), cp E '.Oo. • 
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6.3 The intrinsic Dirichlet operator as a second quantization 

The following two theorems are again analogous to the corresponding results (Theorems 5.2 
and 5.3) in (7], so we omit their proofs. 

Let us consider the special case of the second quantization operator d Exp A where the 
operator A coincides with the Dirichlet operator HffxM_ 

Theorem 6.2 We have the equality 

H MP - H!l 
H:xM - 1r;; 

on the dense domain :FCf ('.Do, nif). In particular, for all Fi, F2 E :FCf ('.Do, rtif) 

or 

f ('vn F1 (w), 'vn F2(w))r, (!l") 1r;;(dw) ku • x 
X 

= f ('vMP F1(w), HixM'vMP F2(w))L•(ii) 1r;;(dw), 
ln'J! 

-vn•-v!l = 'vMP• HixM-vMP 

as an equality on :FCf ('.Do, !1i!)-

Theorem 6.3 Suppose that the operator Hff xM is essentially selfadjoint on the domain 
'.Do C Dom(HfxM). Then, the intrinsic Dirichlet operator Hf(_ is essentially selfadjoint 
on the domai; :FCi;°('.Do,rti!)- a 

Remark 6.2 Notice that in Theorem 6.3 we do not suppose the operator HixM to be 
conservative. So, this theorem is a generalization of Theorem 5.2 in the special case where 
µx,U = 1rq. 

Corollary 6.1 Suppose that the condition of Theorem 6.3 is satisfied and let T;:(t) = 
exp(-tHf;.), t > 0. Then, for each <p E '.Do, <p > -1, we have a 

T,;!, (t) exp( (log(l + ,p), -} ) = exp [ (log(l + e-tHff "" ,p}, ·) - ((e-tHff "" - 1},p}if]. (6.6) 

Proof. The formula (6.6) follows from Proposition 6.1, (6.3), (6.4) and Theorems 6.2 
and 6.3. • 
Remark 6.3 If HixM is conservative, then 

(e-tH, - l),p aa = 0 I XxM 
for all t e:: O, 

and so in this case (6.6) coincides with (5.17) for <p E '.Do, <p > -1. 
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Abstract 

We review fundamental aspects of arithmetic quantum field theory. 
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1 Introduction 
In recent developments of theoretical physics, it has been shown that number theory has 
connections with physics in various aspects (e.g., [23, 30]). Among others, "statistical 
mechanics" of numbers may be interesting, because it is related in a direct way to the 
Riemann zeta function and may give a key to solve the Riemann hypothesis ([17, 18, 20, 
21, 22, 27, 28, 29] and references therein). 

Spector [28] pointed out relationships between analytic number theory and a free 
supersymmetric quantum field theory, and further discussed these aspects with notions 
of partial supersymmetry and "duality"[29]. Motivated by these works of Spector, we 
started in [14] a research program developing analytic number theory as a field of infinite 
dimensional analysis or mathematically rigorous quantum field theory. We call this type 
of theory an arithmetic quantum field theory. In this paper we review some fundamental 
results in [14]. 

2 Arithmetical Functions in Boson Fock spaces 

2.1 Partition functions and correlation functions 
Let 1f. be a separable infinite dimensional Hilbert space with inner product ( • , • )7i ( com
plex linear in the second variable) and ®;rf. be the n-fold symmetric tensor product 
Hilbert space of 1f. (n = 0, 1, 2, • • • ; ®~rl := C). Then the Boson Fock space over 1f. is 
defined by :Fa(rl) := Ell~=o ®; rf.. Let A be a nonnegative self-adjoint operator on 1f. and 

Ha(A) := dl'a(A) (2.1) 
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be the second quantization of A on Fa(1i) (e.g., [19, §5.2], [25, p. 302, Example 2]). \Ve 
denote by Na the number operator on Fa(H): Na := dra(J), where I denotes identity. 

For s > 0. we define 

Z8 (s; A) := Tr e-•Ha(A). Za(s: A) := Tr { (-1 )·"'ae-•Ha(-4)}, (2.21 

pro\·ideci that e-•HslA) is trace class on FB(ri). where Tr denotes trace. 

Remark 2.1 In st.atisticai mechanics of quantum fields. Za(s: A) is called the partd,on 
function of the Hamiltonian Ha(A) at temperature 1/ s (physically s denotes an int•a;:e 
temptrnture). The function Za(s: A) is not so standard. We call it the graded partition 
function of the Hamiltonian Ha (A) at temperature 1 / s. This type of partition function 
was considered in a concrete case by Spector [29]. 

To treat the partition functions in a unified way, we introduce a more general partit.io:1 
1 .. unction 

Za(s, z: A) := Tr (r 3(z)e-•Ha(AJ) .).:r 

z ED:= {w EC! iw! '.S: l}, ~ 2.4 i 

provided that e-•Hs(Ai is trace class on Fa(1i), where fa(z) := ffi::°=0 z" acting on :F3(1i.i. 
w.,. have 

Za(s, 1; A)= Za(s; A), Za(s, -1; A.)= Za(s: A). 

In what foilows, we assume the following. 

Hypothesis (A) The operator A is strictly positive, self-adjoint and, for some s > ~. 
e-•-~ is traCP. class on 1-£. 

Theorem 2.1 Let z ED. Then the operator fa(z)e-•Hs(-4) is trace class on :F8 (1-£, an~· 

. l 
Za(s,z:A)= d (I A'' et - ze-• ) 

,:ZJi 

where det(J + S) is the determinant for I+ S' with S a trace class operator [26, §X!ll.17,i 

Using Theorem 2.1 and the product law of the determinant det( I+•). we can derive 
relations of partition functions at different temperatures: 

Theorem 2.2 For all n E N and z E D, 

Zs(s. z: A)= det ). zke-k•-4 Za(ns, zn: .4) ( n-1 ) 

\.s=O 

and 
Za(s.z;A)Za(s,-z:A) = Za(2s.z2 :A.J. 

Remark 2.2 In general. relationships among theories at different. coupling comtant. 0 ?tre 
referred to as "dualitv'' ;29]. Eq.(2.8\ is a duality relation. where the co.rnling con,!am 
is the inverse temperature. 
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In statistical mechanics, correlation functions are also important objects. We denote 
by a'H(f) (IE 'H.) the annihilation operator on :Fa('H.) (e.g .. [19, §5.2), [25, §X.7]) (a'H(/) 
is antilinear in /). For all t > s and f,g E D(A- 112) (D(A- 112 ) denotes the domain of 
.-1- 112 ), We can define 

Tr (ra(z)a'H(fta1t(g)e-tHs(A)) 
R8 (t.z:f,g:A):= Z(. ·A) , 

B t. z, 
z ED. (2.9) 

This is called a two-point correlation function. In the same manner as in [19, Proposition 
5.2.28), we can show that 

(2.10) 

2.2 Arithmetical aspects 
By Hypothesis (A). the spectrum u(A) of A is purely discrete with 

u(A) = {En(A)}:;"=1> (2.11) 

0 < E1 (A) ~ E2(A) ~ · · ·, En(A) • oo (n • oo ), counted with algebraic multiplicity. 
There exists a complete orthonormal system (CONS) {4>n}::":1 of?-t such that 6n E D(A), 
Aon = En(A)\i>n, n EN. We set 

an := a1t( 'Pn) 

Then we have canonical commutation relations 

(2.12) 

[an,a;;,) = bmn, [an,am] = 0, [a;,,a;;,) = 0, n,m 2 1, (2.13) 

on the finite particle subspace of :Fa(?-t). 
We denote by 

(2.14) 

the set of all prime numbers with Pn < Pn+i, n 2 1 (P1 = 2, P2 = 3, Pa = 5, p4 = 7, Ps = 
11' .. •), 

By definition. an arithmetical function is a complex-valued function on N. An arith
metical function f is called completely multiplicative if it satisfies 

f(l) = l, /(mn) = f(m)f(n), m,n EN. 

Let N 2: 2 be a natural namber. Then, by the fundamental theorem of arithmetic. 
there exists a unique set { i1, ···,in, 01, ···,an} C N (i1 < · · · < in) such that 

N = (p;, )"' · · · (p;" )"" · 

Then we define an arithmetical function ,(N) by 1 (1) := 0 and 

n (]\') '°' ,, 2 2. I := L., °'k, 1' 

k=l 

The arithmetical function defined by .X(l) := 1 and 

.X(N) := (-l)'(N)_ N 2: 2. 
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is called the Liouville fucntion [l, §2.12]. This function is completely multiplicative. 
Using the representation (2.15) of N, we can define a vector \J!N E F5(?-l) by 

(2.18) 

where n'H := {l,0,0,···} is the Fock vacuum in F5(1i) and CN := 1/✓oc1 l••·an! is a 
normalization constant so that II\J!N!I = 1. We set \J! 1 := n'H. A key fact is the following. 

Lemma 2.3 [28] The set {\J!N}:v=1 is a CONS of F5(1i). 

Lemma 2.4 For all N E N, \J!N is a unique eigenvector (up to constant multiples) of 
f5(z) with eigenvalue z-,(N). 

We introduce a function FA: N • (O,oo) as follows: FA(l) .- I and if N:?: 2 is 
represented as (2.15 ), then 

n 

FA(N) := IJ e"•E,.(A)_ (2.19) 
k=l 

It is easy to see that FA is completely multiplicative. 

Lemma 2.5 For all N E N, \J!N is a unique eigenvector {up to constant multiples) of 
H5(A) with eigenvalue log FA(N). 

By Lemmas 2.4 and 2.5, we have 

oo z't(N) 
Z5(s,z;A)= L F (N)•' zED. 

N=l A 

By this fact and Theorem 2.1, we obtain the following. 

Theorem 2.6 For all z ED, 

oo z-,(N) 1 

L FA(N)• = IT'"- (1 - ze-•E.(A)) · N=l n-1 

(2.20) 

(2.21) 

Remark 2.3 Formula (2.21) may be regarded as a general form unifying arithmetical 
formulas known under the name of Euler products [l, Chapter 11]. See Section 2.3 below. 

We introduce a function e(N, m) : N x N • {O} UN by 

n 

e(l, m) := 0, e(N, m) := L °'koi.m (2.22) 
k=l 

if N :?: 2 is expressed as (2.15) (N, m E N). 

Theorem 2.7 Lett> s. Then, for all m EN and z ED, 

OO z-Y(N)e(N,m) Z fl FA(N)' = etEm(A) - z Zs(t, z; A). (2.23) 
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Let N ~ 2 be given as (2.15). Then, each divisor m of N is of the form 

with O::; r;::; a;, j = l,•·•,n. We define a vector \llN,m E :Fa(1t) by 

WN,m := CN,mai1"1 .. •ai"T"fht, 

(2.24) 

(2.25) 

where CN,m > 0 is a normalization constant. For an m E N and NE N, we mean by mlN 
that m is a divisor of N. The set {Ill N,m}mlN of vectors is orthonormal. We introduce 

(2.26) 

where L:{•} means the subspace spanned algebraically by the vectors in the set {•}. We 
set :F~1) := {a!11lia EC}. We denote by PN the orthogonal projection from :Fa(1t) onto 
:,:rl(1t). 

Proposition 2.8 Let z ED. Then, for all N, 

z"l(m) 
Tr(PNfa(z)e-•He(A)pN) = I;--. 

mlN FA(m)• 

2.3 Connections with analytic number theory 
A basic object in analytic number theory is the Dirichlet series 

D(s,f) := I: f(~) 
n.=1 n 

(2.27) 

(2.28) 

for an arithmetical function f and s E C, provided that the infinite series converges. The 
Riemann zeta function 

00 1 
((s) :=I;-, s > 1, 

n=l n" 
(2.29) 

is a special case of D(s,/). We first show that ((s) and D(s,>.) can be represented as 
partition functions of Ha(A) with a suitable A. For this purpose, we consider the case 
where 1t is given by 

£2 := EB:;"=lc = {'Ip= {1Pn}::"=1l1Pn E C,n 2 1, E l'I/Jnl2 < 00}. (2.30) 

On this Hilbert space we define an operator Wp as follows: 

D(wp) = {'Ip= { 1Pn}::"=t E e2I ~ i(logpn)'I/Jnl2 < 00}, (2.31) 

(wp'I/J)n = (logpn)1Pn, 'Ip E D(wp), n 2 1. (2.32) 

Then wp is strictly positive and self-adjoint. Moreover, the spectrum of wp is purely 
discrete with 

(2.33) 

with the multiplicity of each eigenvalue log Pn being one. A normalized eigenvector of wp 
with eigenvalue log Pn is given by 

(2.34) 
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Theorem 2.9 For alls> 1 and z ED. 
oc z""(N) 

Zs(.u:w,,) =I;~-
:V=l • 

(2.35'1 

Appiying Theorem 2.6 with A = w,,, we obtain the following. 

Corollary 2.10 For alls> I and z ED, 
oc z-,(N) 1 

L ~ = IT (1 zp-•)" N=l • pEP -
(2.36) 

An application of Theprem 2.7 gives the following. 

Corollary 2.11 For alls> 1, n EN and z E D. 

oc z-,(N)e(N, n) z 
I; V = --Zs(s,z:wp). 
N=1 : $ p~ - Z 

(2.37) 

The operator w,, may be regarded as as a special case of a more general operator 
associated with a completely multiplicative function. Let f be a completely multiplicative 
function such that O < f(n) < 1 for all n 2:: 2 and 

00 

Lf(Pn) < oo, (2.38) 
n=l 

and define an operator A1 on f2 by 

D(A1) = {tti = Nn}~=llE llogf(PnJl21¢nl2 < 00}, (2.39) 

(A11P )n = [-log f(pn)]r./Jn, lp E D(A1 ), n 2'.'. 1. (2.40) 

Then A1 is a strictly positive self-adjoint operator and e--4 , is trace class on £2. It is easy 
to see that 

NeN. 

Hence we have 
oc 

Zs(l,z;A1) = I;z-r(n)f(n), z ED. 
n=l 

Applying Theorem 2.6, we ohtain the following fact. 

Corollary 2.12 Let f be as above. Then, for all z ED, 

f, z·1(n) f(n) = 1 . 
n=I fipE1'(1 - zf(p)) 

Theorem 2. 7 gives the following. 

Corollary 2.13 Let f be as above. Then, for all n EN and z ED, 

~ -y(N) ( V )f( ") zf(Pn) z (1 A , ,f:l z (!, ,n ;v = l-zf(pn) B ,z: · j)· 

Applying Proposition 2.8, we have for all s > 1 
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3 Arithmetical Functions in Fermion Fock Spaces 

3.1 Partition functions and correlation functions 

Let X:, be a separable infinite dimensional Hilbert space and 181;:.X:. be the n-fold antisym
metric tensor product Hilbert space of X:. (n = 0, 1, 2, · · · ; 18i~X:. := C). Then the Fermion 
Fock space over X:. is defined by .TF(X:.) := EB~=O ®;:. X:.. 

Let T be a nonnegative self-adjoint operator on X:. and 

(3.1) 

be the second quantization of Tin .rF(X:.). The number operator on .rF(X:.) is defined by 
NF:= dfF(J). 

Let s > 0, z E D and 

(3.2) 

provided that e-•HF(T) is trace class on FF(?i), where rF(z) := EB~=0zn acting on FF(X:.). 
In what follows, we assume the following. 

Hypothesis (T) For some s > 0, e-•T is trace class on X:.. 

Theorem 3.1 For all z ED, rF(z)e-•HF(T) is trace class on .rF(X:.) and 

(3.3) 

By Theorems 2.1 and 3.1, we have interesting relations between bosonic and fermionic 
partition functions: 

Corollary 3.2 Consider the case 1i = IC and A be an operator on 1i obeying Hypothesis 
(A) in Section 2. Then, for all z ED, 

1 
Za(s, -z; A)= z ( . A) 

F s, z, 

Theorem 3.3 For all n E N and z E D, 

det (Ezke-•kT) ZF(s,-z;T), 
k=l 

ZF(s, -z; T)ZF(s, z; T) ZF(2s, -z2 ; T). 

(3.4) 

(3.5) 

(3.6) 

Remark 3.1 Relation (3.6) is a form of duality of fermionic partition functions. A special 
case is discussed in [29]. 

Corollary 3.4 Consider the case 1i = X:. and A be an operator on 1i obeying Hypothesis 
(A). Then 

Za(2s,z 2 ;A)ZF(s,z;A) = Za(s,z;A) (3.7) 

Remark 3.2 Relation (3.7) is also a form of duality of fermionic and bosonic partition 
functions. For a special case, see [29). 
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Let u, v E IC and z E D. Then a fermionic two-point correlation function is defined 
by 

. . ·- Tr (rr(z)e-•HF(T)b.c(u)*b.1;(v)) 
Rr(s,z,u,v,T) .- z ( ·T) . 

F s,z, 
(3.8) 

where bdu) (u E IC) the annihilation operator on Fr(IC) (e.g., [19, §5.2]). It is easy to 
see ( e.g., cf. [19]) that 

(3.9) 

3.2 Arithmetical aspects 

By Hypothesis (T), the spectrum of T is purely discrete with 

u(T) = {En(T)}~=l' (3.10) 

0 < E1(T)::; E2 (T)::; ... , En(T) • oo(n • oo), counted with algebraic multiplicity. 
There exists a CONS {un}~=l of IC such that Un E D(T), Tun = En(T)un, n EN. We 
set 

bn := b.c(un), 

Then we have canonical anti-commutation relations 

(3.11) 

{bn, b;:,} = Omn, {bn, bm} = 0, {b~, b;:,} = 0, n, m ~ 1, (3.12) 

where {X, Y} := XY + YX. In particular, b; = 0, b~ 2 = 0, n EN. 
For NE N we define v(N) by v(l) := 1 and 

v(N)=n, N~2, (3.13) 

if N is represented as (2.15) [1, p.247]. 
A natural number m ~ 2 is called square free if it is written as a product of mutually 

different prime numbers. As a convention, 1 is defined to be square free. We denote by 
S0 the set of square free elements in N: 

S0 := {m E Nim is square free}. 

For each NE N, we define a set S0(N) as follows: 

So(l) := {l}, 
S0 (N) := {m E Salm is a divisor of N}, N ~ 2. 

Let N ~ 2 be given as (2.15). Then each element m of S0(N) is of the form 

(3.14) 

(3.15) 
(3.16) 

(3.17) 

where q; = 0 or q; = 1 (j = 1, • • •, n). Corresponding to this, we define a vector iPN,m by 

(3.18) 

where !l.1; := {1,0,0, •••}is the Fock vacuum in FF(IC). 
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Let 

Ji,1)(X::) := {d"!dc EC}, Ffl(X::) := .C{<PN,mlm E So(N)}, N 2 2, (3.19) 

Then .rt\X::) is finite dimensional with dim.rf\q = 2v(NJ. We denote by RN the 

orthogonal projection from FF(X::) onto Ff\X::). 
Let N 2 2 be of the form (2.15), 

X::N := .C{u;.lk = l,•·•,n} (3.20) 

and TN be the restriction of T to X::N, Then we can show that 

(3.21) 

Let m E So, m 2 2 and 
m =p;, ···p;, (3.22) 

be its factorization in prime numbers (ii 'f ik, j 'f k). Then we define a vector <Pm in 
.rF(X::) by 

<Pm := b71 • • • b;,nx;. (3.23) 

For m = 1, we set <I/1 := !1,1;;. For m rf_ S0 , we define <Pm := 0. 

Lemma 3.5 [28) The set {<Pm}meSo is a CONS of FF(X::). 

The Miibius functionµ : N • {O, ±1} is defined as follows: µ(l) := 1, µ(m) := 0 if 
m rf_ S0 and µ( m) := (-1 Y if m is written as the product of mutually different r prime 
numbers. We have 

µ(m)=(-l)'Y(m), mESo, (3.24) 

Lemma 3.6 For all m E S0 , 4>m is an eigenvector of NF with eigenvalue -y(m). 

Lemma 3.7 For all m E S0 , 4>m is an eigenvector of HF(T) with eigenvalue log FT(m), 
where FT is defined by (2.19} with A= T. 

It follows from Lemmas 3.6 and 3. 7 that 

oo z-Y(m)lµ(m)! 
ZF(s,z;T)=L F(m)• , zED, 

m=l T 
(3.25) 

where we have used that µ(m) = 0 for all m rf_ So and lµ(m)! = 1 for all m E S0 • By 
(3.25) and Theorem 3.1, we obtain the following. 

Theorem 3.8 Let z E D. Then 

oo -,{m)I ( )I oo L z : 71: = II (1 + ze-•En(T)). 
m=I FT( ) n=l 

(3.26) 

Theorems 3.8 and 2.6 imply the following. 
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Corollary 3.9 Let z ED. Then, 

00 z-Y(m)lµ(m)I f, Fr(m)• = 00 (-z)"(n) · 
Ln=I Fr(n)• 

We introduce a function T/ on N x N by 

r,(l, n) .- 0, 
r 

r,(m, n) .- I:(-l)k-t,5;.,. 
k=I 

if m E So is expressed as (3.22). If m ~ So, then r,(m, n) := 0 for all n E N. 

Theorem 3.10 Let z ED and n EN. Then 

00 z-Y(mlr,(m, n) z 
L P.() = E(T) ZF(s,z;T). 
m=I T m • e• • + Z 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

The left hand side of (3.21) is equal to LmeSo(N) z-Y(m) / Fr( m )•. Hence we obtain 

z'Y(m)lµ(m)I L ---"-:........,..;.=<let (1 + ze-•T.v). 
mlN Fr(m)• 

3.3 Connections with analytic number theory 

Consider the case where?-£= £2 and T = wp. Let z ED ands> 1. Then we have 

00 z'Y(m)lµ(m)I 
ZF(s, z;wp) = L • . 

m=l m 

(3.31) 

(3.32) 

Let f be a completely multiplicative function as in Section 2.3 and z E D. Then, by 
(2.41 ), we have 

00 

ZF(l,z;A1) = L z-Y(m)lµ(m)l/(m). (3.33) 
m=l 

By Theorem 3.8, we obtain the following. 

Corollary 3.11 For all z ED, 

f: z-,(m)lµ(m)l/(m) = IJ (1 + zf(p)). (3.34) 
m=l pE'P 

Theorem 3.10 gives the following. 

Corollary 3.12 For all n EN and z ED, 

(3.35) 
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Jordan's totient function J,(N) (s 2:: 0,N EN) is defined by J,(1) := 1 and, for 
N2::2. 

J,(N) = N' II (1 -~) 
PIN;pEP p 

[l. p.48]. The special case 
cp(N) = J1(N) 

is Euler's totient function [1, p.25, p.27]. We have 

(3.36) 

(3.37) 

det (1 - e-•("'P)N) = II (1- ~), s 2:: 0, N 2:: 2. (3.38) 
plN;pEP p 

Hence we obtain 

J,(N) = N' det (1 - e-•("'P)N), s 2:: 0, N 2:: 2, (3.39) 

which, together with (3.21), implies that 

This gives an expression of Jordan's totient function in terms of Fock space objects. 
Formula (3.31) implies the well known identity [1, p.48]: 

J,(N) = 2: µ(m) (!!..)', s 2:: 0, NE N. 
mlN m 

(3.41) 

4 Arithmetical Aspects of Boson-Fermion Fock 
Spaces 

4.1 Some general aspects 

Let 1i and JC be Hilbert spaces as before. Then the Boson-Fermion Fock space associated 
with the pair {1i, JC) is defined by the tensor product Hilbert space 

(4.1) 

Let A and T be nonnegative self-adjoint operators on 1i and JC respectively. Then the 
operator 

H(A, T) := Ha(A) ®I+ I® HF(T) 

on :FaF(1i, JC) is nonnegative and self-adjoint. 
We assume the following. 

(4.2) 

Hypothesis (AT) The operators A and T satisfy Hypothesis (A) in Section 2 and Hy
pothesis (T) in Section 3 respectively. 
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Under this assumption, e-,H(A,T) is trace class and we can define a partition function 

Z(s, z, w; A, T) := Tr (rs(z) ® rF(W )e-,H(A,T)) , z, w ED. (4.3) 

We have 
Z(s,z,w;A,T) = Za(s,z;A)ZF(s,w;T), z,w ED. (4.4) 

If one can represent the left hand side of ( 4.4) in various ways, ( 4.4) may produce nontrivial 
arithmetical relations for eigenvalues of A and T. Moreover, different expressions of 
Tr (x e-•H(A,T)) with X an operator on :FsF(rf., JC) may yield interesting arithmetical 
relations. These are basic ideas to search for arithmetical relations by quantum field 
theoretical methods. 

We carry over the notation in the preceding sections. Let N ~ 2 be of the form (2.15) 
and m E S0(N). Then we can write 

m = (p;,) 91 (p;,)9' "·(p;.)9", (4.5) 

where qi = 0 or qi = 1. Based on these factorizations, we define a vector 

0.N,m := CN,m [(0;1)°1-•1 ···(a;-.)"•-9•!11t] ® [(bi,) 91 ••·(b:.)90 n.c], (4.6) 

where CN.m > 0 is a normalization constant. For N = 1 and m = 1, we set !11,1 .

n11 ® n.c. 

Lemma 4.1 [28] The set {O.N,mlN ~ 1, m E So(N)} is a CONS of :FsF(rf.,JC). 

The following fact is easily proven. 

Lemma 4.2 Let NE N, m E So(N) and z,w ED. Then O.N,m is an eigenvector of 
fs(z) ® fF( w) with eigenvalue z"Y(N)--y{m)w-Y(m). 

For each NE N, we define a function YA,T(N, ·) on 80 (N) by 

YA,T(N,m) := IT eC0 •-9•)E,.(A)+9•E,.(T), m E S0 (N), (4.7) 
k=I 

when N and mare represented as (2.15) and (4.5) respectively. Note that 

YA,T(N,m) =FA(:) FT(m). (4.8) 

Lemma 4.3 Let NE N and m E S0(N). Then nN,m is an eigenvector of H(A, T) with 
eigenvalue log YA,T( N, m). 

Theorem 4.4 Let z,w ED. Then 
oo z-Y(N)-"Y(m)w-y(m)lµ(m)I 

Z(s,z,w;A,T) =LL y (N )' . 
N=l mlN A,T , m 

( 4.9) 

Corollary 4.5 Let z,w ED. Then 
oo z"Y(N)-.,.(m)w·1(m)lµ(m)I 

LL y (Nm)• = Zs(s,z;A)ZF(s,w;T). 
N=lmlN A,T , 

(4.10) 

Remark 4.1 If we put into the right hand side of (4.10) the formulas established in 
Sections 2 and 3, then we obtain explicit formulas, which are nontrivial. 

Remark 4.2 By rescaling as T • tT/s (t > 0) in (4.10), we can obtain relations at 
different temperatures 1/s and 1/t. Hence (4.10) include "duality relations''. 
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4.2 Connections with analytic number theory 

We consider the case where ?-l =IC= £2 and A= T = Wp. Then we have Y.,,,,..,,,(N, m) = 
N. Hence Corollary 4.5 gives 

oo z"t(N)--,(m)w-,(m)jµ(m)j 
LL N• = Za(s,z;wp)ZF(s,w;wp), s > 1. 
N=lmlN 

( 4.11) 

This yields well known relations 

oo 2v(N) (( s) 
I:-=-, 
N=I N• D(s, A) 

00 A(N)2v(N) D(s,A) 
J; N• =~, s > 1. 

Let f be the completely multiplicative function considered in Section 2.3 and 

Then we have for all s > 1 

( 4.12) 

which are supersymmetric identities [6, 28]. These relations imply the following: 

00 1 00 1 
f1 µ(m)f(m) = I::::"=1 f(n)' f1 jµ(m)j/(m) = I::::":,1 A(n)f(n). ( 4.13) 

By Corollary 4.5 with rescaling T • tT / s, we obtain 

oo z"t(N)--,(m)w-,(mljµ(m)j 
L L N• t-• = Za(s, z; wp )ZF(t, w; wp ), t > s > 1. 
N=lmlN m 

{ 4.14) 

Remark 4.3 General theories on Boson-Fermion Fock spaces have been developed in 
[3, 5, 6, 7, 9, 11, 13, 15, 16]. See also [2, 4, 8, 10] for related aspects. Applications of 
these theories to arithmetic quantum field theories may yield interesting results in analytic 
number theory. 
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Harmonic Analysis on Negatively Curved Manifolds 

- Carleson measure, Brownian motion and a gradient estimate 

for harmonic functions -

Hitoshi ARAI 

This paper is mainly a summary of recent work of the author on harmonic analysis on 

negatively curved manifolds, and we refer the reader to [10], [6] and [7] for details. 

Let ( M, g) be a complete, simply connected n dimensional Rlemannian manifold whose 

sectional curvatures I<M satisfy 

-OO < -Ki $ J{M $ -K~ < 0, 

where K 1 and ,-2 are positve constants. In this paper we are concerned with Hardy 

spaces, BMO, Carleson measure and their probabilistic aspects. Further we give a gradient 

estimates for harmonic functions and its application to Bloch functions on negatively 

curved manifolds. 

Notation Throughout this paper we fix a point o in M as a reference point. The 

constants depending only on g, n, ,-1, ,-2 and o will usually be denoted by C or C'. But 

C and C' may change in value from one occurrence to the next. For two nonnegative 

functions f and g defined on a set U, the notation f ;§ g indicate that f(x) $ Cg(x) for 

all x EU, and/::::: g means that f ;§ g and g ;§ f. 

Acknowledgement The author thanks to Professor Heyer, Professor Obata and Pro

fessor Hirai for their invitation to the conference on "Infinite Dimensional Harmonic Anal

ysis". 

1 Background material 

Before going to the main body of this report, let us give a brief review of results obtained 

by Anderson and Schoen ([3]), Cifuentes and Koranyi ([18]), and the author ([6], [7]). 

Let S(oo) be the sphere at infinity of M, and M Eberlein and O'Neill's compactifica

tion MUS( oo) of M (see [23]). The following theorem plays a fundamental and important 

role in our work: 
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Theorem ASl (Anderson and Schoen [3]; [1], [31]) (1) The Martin compactification 

of M with respect to the Laplacian f:.. 9 on M is homoemorphic to M, and the Martin 

boundary consists only of minimal points. 

(2) For every z E M, there exists a unique function K,(x, Q) (Q E S(oo ), x E J\,f\ {Q}) 
such that for every Q E S ( oo), 

(1) 

(2) 

(3) 

(4) 

K,(·, Q) is positive harmonic on M, 

K.(·,Q) is continuous on M\ {Q}, 

K,(Q', Q) = 0 for all Q' E S{oo) \ {Q}, and 

K.(z, Q) = 1. 

( This function is called the Poisson kernel normalized at z.) 

(3) For every z EM and for every positive harmonic function u on M, there exists a 

unique Borel measure m~ on S(oo) such that 

(5) u(x) = f K,(x, Q)f(Q)dm~(Q), x EM 
Js(oo) 

(The measure m! is called the Martin representing measure relative to u and z.) 

Throughout this paper, we write K(x, Q) = K 0 (x, Q), and denote by w" the Martin 

representing measure relative to the constant function 1 and x E M. It is called the 
harmonic measure relative to x. In particular, let w = w0 • Note that w"(S(oo)) = 1 and 

dw"(Q) = K(x, Q)dw(Q), for all x EM. 

For notational simplicity, we denote 

](x) = f K(x, Q)f(Q)dw(Q), x EM, 
Js(oo) 

for every f E L1(S(oo),w). 
In their paper [3], Anderson and Schoen generalized to the manifold M Fatou's theorem 

on boundary behavior of bounded harmonic functions on the open unit disc. To describe 

their theorem we need some notation. For x E Mandy E M (x =f. y), let 'Yxu be the unit 

speed geodesic with 'Yxy(O) = x and 'Yxu(t) = y for some t E (0, +oo]. Since such a number 

t is uniquely determined, we denote it by txy• Anderson and Schoen defined the following 

analogue of the classical nontangential region: For Q E S(oo) and d > 0, let 

(6) Td(Q) = LJB('Yoq(t),d), 
t>O 

where B(x, r) is the geodesic ball with center x and radius r. 
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Theorem AS2 (Anderson and Schoen [3]) Let u be a bounded hannonic function on M. 
Thcnforw-a.e. Q E S(oo), the nontangential limit 

Iim u(x) 
xETd(Q) 

exists for all d > 0. 

This result was extended by Ancona [1], Mouton [38] and the author (7]: Ancona 
proved an analogue of Fatou-Doob theorem, Mouton verified Calderon-Stein type theorem 

and the author obtained an analogue of a local version of Fatou-Doob theorem. 

2 Admissible maximal functions and Hardy spaces 

In [6], we studied another analogue to M of the classical nontangential region. In order 

to describe it, let us mention some terminologies: For p E M, v E TpM and o > 0, let 
C(p, v, o) be the cone about the tangent vector v of angle o defined by 

C(p,v,o) := {x EM: Lp(v,'Ypx(0)) < o}, 

where LP denotes the angle in TpM and 'Ypx(t) is its tangent vector at t. 

For z EM\ {o} and t ER, we denote 

C(z, t) = C(?o,(t0 , + t), 'Yoz(t0 , + t), 7!'/4), and z(t) = 'Yo,(t0 , + t), 

and let 

.6.(x, t) = C(x, t) n S(oo). 

Our analogue is the following: 

Definition 2.1 ([6)) For Q E S(oo) and a ER, let 

(7) ra(Q) = {z EM: Q E .6.(z,a)}, 

and we call this set an admissible region at Q. 

Using this notion, we can define an analogue of nontangential maximal function, ad

missible maximal functions, as follows: For a function u on M, let 

Na(u)(Q) = sup lu(x)I, Q E S(oo), a ER. 
xera(Q) 

Furthermore we can define Hardy type spaces in terms of our maximal functions: 

H~ = {f E L1(S(oo),w): Na(!) E LP(S(oo,w)}, 1 :<; p :<; oo 
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and we denote 

\lf\lHg := IINo(J)IILP(w)· 
It is easy to prove that (H~, \I· IIHg) is a Banach space and that for every a,!3 ER, 

H~ = HJ;, and moreover for every f EH~= HJ;, 

where Co,/3 is a positive constant depending only on n, .li:1 , 1,,2 , a and {3 (see [10)). Therefore 

in this paper we deal only with HG, and we denote 

w = m, and 11 · IIH• =II· IJHg-

We study also atomic Hardy spaces in the sense of Coifman and Weiss and probabilistic 

versions of Hardy spaces. Let us describe them. First we are concerned with atomic Hardy 

spaces. For any Q E S(oo), we define b.1(Q) to be the "ball" in S(oo) centered at Q of 

radius log(l/r), 

Ai(Q) := b.(1'oQ(t),O) (= C(1oQ(t),i'oQ(t),1r/4) nS(oo)), 

It is easy to see that the function 

p0(Q, Q') := (inf{e-t : Q' E At(Q)} + inf{e-1 : Q E At(Q')}) /2, Q, Q' E S(oo) 

is a quasi-distance in the sense of [19] such that (S(oo),p,w) is a space of homogeneous 

type. Therefore the abstract theory in [19] can be transplanted to our case. For instance, 

some covering lemmas, theorems on atomic Hardy spaces and BMO on spaces of homoge

neous type hold true for (S(oo),w,p). Now let us mention the definition of atomic Hardy 

spaces on S( oo ). In [19], atomic Hardy spaces and BMO on a space of homogeneous type 
are defined in terms of its quasi-distance. However in our case, we can prove that the 

family of balls defined by pis equivalent to {b.t(Q)}, that is, 

(8) A1og(l/r)+k,(Q) C {Q': p(Q,Q') < r} C A1og(J/r)-k2 (Q). 

where k1 and k2 are positive constants depending only on M. 
For this reason, one can define atomic Hardy spaces and BMO in terms of {Ai{Q)} 

which are equivalent to those defined by the quasi-distace p: a function a on S(oo) is 

called an atom if the support of a is contained in a "ball" Ar(Q), fs(oo) adw = 0, and 

llallL=(w) :S: w(Ar(Q))-1 . Since w(S(oo)) = 1, we regard also the constant function 1 

as an atom. The atomic Hardy spaces H!tom is defined as the set of all functions h in 

L1(S(oo),w) such that h has an atomic decomposition 
00 

(9) h = LAia;, 
j=I 
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where >.i ER, and a/s are atoms and I:;:1 IAil < oo. We set 

for h E Hl,om· 
Let BMO(w) be the set of all functions f E L1(S(oo),w) such that 

11/IIBMO = sup (,/(Q)) 1 If - mt,..(qifldw + 11/llu(w) < 00, 
QES(oo),rER W r t..(Q) 

where 

mt..(Qi/ = w(A:(Q)) L.(Q) fdw. 

Theorem CW ([19]). The dual of H;_,0 m is regarded as the space BMO(w) in the following 

sense: If h = I; >.iai E H;_,om• then for each e E BMO(w) 

(h, £) := lim >.i 1 foidw 
m • oo X 

is a well defined continuous linear functional and its norm is equivalent to 1£1sMO· More

over, every linear continuous functional on H!,om has this form. 

In this paper we will also deal with probabilistic analogues of Hardy spaces. To define 
them, we need to recall some facts on Brownian motion on M and its Markov properties: 
Let W be the set of all continuous maps from [O,oo) to M, and let Zt(w) = w(t), w E W. 

Since by Yau [47] the life time of Brownian motion on Mis equal to +oo, so there exists 
a system of probability measures { P.,}.,eM on W such that (P.,, Zt) is a Brownian motion 
starting at x. From Sullivan [43] or Kifer [31] it follows the following facts: 

(I) There exists a limit Z00 (w) := limt• ooZt(w) for almost sure w E W with respect 
to P.,, x EM. Moreover, Z00 (w) E S(oo) for P.,-a.s. w E W. 

(II) For every x EM and for every Borel subset F of S{oo), 

w"(F) = P.,({w E W: Z00 (w) E F}). 

For every f E L 1(w), ](x) = E,,[f(Z00 )) for all x E Mand limt• oo ](Zt) = f(Z00 ) 

P.,-a.s., where E,,[ ] denotes the expectation with respect to P,, (x E M). We denote 

P = Pa and E[] = E0 [ ]. Let 

{ [ _ P]lh } 
~rob := f E LP(w) : 11/IIH• = E sup lt(Zt)I < oo , 

prob 0$t<oc 
1::,; p < 00. 
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Let B (resp. 81) be the smallest a-field for which all random variables Z., s ~ 0 (resp. 

Z., 0 ::; s ::; t) are measurable. For a probability Borel measure µ on M, let Pµ(A) = 
fs(oo)P.,(A)dµ(x), AC W. We denote by (W,.P,.rf,Pµ) the usual Pµ augmentation of 
(W,B,81,Pµ) in the sense of [41, III 9]. In particular, (W,.P',F;",Pz) denotes the P.,

augumentation of (W, B, 81, Pµ)- Put j: := n _,rµ and F'1 := n .rf', where the intersection 

is taken over all probability Borel measuresµ on M. Then (Z1, W, J:, J:1, Pz : x EM) is a 

strong Markov process. If fact, considering that Mis diffeomorphic to Rn, it is a honest 
FD diffusion in the sense of [41, III 3, III 13]. 

It is known that the usual Pz-augumentation (W,.P',J=;"',Pz) satisfies the so-called 

usual condition (see [41, III 9]). Moreover, for every harmonic function u on M, the 

process u(Z1) is a continuous local (Pz, .r;")-martingale. Denote by (W, .r, Ft, P) the usual 

P0 -augumentation (W, .r0 , .rr, P0 ). As usual, Hardy spaces of martingales are defined as 
follows: 

MP := {x E L1(W, W, P) : l!XIIMP := E [ sup !E[Xl✓iJ!P] I/p < oo}, 
0$t<oo 

(1::; p < oo), where and always E[·IC] denotes the conditional expectation with respect to 

Panda sub a-field C of .r. Note that Meyer's previsibility theorem ([41, VI 15, Theorem 
15.4]) implies that for every X E L1(W, P), the process (E[X/.rt])1~ 0 is an (.r1)-continuous 

martingale. 

For X E L1(W, .r, P), let N'(X) := E[X!a(Z00 )], where a(Z00 ) is the sub a-field 

of .r generated by the random variable Z00 • Then by (I) there exists a unique element 

f E L 1(w) such that N'(X) = f(Z00 ), P-a.s. Denote the function f by NX. 

Now we can mention another probabilistic analogue of Hardy spaces: 

H~art := {N(X) : X E MP}, 1 $ p < 00 1 

and as a norm on H~art, we consider IIN(X)IIH~ ... := IIXIIMP· 

For two normed spaces (A, II !IA) and (B, 11 IIB), we denote by A j B that AC B and 

llxllB ::; Cllxl!A for every x E A, where C is a constant independent of x. Further we set 
A ~ B if A =5 B and B ~ A. 

In 1987, we announced in [6] the following Theorems 2.1 and 2.2 (see [10] for detailed 
proofs). : 

Theorem 2.1 ([6]; see also [10]) 
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Let k be a constant such that for every Q1, Q2 E S(oo) and r ER, Llr(Q1)nllr(Q2) # 0 
implies Llr{Q2) C Ll,-k(Qi). {This constant always exsits.) 

Theorem 2.2 {[6]; see also [10]) Consider the following geometric condition: 

(.B) For every Q E S(oo), t > k and z E C('yoq(t),0), 

If our manifold M satisfies the condition ((3), we have HJ,0 m(w) ::S H 1(w). 

When M is rotationally symmetric at o or the dimension of M is two, the condition 

((3) is satisfied. However recently, Cifuentes and Koranyi proved the following 

Theorem CK2 (Cifuentes and Koranyi [18]) The manifold M satisfies always the con

dition (/3). 

Therefore combining our Theorems 2.1 and 2.2 with Theorem CK2, the following 

theorem is obtained: 

Theorem 2.3 (Arai [6], Cifuentes and Koranyi [18]) 

3 Carleson measure 

In this section we study a condition on a measure µ on M in order that the Martin integral 

operator, 

K[f](z) = r K(z,Q)f(Q)w(Q) (= l(z)), z EM, 
Js(oo) 

is bounded from V'(w) to V'(M,µ). This problem was studied by L. Carleson in the 

classical Euclidean case, and he found a necessary and sufficient condition called now 

"Carleson condition". We study a version to AI of "Carleson condition": 

Definition 3.1 For a set AC S(oo) and r > 0, let 

Sr[A] := {z EM\ B(o, r): Ll(z, 0) c A}. 
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A given complex Borel measure µ on M is said to be a Carleson measure on M if for 

every r > 0, 
lµl{Sr[~i{Q)]) 

liµllc,r := sup {~ (Q)) + lµl(M) < oo, 
QES(oo),t>l W t 

where lµI -is the total variation ofµ. We wirte liµIJc = IJµllc,1 • 

As an analogue of the classical Carleson-Hormander's theorem, we obtain the following 

Theorem 3.1 {[10]) Letµ be a complex Borel measure on M. Then the following are 

equivalent: 

(i) µ is a Carleson measure on M. 

(ii) llµllc,r < oo for some r > 0. 
(iii) For every 1 s p < oo, the Martin integral operator K is bounded from HP(w) to 

ll'(M, jµI). 

(iv) For every l < p < oo, the operator K is bounded from ll'(w) to ll'(M, lµI). 

(v) For some 1 < p < oo, the operator K is bounded from ll'(w) to ll'(M, !µ!)
Furthermore, for every r > 0, there is a constant c; depending only on M, o and r 

such that 

We give also a kind of an analytic characterization of Carleson measures. Let G(x, y) 
be Green's function on M (see [3] or [4]). For a Borel measureµ on M, the function 

G[µ](x) = L G(x,y)dµ(y), x EM 

is called the Green potential of µ. In this section we study boundary behavior of the 

Green potentials of the following weighted measures: for a nonnegative Borel measure µ 

on M, let 

1Lo(A) = 1 G(:w)dµ(w), Ac M. 

A nonnegative function f on M is said to be asymptotically bounded if there exists a 

positive constant R > 0 such that SUPxeM\B(o,R) f(x) < oo. Then we have the following 

Theorem 3.2 {[10]) Letµ be a nonnegative Borel measure on M. Suppose that µ(H) < 
oo / or every compact set H in M. Then the fallowing statements are equivalent: 

(i) G[µo] is asymptotically bounded on M. 

(ii) µ is a Carleson measure and satisfies the following condition (F): 
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(F) There exist positive constants r and C such that 

(10) f G(z,w)dµ(w)::;CG(o,z) foreveryzEM\B(o,r). 
lacz,I) 

For f E L1(w), Jet 

dµ,(w) = G(o,w)j'v'}(w)l2dV(w), 

where dV is the volume measure with respect to the metric g, and jv'}(w)J is the norm 

of the gradient of j with respect tog, that is, in a local coordinate neighborhood, 

where (ii(w)) is the inverse matrix of the metric (9i;(w)). This is an analogue to M of 

the classical Littlewood-Paley measure. 

It is easy to see that for f E L1(w), µ1(M) < oo if and only if f E L2(w). 
As a corollary of Theorem 3.2 we obtain the following characterization of BMO func

tions in terms of Carleson measures and Green potentials: 

Theorem 3.3 ([10]) Let f E L 2(w). Then the following are equivalent: 

(i) f E BMO(w) 
(ii) µ1 is a Carleson measure on M. 

(iii) The Green potential 

G1(x) := 1 G(x,w)jv'i(w)l2dV(w) 
M 

is asymptotically bounded. 

(iv) The potential G1 defined in (iii) is bounded on M. 

Remark. As known, in the classical Euclidean case, the part "(i)<=;> (ii)" was obtained 

by Pefferman and Stein [24]. In the case of the Bergman ball in en, analogous results to 
Theorem 3.3 were proved in Jevtic [27]. See also [8] and [9]. 

4 A gradient estimate for harmonic functions and 

Bloch functions. 

In this section we will apply Theorem 3.3 to Bloch function theory on Rlemannian man

ifolds. 
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Classicaly Bloch functions were defined on the open unit disc D in C as follows: a 

holomorphic function f on D is said to be a Bloch function on D if 

(11) sup(l - lzl)l/'(z)I < oo. 
zED 

This means that f is a Bloch function if and only if the norm of gradient IV /I with 

respect to the Poincare metric is bounded. Now the notion of Bloch functions is naturally 

extended to Riemannian manifold (R, h) : 

Definition 4.1 Let f be a harmonic function on R. Then f is said to be a harmonic 

Bloch function on M if 

11/IIB := sup IV J(x )I < oo, 
xen 

where IV/I is the norm of gradient off with respect to the metric h, i.e. IV/(x)l 2 = 
Li,j hii(x)(8f(x)/8x;)(8f(x)/8xj), where (hii(x)) is the inverse matrix of the Rieman

nian metric (hii(x)). 

In particular, if (R, h) is a Kahler manifold, then a function u is said to be a holo

morphic Bloch function on M if u is a harmonic Bloch function and holomorphic on 

R. 

In [32], Krantz and Ma defined Bloch functions on a bounded strongly pseudoconvex 

domain with smooth boundary. See Timoney [44] for Bloch functions on symmetric 

domains. If (R,h) is a bounded smoothly strongly pseudoconvex domain endowed with 

the Bergman metric, it is easy to see that our definition of Bloch functions is equivalent 

to one by Krantz and Ma. 

If the Ricci curvature of R is nonnegative, then from Yau and Chen's results it follows 

that the class of Bloch functions is equal to the class of harmonic functions with linear 

order growth (see [34] and [30]). 

Theorem 4.1 ([10]) Suppose f E B.MO(w). Then J is a harmonic Bloch function on 

M. Indeed 

(12) sup IIV }(x)II ~ Cll/llaMo, 
xEM 

where C is a positive constant depending only on .M and o. 

In particv.lar, there exists a unbounded harmonic Bloch function on M. 

Let T be the unit circle. Denote by BMOA(T) the set of all functions f in BMO(T) 

such that the Poisson integral off is holomorphic in the open unit disc D. Then it is 

known that if f E Brv10A(T), then its Poisson integral is a holomorphic Bloch function 
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on D (cf. [40]). Krantz and Ma [32] extended this fact to bounded strongly pseudoconvex 

domains with smooth boundaries. Our proof of Theorem 4.1 is different from their proofs. 

It should be noted that the inequality (12) is closely related to Jerison and Kenig [28, 

Lemma 9.9] for harmonic functions with respect to the Euclidean Laplacian. 

m, 

Let u(z) = :E:m z15• (z ED). Then u is a holomorphic Bloch function, and for large 

lu(rew)I 
Jim sup ---;==========;c==c==c= > 0.685llulls a.e. 0 E [0, 27!') 

r--+l ✓log(l - r)- 1 logloglog(l - r)-1 

(see [40, p.194]). 

In 1985, Makarov proved the following 

Theorem M (Makarov [36]; see also Pommerenke [40, p.186]) Let u be a holomorphic 

Bloch function on D. Then for almost every 0 E [0, 271'), 

lu(rew)I 
Jim sup--;,===================== < llull B· 

r--+I ✓log(l - r)-'log log log(l - r)-1 -

Also a probabilistic version of Theorem M was obtained by Lyons [35]: 

Theorem L (Lyons (35]) Let u be a holomorphic Bloch function on D. Let X 1 be 

hyperbolic Brownian motion on D. Then 

limsup lu(Xi)I < llulls-
1• 00 ✓log(l- lX1l)- 1 logloglog(l-lXd)-1 -

We will generalize Theorem L to our manifold M. We begin with characterizing Bloch 
functions in terms of Brownian motion: 

Theorem 4.2 ([10]) For a harmonic function u on M, the following (i) and (ii) are 
equivalent: 

(i) u is a harmonic Bloch function on M. 

(ii) The stochastic process { u(Zi)}t satisfies that 

2 {Ex[lu(ZT)-u(Zo)l2] } 
llulls,prob := !~ Ex[T] : T ET,,, Ex[T] > 0 < oo, 

where T,, is the set of all (F;')-stopping times. Furthermore, !lulls :S llulls,prob :S v2llulls-
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In the case of the open unit disc in C, a martingale characterization of holomorphic 

Bloch functions was given in Muramoto [39]. We will prove Theorem 4.2 by simplifying 

and exploiting the method in [39] by combining an idea in Lyons [35]. 

Now we describe on our genealization of Thoerem L: 

Theorem 4.3 ([10]) Let u be a harmonic Bloch functions on M. Then 

limsup lu(Zt)I < CllullB P-a.s. 
Hoo Jd(o,Zt)Ioglogd(o,Zt) -

As an immediate consequence of Theorem 4.3 we have the following 

Corollary 4.4 ([10]) Let M = {x E Rn: lxl < 1} and let g be the hyperbolic metric on 

M. Then for a harmonic Bloch function u on ( M, g), 

limsup lu(Zt) - u(o)I < CllulJa a.s.P0 

Hoo J!og(l - IZ1l)-1 Iogloglog(l - lZtl)-1 -
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1. INTRODUCTION 

In the recent paper [3] by Asai et al., the growth order of holomorphic 
functions on a nuclear space has been considered. For this purpose, cer
tain classes of growth functions u are introduced and many properties of 
Legendre transform of such functions are investigated. In [4], applying Le
gendre transform of u under the conditions (UO), (U2) and (U3) (see §2), 
the Gel'fand triple 

[&]u C (L2) C [&]~ 
associated with a growth function u is constructed. 

The main purpose of this work is to prove Theorem 4.4, so-called, the 
characterization theorem of Hida measures (generalized measures). As ex
amples of such measures, we shall present the Poisson noise measure and 
the Grey noise measure in Example 4.5 and 4.6, respectively. 

The present paper is organized as follows. In §2, we give a quick review of 
some fundamental results in white noise analysis and introduce the notion 
of Legendre transform utilized by Asai et al. in [3],[4]. In §3, we simply cite 
some useful properties of the Legendre transform from [3]. In §4, we discuss 
the characterization of Hida measures (generalized measures). 

'Current address: International Institute for Advanced Studies, Kizu, Kyoto, 619-0225, 
JAPAN. 
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2. PRELIMINARIES 

In this section, we will summarize well-known results in white noise anal
ysis [9],[20],[22] and notions from Asai et a!.(l],[2],(3],[4]. Complete details 
and further developments will be appeared in [5]. Some similar results have 
been obtained independently by Gannoun et al. (8]. 

Let £0 be a real separale Hilbert space with the norm I · lo- Suppose 
{I· lp}~0 is a sequence of densely defined inner product norms on £0. Let 
£p be the completion of £ with respect to the norm I · Ip• In addition we 
assume 

(a) There exists a constant O < p < I such that I · lo :S: Pl · 11 :S: · · · :S: 
pPI. IP :s: .... 

(b) For any p ~ 0, there exists q ~ p such that the inclusion iq,p : £q '-+ Ep 
is a Hilbert-Schmidt operator. 

Let £' and t:; denote the dual spaces of£ and £p, respectively. We can use 
the Riesz representation theorem to identify £0 with its dual space £~. Let £ 
be the projective limit of {£p; p ~ O}. Then we get the following continuous 
inclusions: 

£ C Ep C £0 Ct:; C £', p~ 0. 

The above condition (b) says that £ is a nuclear space and so £ C £0 C £' 
is a Gel 'fand triple. 

Let µ be the standard Gaussian measure on £' with the characteristic 
function given by 

( E £. 

The probability space(£',µ) is called a white noise space or Gaussian space. 
For simplicity, we will use (£2) to denote the Hilbert space of µ-square 
integrable functions on£'. By the Wiener-Ito theorem, each cp E (£2) can 
be uniquely expressed as 

00 00 

cp(x) = LinUn)(x) = L(:x®n:,fn), (2.1) 
n=O n=O 

where In is the multiple Wiener integral of order n and : x®n: is the Wick 
tensor of x E £' (see (20].) Moreover, the (£2)-norm of cp is given by 

( 
oo ) 1/2 

ll'Pllo = ~ nllfnl5 (2.2) 
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Let u E C +,½ be the set of all positive continuous functions on [0, oo) 
satisfying 

I' logu(r) 
r~~ VT = oo. 

In addition, we introduce conditions: 

(U0) infre'.ou(r) = 1. 

(Ul) u is increasing and u(0) = 1. 

(U2) limr• oo r~l logu(r) < oo. 

(U3) logu(x2) is convex on [0,oo). 

Obviously, (Ul) is a stronger condition than (U0). 
Let G+,log denote the set of all positive continuous functions u on [0, oo) 

satisfying the condition: 

Jim log u(r) = oo. 
r• oo logr 

It is easy to see G+,½ C G+,log· 
The Legendre transform iu of u E G+,log is defined to be the function 

lu(t) = :~ u;~), t E [O, oo). 

Some useful properties of the Legendre transform will be refered in section 
3. 

lFrom now on, we take a function u E C+,½ satisfying (U0) (U2) (U3). 

We shall constract a Gel'fand triple associated with u. For cp E (£2) being 
represented by Equation (2.1) and p ~ 0, define 

ll'Pllp,u = (~ e}n) Ifni~) 112 (2.3) 

Let [£pJu = { <p E (£2); ll'Pllp,u < oo }. Define the space [£Ju of test functions 
on£' to be the projective limit of {[£pJu; p ~ 0}. The dual space [&J: of [&]u 
is called the space of generalized functions on £'. 

Choose an appropriate Po such that cp2P0 v'2 5: 1 for some c. Then two 
conditions (a) and (U2) imply that [£pJu C (£2) for allp ~ PO· Hence [£Ju C 
(£2) holds. By identifying (£2) with its dual space we get the following 
continuous inclusions: 

[£Ju C [£pJu C (£2) C [£pJ: C [&J:, P ~ Po, 

where [£pJ: is the dual space of [£pJu, Moreover, [£Ju is a nuclear space and 
so [£Ju C (£2) C [&J: is a Gel'fand triple. Note that [£]~ = Upe'.o[&p]~ and 
for p ~ Po, [£p]~ is the completion of (£2) with respect to the norm 

ll'PJl-p,(u) = (~ (n!)2£,.(n) lfnl:.p) 112 
(2.4) 
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For ( belonging to the complexification &c of £, the renormalized expo
nential function :e<·,{): is defined by 

00 1 
. e<·,{). = L - (· .®n. €®n) 
. . n=O n! . ., . 

Then we have the norm estimate, 
00 

II : eUl: 11:_q,(u) = L lu(n)l(I:_~ =: .Cu(l(j:_q). (2.5) 
n=O 

For later uses, let us define the notion of equivalent functions here. 

Definition 2.1. Two positive functions f and g on (0, oo) are called equiv
alent if there exist constants c1, c2, 01, 02 > 0 such that 

Yr E [0,oo). 

Example 2.2. 

9k(r) = exp [2Jr1ogk-I yr] , 
where logk(r) is given by 

log1(r) = log(max{e,r}), logk(r) = log1(logk-I(r)), k ~ 2. 

(2.6) 

Then the function 9k belongs to C+,r/2 and satisfies conditions (Ul) (U2) 
(U3). In the sense of Definition 2.1, the function 9k is equivalent to the 
function given by 

00 1 
Uk(r) = L r----c ) ,rn 

n=O kn n. 

where bk(n) is the k-th order Bell number. Hence we get the Gel'fand triple, 

[£] 9, C (£2) C [&];, 

known as the CKS-space associated with 9k, which is the same as the one 
defined by the k-th order Bell number h(n). See more details in (1),(2],[3], 
(4],(5],(6],(15],(16]. 

Example 2.3. For 0 ~ {3 < 1, let u be the function defined by 

u(r) = exp [(1 + {3)rm]. 

It is easy to check that u belongs to C+,r/2 and satisfies conditions (Ul) 
(U2) (U3). Hence this Gel'fand triple, 

(&)p C (£2) C (&)iJ 

which is well-known as the Hida-Kubo-Takenaka space for {3 = 0 (9),(10),(17], 
(18],(22] and the Kondratiev-Streit space for a general /3 (12), (20). For {3 = 1 
case, see [11],(13),(14]. 
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Remark. We have the following chain of Gel'fand triples: 

(E)i C [E] 9• C [E]9, C (E)13 C (E)-y C (£2) C (t:); C (E)~ C [E];, C [t:J;. C (E)j 

where 0 :5 -y :5 /3 < 1 and 2 :5 ! :5 k. 

3. PROPERTIES OF LEGENDRE TRANSFORMS 

First we mention the following notions of concave and convex functions 
which will be used frequently. 

Definition 3.1. A positive function f on [0, oo) is called 

(1) log-concave if the function logf is concave on [0,oo); 
(2) log-convex if the function log f is convex on [0, oo ); 
(3) (log, exp)-convex if the function log f(e"') is convex on IR; 
(4) (log, x2)-convex if the function logf(x2) is convex on [0,oo). 

We will need the fact that if f is log-concave, then the sequence {f ( n)} ::"=o 
is log-concave. To check this fact, note that for any t1, t2 ~ 0 and O :5 >. :5 1, 

f(>.t1 + (1- >.)t2) ~ f(td' f(t2) 1->-. 

In particular, take t1 = n, t2 = n + 2, and >. = 1 /2 to get 

f(n)f(n + 2) :5 f(n + 1)2, \f n ~ 0. 

Hence the sequence {f(n)}::O=o is log-concave. 
The next theorem is from Lemma 3.4 in [3]. 

Theorem 3.2. Let u E C+,log· Then the Legendre transform lu is log
concave. (Hence lu is continuous on [0,oo) and the sequence {lu(n)}::"=o is 
log-concave.) 

i,From Theorem 2 (b) in [l) we have the fact: If {a(n)/n!}::"=o is log
concave and a(0) = 1, then 

( n+m) a(n + m) :5 n a(n)a(m), \fn,m ~ 0. 

By Theorem 3.2 the sequence {lu(n)} is log-concave. Hence we can apply 
the above fact to the sequence a(n) = n!lu(n)/lu(0) to get the next theorem. 

Theorem 3.3. Let u E C+,Iog• Then for all integers n,m ~ 0, we have 

lu(0)lu(n + m) :5 lu(n)lu(m). 

In the next theorem we state some properties of the Legendre transform 
lu of a (log, exp)-convex function u in C+,log· It is from Lemmas 3.6 and 
3.7 in (3). 

Theorem 3.4. Let u E C+,log be (log, exp)-convex. Then 

(1) lu(t) is decreasing for large t, 

(2) 1imt• oolu(t) 111 = 0, 
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(3) u(r} = sup1;:::o eu(t)r1 for all r ::C: 0. 

On the other hand, for a (log, x2)-convex function u in C+,log, its Legendre 
transform eu has the properties in the next theorem from Lemmas 3.9 and 
3.10 in [3]. If in addition u is increasing, then u is also (log, exp )-convex 
and hence eu has the properties in the above Theorem 3.4. 

Theorem 3.5. Let u E C+,log· We have the assertions: 

(1) u is {log, x2 )-convex if and only if eu(t)t21 is log-convex. 

(2) If u is {log, x 2 )-convex, then for any integers n, m ::C: 0, 

eu(n)fu(m) :$ lu(0)22(n+m)eu(n + m). 

Now, suppose u E C+,log and assume that limn• oolu(n) 1fn = 0. We 
define the Ir function Cu of u by 

00 

Cu(r) = L lu(n)rn. (3.1) 
n=O 

Note that Cu is an entire function. By Theorem 3.4 (2), fu is defined for 
any (log, exp)-convex function u in E C+,log· Moreover, we have the next 
theorem from Theorem 3.13 in [3]. 

Theorem 3.6. {1) Let u E C+,log be {log, exp)-convex. Then its L-function 
Cu is also {log, exp )-convex and for any a > 1, 

ea 
Cu(r) :$ -1-u(ar), Vr ::C:: 0. 

oga 

(2) Let u E C+,log be increasing and (log, x2)-convex. Then there exists a 
constant C such that 

Vr ::C:: 0. 

Recall from Proposition 2.3 (3) in [3]: If/ is increasing and (log, x2)

convex for some k > 0, then f is (log, exp )-convex. Hence the above Theo
rem 3.6 yields the next theorem. 

Theorem 3. 7. Let u E C+,log be increasing and (log, x2 )-convex. Then the 
functions u and Cu are equivalent. 

In the next section 4, we will consider the characterization of Hida mea
sures (generalized measures). We prepare two lemmas for this purpose. The 
proof of Lemma 3.8 is simple application of Theorem 3.5 so that we just 
state it without proof. 

Lemma 3.8. Suppose u E C+,log is {log, x2 )-convex. Then 

Vr E [0,oo). (3.2) 
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Remark. Note that .Cu(r) ~ lu(0) for all r ~ 0. Hence we have 

Vr E [0,oo). 

Thus .Cu and .C~ are equivalent for any (log, x 2)-convex function u E C+,Iog• 
If, in addition, u is increasing, then u and .Cu are equivalent by Theorem 
3. 7. It follows that u and u2 are equivalent for such a function u. 

The next Lemma 3.9 can be obtained from Theorem 3.8 and Lemma 3.6. 

Lemma 3.9. Suppose u E C+,Iog is increasing and (log, x 2 }-convex. Then 
for any a> 1, we have 

i,,.(0)-lea u(a23r)1/2_ 
oga 

4. CHARACTERIZATION OF HIDA MEASURES 

(3.3) 

Before going to the main theorem, we need to introduce another equiva
lent family of norms on [&]u, i.e., {11 · IIA, .• ; p ~ 0}. This family of norms is 
intrinsic in the sense that ll'PIIA,,. is defined directly in terms of the analyt
icity and growth condition of ,p. 

First, it is well-known that each test function ,p in [&]u has a unique 
analytic extension (see §6.3 of [20]) given by 

,p(x) = ((:ehz) :, 9,p)), x E &~, (4.1) 

where 9 is the unique linear operator taking e<·,e) into : ehe) : for all { E 
&c, By Theorem 6.2 in [20] with minor modifications, 9 is shown to be a 
continuous linear operator from [&],,. into itself. Note that we still assume 
conditions (U0), (U2) and (U3) on u given in section 2. 

Now, let p ~ 0 be any fixed number. Choose p1 > p such that 2p2(p,-p) ~ 
1. Then use Equations (4.1), (2.5) and Theorem 3.6 to get 

l,p(x)I ~ ll9,pllp,,ull:ehz):ll-p1 ,(u) ~ ll9,pllp,,u~u(2lxl:.p,) 112 . 

Note that 2lxl:.p, ~ 2p2(Pi-Pllxl:.P ~ lxl:.p by the above choice of Pl• Since 
u is an increasing function, we see that 

l,p(x)I ~ ll9,pllp1,u ~ u(lxl:.P) 112. 

But 9 is a continuous linear operator from [&]u into itself. Hence there 
exist positive constants q and Kp,q such that 119,pllp,,u ~ Kp,qll'Pllq,u· There
fore, 

XE t:;,c, (4.2) 

where Cp,q = Kp,qJ2e/ log 2. This is the growth condition for test functions. 
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Being motivated by Equation (4.2), we define 

ll'PIIAp • = sup lcp(x)I u(lxl:pr112. 
' :tE&~,c 

(4.3) 

Obviously, II · IIAP,• is a norm on [£Ju for each p 2 0. 

Theorem 4.1. Suppose u E C+,i/2 satisfies conditions {UJ) {U2} {U3). 
Then the families of nonns {II · IIAp,ui p 2 0} and {II · llp,ui p 2 0} are 
equivalent, i.e., they generate the same topology on [£Ju• 

Remark. This theorem gives an alternative construction of test functions. 
This idea is due to Lee [21], see also §15.2 of [20]. For p 2 0, let Ap,u consist 
of all functions cp on £~ satisfying the conditions: 

(a) cp is an analytic function on t:;,c 
(b) There exists a constant C 2 0 such that 

lcp(x)I S Cu(lxl:p) 112 , 'r/x E t:;,c 

For each cp E Ap,u, define ll'PIIAp,• by Equation (4.3). Then Ap,u is a 
Banach space with norm ll·IIAP,•. Let Au be the projective limit of {Ap,ui p 2 
0}. We can use the above theorem to conclude that Au = [£Ju as vector 
spaces with the same topology. Here the equality Au = [£Ju requires the 
use of analytic extensions of test functions in [£Ju, which exists in view of 
Equation (4.1). 

Proof. Let p 2 0 be any given number. We have already shown that there 
exist constants q > p and Cp,q 2 0 such that Equation ( 4.2) holds. It follows 
that 

Hence for any p 2 0, there exist constants q > p and Cp,q 2 0 such that 

'r/cpE [£]u. (4.4) 

To show the converse, first note that by condition (U2) there exist con
stants c1,c2 > 0 such that u(r) S c1e02r, r 2 0. Next note that by Fernique's 
theorem (see [7J, [19J, [20]) we have 

{ e2c2l:x:I:., dµ(x) < 00 Ji, for all large >-.. 

Now, let p 2 0 be any given number. Choose q > p large enough such 
that 

{ e2c,lxl:.. dµ(x) < oo. 
Ji, 

With this choice of q we will show below that 

'r/cp E [£Ju, 

77 

(4.5) 

(4.6) 



where Lp,q is the constant given by 

Lp,q = ../cJ. (1 - 4e2lliq,plltsr112 r e2c21"1~. dµ(x). (4.7) le, 
Observe that the theorem follows from Equations (4.4) and (4.6). 

Finally, we prove Equation (4.6). Let <p E [e]u- Then we can use an 
integral form of S-transform (see (20]) given by 

F(e) = S<p(e) = { ,p(x + () dµ(x), le, 
Hence for the above choice of q, we have 

IF(()I :s: { l,p(x + 01 dµ(x) le, 
:s: h, (1,p(x + e)I u(Jx + e1:.q)-112) u(lx + e1:.q) 112 dµ(x) 

:S: ll'Pll.4,,,. { u(Jx HJ:.g)112 dµ(x). le, 
Here by condition (Ul), we have u(r) 112 :S: u(r) for all r 2: 0. Therefore, 

IF(e)I :s: ll'Pll.4,,,. { u(lx + el:.9) dµ(x). le, 
By condition (U3), we have 

(( 1 1 )2) ( 2)1/2 ( 2)1/2 u 2r1 + 2r2 :S: u r 1 u r 2 , 

Put r1 = 2jxj_9 and r2 = 21(1-q to get 

u(lx + el:.q) :s: u ( (½2lxl-q + ½21e1-q)2) 

:S: u(4lxl:.g) 112 u(4lel:.g) 112 . 

Then integrate over e' to obtain the inequality: 

(4.8) 

{ u(lx Hl:.q) dµ(x) :S: u(4lel:.q) 112 { u(4lxl:.q) 112 dµ(x). 
le' le' (4.9) 

Put Equation (4.9) into Equation (4.8) to get 

IF(e)I :S: ll'Pll.4,,,.u(4l(l:.g)112 { u(4lxl:.q) 112 dµ(x). (4.10) le, 
Now, by the inequality u(r) :S: c1ec2r, we have 

f u(4lxl:. ) 1/ 2 dµ(x) :s; ../cJ. f e2c2 lxl~, dµ(x), (4.11) le, q le, 
which is finite by the choice of q in Equation (4.5). 
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lF'rom Equations (4.10) and (4.11), we see that 

IF(~)I :s ll'Pll.4q,. Fi (h, e2<21 '"1~, dµ(x)) u(4lel:q) 112 , 

With this inequality and the choice of q in Equation (4.5) we can apply 
Lemma 4.2 (see below) and Equation (2.3) to show that for any ,p E [t']u, 

ll'Pllq,u $ Lp,qll'PIIA,,u' 

where Lp,q is given by Equation(4.7). Thus the inequality in Equation (4.6) 
holds and so the proof is completed. • 

In the proof of the prevous theorem, we have used the next lemma from 
[3]. 

Lemma 4.2 ([3]). Suppose u E C+,i/2 satisfies conditions {Ul) {U2) {U3). 
Let F be a complex-valued function on t'c satisfying the conditions: 

(1) For any~' 1/ E t'c, the function F(z~ +11) is an entire function of z EC. 
(2) There exist constants K, a,p ?: 0 such that 

Let q E [O,p) be a number such that ae2 llip,q111is < 1. Then there exist 

functions In E e:,c such that F(e) = I:;:"=oUn,~®> and 

Ifni~$ K(ae2 llip,q111fstlu(n). (4.12) 

Definition 4.3. A measure v on £' is called a Hida measure associated with 
u if [t']u C L 1(v) and the linear functional ,p 1-t J0, ,p(x) dv(x) is continuous 
on [t']u-

In this case, v induces a generalized function, denoted by v, in [£]~ such 
that 

((v, ,p)) = f ,p(x) dv(x), it• 'PE [t']u. (4.13) 

Theorem 4.4. Suppose u E C+,i/2 satisfies conditions {U1) {U2) {U3). 
Then a measure v on £' is a Hida measure with 'ii E [£]~ if and only if v is 
supported by e; for some p ?: 0 and 

f u(lxl:p) 112 dv(x) < oo. (4.14) 
li~ 

Remarks. (a) The integrability condition in the theorem can be replaced by 

r u(lxl:p) dv(x) < oo. 
le p 

To verify this fact, just note that u and u2 are equivalent ( from the Remark 
of Lemma 3.8) and lxl-q $ pq-plxl-p for O $ p $ q and x E e;. 
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(b) This theorem is due to Lee [21] for the case u(r) = er. See §15.2 of 

the book [20] for the case u(r) = exp [(1 + ,B)r rh], 0 ~ ,6 < 1. In the case 
of ,6 = 1, we need special treatment since our Legendre transform method 
should be modified. In order to take care of ,6 = 1 case, we have to remove 
the assumption 

lira logu(r) = 00 
r • oo vr 

on u introduced in §2, for example. It will be discussed in the future. On the 
other hand, there are references [13],[14] discussed this case with a diffrent 
way from our point of view. 

Proof. To prove the sufficiency, suppose v is supported by e; for some p 2: 0 
and Equation (4.14) holds. Then for any cp E [e]u, 

f lcp(x)I dv(x) = f lcp(x)I dv(x) 
iv le~ 

= 1, (lcp(x)lu(lxl:pr112 ) u(lxl:p) 112 dv(x) 
p 

~ ll'PIIA,,. f u(lxl:p) 112 dv(x). (4.15) 
lei 

By Theorem 4.1, {II · l!A,,.; p 2: 0} and {JI · Jlp,ui p 2: 0} are equivalent. 
Hence Equation (4.15) implies that [e]u c L1(v) and the linear functional 

cpi----t f cp(x)dv(x), le, cp E [e]u, 

is continuous on [e]u. Thus vis a Hida measure with ii in [e]:. 
To prove the necessity, suppose v is a Hida measure inducing a generalized 

function v E [e]:. Then for all cp E [e]u, 

((v,cp}) = f cp(x}dv(x). le, (4.16} 

Since {II · IIA, .• ; p 2: 0} and {II · Jlp,ui p 2: 0} are equivalent, the linear 
functional cp >--t ((v,cp)) is continuous with respect to {II· l!A,,.; p 2: 0}. 
Hence there exist constants K, q 2: 0 such that for all cp E [e]u, 

I {{ii, cp}} I ~ Kllcpl!A,,u • (4.17} 

Note that by continuity, Equations (4.16} and (4.17) also hold for all cp E 
Aq,u defined in the Remark of Theorem 4.1. 

Now, with this q, we define a function 0 on e;,c by 

x E e~,c• 
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where (·, •)-q is the bilinear pairing on t:;,c· Obviously, 0 is analytic on £~,c
On the other hand, apply Lemma 3.9 with a = k = 2 to get 

l0{x)I $ .C,,(2-4 lxl:.9) $ &, u(lxl:.q}112 , 'Ix E E~,c· 

This shows that 0 E Aq,u and we have 

11011-4,,,. ::; &,. 
Then apply Equation {4.17) to the function 0, 

I ((v, 0)) I ::; Kll0ll.4q,. ::; K &,. 
Therefore, from Equation (4.16) with rp = 0 we conclude that 

l.l. 0(x)dv(x)I $ K&,. (4.18) 

Note that 0(x) = .Cu(2-4 lxl:.9) for x E £'. Hence Equation (4.18) implies 
that 

But u(r) $ C.Cu{4r) from Theorem 3.6 (2) with k = 2. Therefore, 

( u(T61xl:.9) dv(x) < oo. le, 
Now, choose p > q large enough such that p2(p-q) $ 2-6 • Then lxl:.P $ 
2-6 jxj:.q· Recall that u is increasing. Hence 

r u(lxl:.p) dv(x) < oo. le, 
Note that u(r) ~ 1 and so u(r) 1f2(r) $ u(r). Thus we conclude that 

( u(lxl:.p) 112 dv(x) < 00. le, 
This inequality implies that vis supported by t:; and Equation (4.14) holds. 

• 
Example 4.5. (Poisson noise measure) 
Let P be the Poisson measure on £• given by 

exp(k, (ei{{t) - l)dt) = 1. ei(:r,{)P(dx), { E £'. 

It has been shown [6] that the Poisson noise measure induces a general
ized function in [£];2 • Thus by Theorem 4.4 and Example 2.2 we have the 
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integrability condition 

1. exp(lxl-pJlog lxl-p )P(dx) < oo 
p 

for some p. 

Example 4.6. (Grey noise measure) 
Let O < ,\ :=; 1. The grey noise measure on t:• is the measure VJ,. having the 
characteristic function 

LJ,.(l~I~) = r ei(x,e)VJ,.(dx), ~Ee, 
le-

where LJ,.(t) is the Mittag-Leffier function with parameter,\; 

00 (-tr 
L»(t) = ~ r(l + ,\n). 

Here r is the Gamma function. This measure was introduced by Schneider 
[23). It is shown in [20) that v;.. is a Hida measure which induces a generalized 
function Pv, in (e)i-:..· Therefore by Theorem 4.4 and Example 2.3 the grey 
noise measure VJ,. satisfies 

r i , 
Jc· exp(2(2 - >-)lxl_:;')vJ,.(dx) < oo 

• 
for some p. 
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ON STOCHASTIC GENERATORS OF POSITIVE DEFINITE 
EXPONENTS. 

V, P. BELAVKIN. 

ABSTRACT. A characterisation of quantum stochastic positive definite (PD) 
exponent is given in terms of the conditional positive definiteness (CPD) 
of their form-generator. The pseudo-Hilbert dilation of the stochastic form
generator and the pre-Hilbert dilation of the corresponding dissipator is found. 
The structure of quasi-Poisson stochastic generators giving rise to a quantum 
stochastic birth processes is studied. 

1. INTRODUCTION 

Quantum probability theory provides examples of positive-definite (PD) infinitely
divisible functions on non-Abelian groups which serve as characteristic functions 
of quantum chaotic states, generalizing the characteristic functions of classical sto
chastic processes with independent increments. The simplest examples are given by 
quantum point processes [l] which are characterized by analytical functions on the 
unit ball B = {y E l3 : !!vii :5 1} of a non-commutative group C*-algebra. Such pro
cesses generate Markov quantum dynamics by one-parameter families ,t, = (</it)t>O 
of nonlinear completely positive maps ,t,, : B • A on the unit ball of a C*-algebra 
B, into an operator algebra A of a Hilbert space 7-l. As in the linear case, an 
analytical map ,t,, is completely positive iff it is positive definite (PD), 

(1.1) L ('1"l,t,(x*z)17'):=L('1;l</i(y;'yk)1}k}~O, '11};E1-l,y;EB, 
x,::EB i.k 

where '7" = '7; ,f. 0 only for y = Y;,j = 1, 2, .... The simplest quantum point 
dynamics of this kind is given by the quantum Markov birth process which is 
described by the one-parameter semigroup 

'P, (y) 'Pr (y) = 'P,+r (y), 'Po (y) = 1, YE B 
of infinitely divisible bounded PD functions ,t,, : B • C with the normalization 
property 'Pt (1) = 1, where 1 E Bis (approximative) identity of l3. The continuity of 
the semigroup ,t, suggests the exponential form rf,1 (y) = exp [t>. (y)] of the functions 
'Pt . The corresponding analytic generator 

,\ (y) =!In</>, (y) :=Jim! (,t,, (y) - 1) 
t t',.O t 

of such semigroup is conditionally completely definite (CPD), and this is equivalent 
to the PD property (1.1) for rt, = ,\ under the condition L-; ryi = 0 and ,\ (1) = 0 
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The CPD functions have been studied in (2] and the corresponding dilations 
<Pt (y) = (rr1 (y)) to the multiplicative stochastic exponents rr, (y) =: e>.-p A (t, y) : 
of a quantum process A (t, y) with independent increments and the vacuum mean 
(A (t, y)) = t>, (y) in Fock space were obtained in (3, 4]. The unital * -multiplicative 
property 

rr, (x*z) = rr, (x)1 rr1 (z), rr1 (1) = I, 

obviously implies the PD (1.1) of <P = rr, , and the stationarity of the increments 
A' (t) = A (t + s) - A (s) implies the cocycle exponential property 

rr, (y) rr: (y) = rr,H (y), \Ir, s > 0, 

with respect to the natural time-shift ;r H rr• in the Fock space of the representation 
rr . The dilation of the CPD generators A over the suggests their general form 
A (y) = <p (y) - 1< , where ,pis a PD function on B with ,p (0) = 0 and,;:= ,p (1) . 

Here we shall extend this dilation theorem to the stochastic PD families <P sat
isfying the cocycle exponential property 

<P, (y) <P: (y) = <Pr+• (y), \Ir, s > 0, 

but not yet the unital multiplicative property. In particular, we shall obtain the 
structure of the stochastic form-generator for a family <P of PD functions <P, (w) : 
B • C , given as the adapted stochastic process <P, (w, y) for each y E B with 
respect to a classical process w = {w (t)} with independent increments, and having 
the cocycle exponential property with respect to the time-shift <Pr (w) = <P, (w'), 
w• = { w ( t + s)} . Such stochastic functions can be unbounded, but they are usually 
normalized, <P, (w, 1) = m, (w), to a positive-valued process m1 2: 0 , having the 
martingale property 

m, (w) = lt (m,] (w), \Is> t, mo (w) = 1, 

where ft is the conditional expectation with respect to the history of the process 
w up to time t . As follows from our dilation theorem, for example the stochastic 
exponent 

<Pt (y) = (1 + a (y)JP(') exp (t.X (y)] 

with respect to the standard Poisson process p(t,w) is PD and normalized in the 
mean iff 1 + a and ,;: + .X are PD for a ,;: 2: 0 , and a (1) + .X (1) = 0. 

2. THE GENERATORS OF QUANTUM STOCHASTIC PD EXPONENTS. 

Let us consider a (noncommutative) Ito b -algebra a (4, 5], i.e. an associative * 
-algebra, identified with the algebra of quadruples a = (at)~;~:; , 

a: = i (a), ai = k (a), a; = k• (a), a:;: = I (a), 

under the product ba = (b~a!) and the involution a H b = a* E a , b* = a , 
represented by the quadruples b = a' with b"..v = a~~ , where -± = 'f , -• = • . 

Here i (b) k (a)= k (ba) is the GNS * -representation i (a*)= i (a)1 associated with 
a linear positive* -functional I: a H C, /(a*)= !(a)", and k• (a*)= k(a) 1 is 
the linear functional on the pre-Hilbert space /( of the Kolmogorov decomposition 
/(a*a) = k(a) 1 k(a) of the functional!, separating a in the sense a= 0 (,}i(a) = 
k(a)=l(a)=0. 
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Let B denote a (noncommutative) semigroup with identity 1 E B and involution 
y t--+ y• E B, (x*z)* = z*x, 'vx, y, z EB, say, a (noncommutative) group with y* = 
y- 1 , or the unital semigroup B = 1 Ell b ofa * -algebra b with (1 Ell a)* (1 Ell c) = 1 ill 
a*C, where a*C = c+a•c+a* for a, c E b. The stochastically differentiable operator
,·alued exponent cf>, (y) over B with respect to a quantum stationary process, with 
independent increments A' (t) = A (t + s) - A (s) generated by a separable Ito 
algebra a is described by the quantum stochastic equation 

(2.1) d¢1 (y) = ¢1 (y) a (y) dA (t) := c/>1 (y) L:0~ (y) dA~, y EB 
µ,v 

with the initial condition </>o (y) = I , for ally E B . Here a (y) Ea is given by the 
quadruple a: = [a:;'] , a~ = [a'.('] , a; = [a;;-] , a:j: of complex functions at : B • 
IC,µ E {-,1,2, ... }, v E {+,1,2, ... } and A= (A~)::~:: is the quadruple of the 

canonical integrators given by the standard time A! (t) = tl, annihilation .4~ (t) , 
creation At, (t) and exchange A;;, (t) operators in Fock space over L2 {IR.+ x N) with 
m,n EN ={1,2, ... }. The infinitesimal increments d.4~ = A!,"(dt) are formally 
defined by the Hudson-Parthasarathy multiplication table (6) and the b -property 
[4], 

(2.2) A'=A, 

where J~ is the usual Kronecker delta restricted to the indices f3 E { -, 1, 2, ... } , 7 E 

{ +, 1, 2, ... } and .4~" = A'.'..1 with respect to the reflection of the indices (-, +) 
only. The structural functions at for the • -cocycles ¢; = cf,1 , where ¢; (y) = 
rj,1 (y*) 1 should obviously satisfy the b -property a' = a , where a~" = a~: , 
at• (y) = at (y*) 1 even in the case of nonlinear ae . The summation in (2.1) is 
defined as a quantum stochastic differential [4] if I::;"=1 a;;- (y*) a'./. (y) < oo and 
the matrix [a:;' (y)], m, n E N represents a bounded operator in the Hilbert space 
i~ = { ( 0 : N • Cl I:::"=1 I<" 12 < 00} for each y E B. If the coefficients oe are inde
pendent oft , rt, satisfies the cocycle property cf>, (y) <P: (y) = cf>a+r (y) , where </>f is 
the solution to (1) with Ae (t) replaced by AV, (t). Define the tensors ae = ae (y) 
also forµ=+ and v = - , by 

a;; (y) = 0 = a~ (y), 'vy E B, 

and then one can extend the summation in (2.1) to the trace of the quadratic 
matrices a = [at] so it is also over µ = + , and v = - . By such an extension the 
multiplication table for dA (a)= d.4;ae = adA can be written as 

d.4 (b) dA (a)= d.4 (ba), ba = (~at] 

in terms of the usual matrix product bi at = b~ a~ and the involution a >--+ a' can 
be obtained by the pseudo-Hermitian conjugation a;;' = g"Ka~• gµ~ respectively to 
the indefinite (Minkowski) metric tensor g = [Uµv] and its inverse g-1 = [g""] , 
given by 9µv = J~" = g"" . 

Let us prove that the "spatial" part >. = (>.e)~:~ of the quantum stochastic 
germ >.e (y) = Je + oe (y) for a PD cocycle exponent rt, must be conditionally PD 
in the following sense. 

Theorem 1. Suppose that the quantum stochastic equation {fU) with <Po (y) = y 
has a PD .,olution in the sense of positive definiteness {1.1} of the matrix [</>t(yfyk)], 
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'rft > 0 . Then the germ-matrix>. = p+o top = ( ot )~;~ satisfies the GP D pmperty 

Le(; = 0:;, L ((,I>. (ytyk) (k) ?: 0. 
i,k 

Here ( E Cs~~ , e = (et)~;~ , ee = o;;o~ is the one-dimensional projector, 
written both with >. in the matrix form as 

(2.3) .>. = ( ;. ~: ) , e = u n , 
where>, = a:j:, >,m = a';\ >,,.=a;;-, ).;:' = o;:' + a;:' , with o:;' (y} = o;:' such 
that>, (y*) = >, (y)1 , >," (y*) = An (y)1 , ).;:' (y*) = >,;:_ (y)1 . 

Proof. Let us denote by V the C -span { E, f/ 0 f® : f/ EC, r E 4_ 0 L1 (IR+l} 

of coherent (exponential} functions f®t (r) = ®•err (t) , given for each finite 
subsetr = {t1, ••• ,tn} ~ IR+ bytensorsf®(r} = f"' (ti) ... f"N (tN) ,wheref",n = 
N are square-integrable complex functions on IR+ and {' = 0 for almost all r = 
(/") . The co-isometric shift T, intertwining A' (t) with _4 (t) = T,A• (t} Tl is 
defined on V by T, (!®) (r) = f® (r + s). The PD property (1.1) of the quantum 
stochastic adapted map ¢,1 into the V-forms (I/It/it (y) 7/), for 7/ EV can be obviously 
written as 

(2.4) 
i,k f,h 

for any sequence Yi E B,j = 1, 2, ... , where 

t/it u· ,y, h"} = (/®It/it (y) h®) e- J,- /'(•l' h"(•ld•' 

{' -IO only for a finite subset of r E {/;",i = 1,2, ... }. If the V -form t/it (y) 
satisfies the stochastic equation (2.1), the complex function ¢,1 (r, y, h") satisfies 
the differential equation 

~ln,fit(f",y,h")=f"(t)1h"(t)+ f: r(t}"a;:'(y)h"(t) 
m,n:::l 

0:, 0:, 

+ Lr (t}" °'+ (y) +La;;- (y) h" (t) qi+°'+ (y) 
m:::l n:::l 

where r (t) 1 h" (t) = E:;"=1 /" (t)' h" (t). The positive definiteness, (2.4}, ensures 
the conditional positivity 

LL{f = o =:. LL{{ >,t(f",vtYk,h"}{t?: o 
j I i,k f,h 

of the form At (/ 0 ,y,h"} = ½ (¢,, (!•,y,h"} -1) for each t > 0 and any Y; EB. 
This applies also for the limit ).0 at t .). 0 , coinciding with the quadratic form 

d 
dtt/it (/" ,y, h") lt=O = L iim A;:' (y) c" + L iim ).m (y) + L ..\,. (y) c" + >, (y), 

m,11 m n 

where a' = r (0), c• = h" (0) , and the >, 's are defined in (2.3). Hence the form 

LL(;>,~ (Y1Yk) G' := L(;A(Y1Yk) (k 
i,k µ.,11 i,k 
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+ L (L(;An (y;'yk) <r + L(~ Am (Y7Yk) (k + L(~A::' (YiYk) <r) 
,,I: n m 1n,n 

with ( = L1 e, (0 = L1 {1 aj , where aj = /" (0) , is positive if Lj (j = 0. 
The components ( and ( 0 of these vectors are independent because for any ( E IC 
and ( 0 = ((1,(2 , ••• ) E £~ there exists such a function a• t-t {° on 4i with a finite 
support, that La {a = (, La {aa• = ( 0 , namely, {a = 0 for all a• E £~ except 
a• = 0 , for which {a = ( - r:,:;'=1 (n and a• = e~ , the n -th basis element in 
f~ , for which {a = (n. This proves the complete positivity of the matrix form >. 
, with respect to the matrix orthoprojector Po defined in (2.3) on the ket-vectors 
(=((µ) • 

3. A DILATION THEOREM FOR THE FORM-GENERATOR. 

The CPD property of the germ-matrix >. with respect to the projective matrix 
Po (2.3) obviously implies the positivity of the dissipation form 

(3.1) L (('IA(x,z)(') := LL (<rlA~(Yk,YI)({)' 
z,: k,l µ,v 

where (- = ( = (+ and (j = ("; for any (finite) sequence Yi E B , j = 1, 2, ... 
, corresponding to non-zero (" E IC El, £~ . Here A = (At)~;:;::: is the stochastic 
dissipater 

A (x, z) = >. (x*z) - e>. (z) - >. (x*) e + e>. (1) e 

with the elements 

(3.2) 6;:' (x,z) = a;:' (x*z) +6:;', 

6;; (x,z) = a;; (x*z) - a;; (z) = A+ (z,x)1 , 

6:j: (x, z) = ct:j: (x* z) - o:j: (z) - o:j: (x*) + d, 

where d = a:; (1) :5 0 ( d = 0 for the case of the martingale Mt = <Pt (1) ). In 
particular the matrix-valued map A:= [A::') is PD. If the functions Am , An, A have 
the form 

(3.3) Am (y) = 'Pm (y) - Cm, An (y) = 'Pn (y) - Cn, A (y) = 'P (y) - C 

such that cp = >. - c , is a PD map for a constant Hermitian matrix c = (ct)~:~ , 
the CPD condition is fulfilled for A . 

In order to make the formulation of the following dilation theorem as concise as 
possible, we need the notion of the b -representation of B in a pseudo-Hilbert space 
£ = IC Ell K EB IC with respect to the indefinite metric 

(3.4) 

for the triples { = ({-,{0 ,{+) E £ , where C,{+ E IC, {° E K, K is a pre
Hilbert space. The operators A in this space are given by the 3 x 3 -block-matrices 
A= [At)~;:;::::! . and the pseudo-Hermitian conjugation {A1{!{) = ({j.4{) is given 
by the usual Hermitian conjugation Atµ= .4;• as Ab= a-1AtG respectively to 
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the indefinite metric tensor G = [G,,.] and its inverse a- 1 = [G""] , given by 

[ 
0 0 1 ] [ -d O 1 ] 

G = 0 Jg 0 , a-1 = 0 Jg 0 
1 0 d 1 0 0 

(3.5) 

with a real d , where Jg is the identity operator in K, . The algebras of all operators 
A on K, and£ with .41K, <;; K, and A'£<;; e are denoted by A (K,) and A(£). 

Theorem 2. The following are equivalent: 

1. The dissipator (3.2), defined by the P -map a with a:; (1) = d , is positive 
definite: 

L (C,IA(x,z}c,) ~ 0 
.:z:,.: 

2. There exist: a pre-Hilbert space K, , a unital t - representation j in A (K,) , 

(3.6) j (x*z) = j (xJ1 j (z), j (1) = J, 

of the * -multiplication structure of B , a j -cocycle on B , 

(3.7) k(x*z) =j(x)1 k(z)+k(x*), 

having values in K, , and a function l : B -+ C , having the coboundary 
property 

(3.8) l (x* z) = l (z) + l (x*) + k' (x*) k (z), 

with k' (y*) = k (y)' ,l (y*) = l (y)' , such that.,\ (y) = l (y) + d, 

An (y*) = k(y)1 L~ + L;;- = .,\n (y)1 , 

and .,\;:' (y) = L~ j (y) L~ for some elements L~ E K, with the adjoints L~• = 
L~ : K, -+ C and L;;- E C . 

3. There exist a pseudo-Hilbert space, e , namely, C EB K, EB C with the indefinite 
metric tensor G = [Gµv] given above forµ, v = -, o, + , and d = .,\ (I) , a 
unital b -representation J = [Jt]~;::::::! of the* -multiplication structure of B 
one: 

(3.9) ;(x*z) =J(x)';(z), ;(l} =I 

with ;(y)' = a-1;(y)1 G, given by the matrix elements 

J~=j, J~=k, ;;=k", J+=l, ;:=l=Jt 

and all other J~ = 0 , and a linear operator L : C EB 4i -t £ , with the 
components [L", L~] , where 

L- = 0, L0 = 0, L+ = l, L; = (L;;-), L~ = (L~), Lt= 0, 

and L' = ( ~ i~ f+ ) = LIG , where L~ = L~I, L+ = L;1 , such that 

{3.10) L'J (y) L = .,\ (y), \fy EB. 

4. The germ-matrix.,\ (y) = (a~ (y) + 6t)~=~ is CPD with respect to the ortho
projector e , defined in ( 2.3) : 

I:ecY = 0 => I:<C'l.,\(x*z)c=) ~ 0 . 
.r,: 
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Proof. Similar to the dilation theorem in [4], see also [7], [8], [9] D 

4. PSEUDO-POISSON PROCESSES AND THEIR GENERATORS. 

Let us consider the case B = l EB b of the unital semigroup for a * -algebra b 
with .>. (18 b) = d + 'Y (b) given by a linear matrix -function 

'Y= (;. ;; ) =.>.-d, d= (:. ~:) =>-(1) 

of b E b for y = l EB b . Following [4], the linear quantum stochastic process A (t) : 
b >-t 'Y (b) A (t) with independent increments, generating together with A (t, d) = 
.4~ ( t) d~ the stochastic PD exponent 

,f>,(lEBb) =:exp[A(t,d)+A(t,b)]: bE b 

as the solution of the equation (2.1), will be called the pseudo-Poissonian[4] over 
the algebra b . 

If B is a unit ball of an operator algebra B , the linear form-generator can be 
extended to the whole algebra. The structure (3.3) of the linear form-generator for 
PD cocycles over an operator algebra B is a consequence of the cocycle equation 
(3.7), according to which j (0) k (y) = 0, where 

(4.1) k(y) =j(y),;-,;,. ,; = -k(0). 

Denoting by ,t the linear functional {0 >-t (,;1~0 ) on K corresponding to the,; E K 
, the condition (3.8) yields 

(4.2) l(y) = ~ (,fk(y)+k•(y),;) =,lj(y)c;-,t,. 

Hence, in addition to,\;:' (y) = L:;)j (y) L~ one can obtain the structure (3.3) with 

(4.3) cp (y) = c;1j (y) c;, 'Pn (y) = c;1j (y) L~, <pm (y) = L:;!j (y) ,;, 

and " = ,;1,; - t5 , "" = ,t L~ - L-;; . Thus, .>. (y) = cp (y) - 1< , where cp is 
a completely positive nonlinear map of B into the space M ( C EB l~) of complex 
matrices x = (x~) . Moreover, cp is uniquely defined as the birth-map by the 
condition cp (0) = 0 with 1< = -.>. (0) = (K~), where "+ = 1<, 1<-;; = ""' 1<+ = Km , 
and K;:' = -,\~ (0) , constituting a negative-definite matrix": = [K::'] . Any germ
matrix .>. whose components are decomposed into the sums of the components cpt 
of a PD map cp and .>. (0) , are obviously CPD with respect to the orthoprojector 
Po in (2.4). As follows from the dilation theorem, there exists a family ,_ = 
,; = <;+, '" = L~ - j (0) L~, n E N of vectors'" EK with j (0) '" = 0 such that 
,p~ (y) = ,M (Yhv for allµ E {-, 1, 2, ... }, 11 E { +, 1, 2, ... }. Thus the equation (2.1) 
for a completely positive exponential cocycle with bounded stochastic derivatives 
has the following general form 

00 

d¢,(y) + h- ,, j (y) ,) if>,(y) dt = I: (,,t.j (y) '" - 'l'::') if>,(y) dA::, 
m,n=l 

00 00 

(-1.4) + I: (c;,t.j (y)< - 'l't) ,t,t(y) dAt + L (,;1j (y) ,n -'Yn) ,f>,(y) dA~, 
m==l n;::::l 

where 'l't = -a~ (0) . If M, = ,t,1 (1) is a martingale, the normalization condition 
1;;:1 ,kt ,k = " ( :5 " if submartingale). 
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In the particular case K, = CEJQ , j (y) = 1 Ell y , where Q is a Hilbert space of 
a representation B ~ B (Q) of the C*-algebra Bin the operator algebra B (Q) , this 
gi,·es a quantum stochastic generalization of the Poissonian birth semigroups [1] 
with the affine generators a~ (y) = c;JX,v --rt . In the more general case when the 
space K, is embedded into the Hilbert sum of all tensor powers of the space Q such 
that j (y) = ill~0 y0 k , the birth function <p is described by the components 

(4.5) 
00 

'P::' (y) = I: ,:;,ty0k,!, 
k=O 
00 

.p"' (y) = I: ,;;,ty®k,k, 
k=l 

00 

cp(y) = I:,kly®k,k 
k=l 

00 

'l'n (y) = I: ,kty®k,! 
k=I 

with c;k, ,,~ E Q®k . 
Note, if B is a W*-algebra and the germ map >. is w*-analytic, the completely 

positive function <p is also analytic, being defined by a w*-analytical represen
tation j = EB~0i®k in a full Fack space K, = Ell~o 'H.®k , where i is a (linear) 
w*-representation of B on a Hilbert space 'H. . This gives the general form for the 
w*-analytical quantum stochastic quasi-Poisson birth process over the algebra B . 

The next theorem proves that these structural conditions which are necessary 
for complete positivity of the stochastic exponents, given by the equation (2.1), are 
also sufficient. In particular it proves the existence of the quantum birth cocycle tf, 
for a gh·en generating stochastic birth matrix-function <p. 

Theorem 3. Let the structural maps >. of the quantum stochastic PD exponent tf, 
over the unit ball of an operator algebra B . Then they are bounded in the unit ball 
ofB, 

II.XII< oo, ( 
00 ) ½ 

IJA.JJ = ; JIA,,J12 = 11.x•11 < oo, 

where JI.XII= sup{IIA(y)Jl:JlyJl<l},IIA:(l)JI = sup{(('IA:(l)("}IIK"ll<l}, 
and have the form {4,3) written as 

>.(y) =<p(y)-i;, 

with cp = 'P+, cp'" = <pr, cp,, = ip-;; and ip;:' = A;:' , composing a bounded PD 
map 

(4.6) [ <p 'I'• l 
<p = ip• 'P: , [ K, "'·] and K-= ,,,: 0 

with arbitrary "' and"'• = (1<,1 ,1<,2, ... ) • The equation (4,4) has the unique PD 
solution 

(4.7) </>, (y) = 1·~1 exp [At (t) <p0 (y)] <p: (y)A;(t) exp (ip. (y) A~ (t)] V, exp [tip(y)], 

where Vi = exp (-,,, • .4~ (t) - ½"'tl). 

Proof. (Sketch) The PD solution to the quantum stochastic equation (4.4) can be 
obtained by the iteration of the equivalent quantum stochastic integral equation 

¢, (y) = i-~1Vi + l l',1 <t,;_, (y) V,.Bi (y) d.4~ (s) 
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where /3t (y) = <p~ (y) - at .Here Vi is the exponential vector cocycle Vr'V, = Vr+• 
, resoh·ing the quantum stochastic differential equation 

00 

dVi + 1<\1,dt + I>n VidA'.: = 0 
n=l 

with the initial condition vo = I in 7J and with l·;.' = r:vrT, , shifted by the 
time-shift co-isometry T, in 1). 
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Levy Processes on Quantum Hypergroups 

Uwe Franz 1 

Michael Schiinnann 1 

Abstract. Quantum hypergroups are non-commutative versions of hypergroups 
and were introduced by Yu.A. Chapovsky and L.I. Vainerman. Assuming that 
the quantum hypergroup satisfies a certain positivity condition (Schoenberg's cor
respondence), we show that Levy processes, like in the quantum group case, are 
given by solutions of quantum stochastic differential equations in the sense of R.L. 
Hudson and K.R. Parthasarathy. We prove that quantum hypergroups of double 
coset type satisfy Schoenberg's correspondence. As an example we discuss the 
quantum hypergroup U(2} //U (l} with U(n} the non-commutative analogue of the 
coefficient algebra of the unitary group. 

1. Intoduction 

Let K be a hypergroup; see [2]. This means, among other conditions, that 

• K is a (locally compact) topological space with a distinguished point 
eEK. 

• There is a binary operation, denoted by * and called convolution, on 
the space Mb of finite signed measures on K which turns Mb into an 
algebra. 

• For probability measuresµ and v the convolution product µ*vis again 
a probability measure . 

• µ*a. = a.*µ = µ for all µ E Mb 

1 lnstitut fiir Mathematik und Informatik, Universitat Greifswald, Friedrich-Ludwig
Jahn-Str. 15a, 17487 Greifswald, Germany 
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where ti,, is the Dirac measure at x for x EK. 

For an appropriate complex-valued function / on K (for example, / E 
L00 (K)) we define the function A/ on K x K by 

D..f(x,y) = [td(ti,,*tiy)· 

If/ E L00 (K) then A/ E L00 (K x K). In many cases L00 (K x K) will be 
(the closure of) the tensor product L00 (K) ® L00 (K) and we will have the 
following situation. There is a *-algebra F(K) of functions on K such that 
A maps F(K) to the tensor product F(K)181F(K). The hypergroup can then 
be described by a triplet (F, A, ti) with the properties 

• F is a complex *-algebra 

• A: F • F ®Fis a positive linear mapping satisfying Al = 11811 and 
the coassociativity condition 

(A181id) o A= (id181A) o A 

• ti : F • IC is a *-algebra homomorphism satisfying the counit condition 

( ti 181 id) o A = id = (id 181 ti) o A 

If we allow not only commutative *-algebras and if we replace the positivity 
of A by complete positivity we arrive at the notion of a quantum hypergroup 
(see [3]) or, more generally, of what we call a hyper-bialgebra. 

Important examples of hypergroups are given by a double coset structure. Let 
G be a semi-group with unit element e. In order to stay in a purely algebraic 
framework, we consider the *-algebra R(G) of functions which come from a 
finite-dimensional representation of G (i.e. f E R(G) if f(x) = (e, -y(x)() for 
e, ( E IC" and 'Ya *-representation of the elements of Gas n x n-matrices). 
R(G) becomes a *-bialgebra if we define the comultiplication by A1(x, y) = 
f(xy) and the counit by 51(/) = f(e). Now let H be sub-semi-group of G 
equipped with a Haar measure >.. Since H is a semi-group, we can define a 
comultiplication A2 and a counit 52 on R(H) in the same manner as for G. 
Denote by 1r : R(G) • R(H) the restriction to H. Then 1r is a *-bialgebra 
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homomorphism. Denote by R(G)/ /R(H) the space of functions in R(G) 
satisfying 

J(xzy) = f(z) for all x, y E G, z EH, 

that is R(G)//R(H) consists of functions on G// H, the space of double cosets 
of G with respect to H. We have 

R(G)//R(H) = {f E R(G) I (1r®id)o.6.if = l®f and (id®1r)o.6.if = f®l}. 

It can be shown that the *-algebra R(G)//R(H) is turned into a hyper
bialgebra if we set 

.6.J (x, y) = J f(xzy) d.\(z) 

and 
of= oif = J(e), 

f E R(G)//R(H). Then 

.6. =(id®(.\ o 1r) ® id) o (.6.1 ® id) o .6.1 rR(G)//R(H) 

and o = 01 rR(G)//R(H). Examples of this construction are given by double 
coset hypergroups. Moreover, this constuction can be turned over to the 
non-commutative setting; see [3] and Section 3 of this paper. 

We will be concerned with quantum stochastic processes on hyper-bialgebras, 
in particular, with quantum Levy processes. These are defined in analogy 
to Levy processes on *-bialgebras: *-homomorphisms are replaced by com
pletely positive mappings; cf. also [12]. We prove that Levy processes on 
hyper-bialgebras can be realized as solutions of quantum stochastic differen
tial equations on Bose-Fock space, thus generalizing the result for bialgebras, 
under the condition that the hyper-bialgebra fulfills the principle of Schoen
berg's correspondence (Section 2). We were not able to prove Schoenberg's 
correspondence in the general case of a hyper-bialgebra but only for hyper
bialgebras of double coset type with the additional assumption that the Haar 
measure is faithful (Section 3). In Section 4 we introduce the example of 
the double coset hyper-bialgebra U(2)//U(l) with U(n) denoting the non
commutative analogue of the coefficient algebra of the unitary group Un. In 
Section 5 we consider a class of Brownian motions on U(2)//U(l) for which 
we analyze the corresponding quantum stochastic differential equations in 
Section 6. 
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Vector spaces will be over the field of complex numbers. Algebras are al
ways assumed to be associative, complex and unital. For a vector space V 
we denote by V' the vector space of linear functionals on V. For a coal
gebra (C, l:i., 8) we define the n-times comultiplication l:i. (n) : C • C®n, 
n = 0, 1, 2, ... , inductively by ,l(O) = 8 and f:i.(n+t) = (id® f:i.(n)) o l:i.. Note 
that l:i. (tl = id and l:i. <2l = l:i.. 

A *-algebra is an algebra A equipped with an involution, i.e. an antilinear 
mapping a ~ a• satisfying (ab)• = b•a• and (a•)• = a. An element of a 
*-algebra is called positive if it is a finite sum of elements of the form a•a. 
A linear mapping <I> from a *-algebra A to a *-algebra B is called positive if 
<I>(a"a) is a positive element in B for all a EA, i.e. if<I> maps positive elements 
to positive elements. We call <I> completely positive (c.p.) if <I>l = 1 and if 
<I>® id: A® Mn(C) • B ® Mn(C) is positive for all n EN where Mn(C) 
denotes the *-algebra of n x n-matrices. The tensor product of two c.p. 
mappings is again c.p. 

2. Levy processes on hyper-bialgebras 

A quantum probability space is a pair (A, <I>) consisting of a *-algebra A and 
a state <I> on A, see [1] and also [9, 8, 4, 13]. For a complex vector space V 
a linear mapping j : V • A is called a quantum random variable (q.r.v.). 
The unit al su b-*-algebras A1, ... , An of A are called (tensor) independent if 
[Ak, Ad = 0 for k I:- l, and if <I>(a1 ... an) = <I>(a1) ... <I>(an) for all ak E Ak, 
k = l, ... ,n. The q.r.v. i1, ... ,jn, jk: Vk • A, are said to be independent 
if the *-algebras *-alg (jk(Vk)), k = 1, ... , n, are independent where *-alg 
means 'unital *-algebra generated by'. -

The *-tensor algebra T(V) over a vector space V is defined to be the free 
*-algebra generated by V. This space can be realized as the vector space 

with V a complex conjugate copy of V and the *-algebra structure given by 

(vi® ... vn)v =Vt® . . ,Vn ®v; v• = v. 
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For a q.r.v. j we denote by T(j) the unique extension of j to T(V) as a 
*-algebra homomorphism. The distribution of j is the state cl> o T(j) on 
T(V). 

A Levy process on a coalgebra C is a family of q.r.v. U,t) over the same 
quantum probability space, indexed by pairs (s, t) of real numbers with O $ 
s $ t, and satisfying 

• irs * i,t = irt, 0 $ r $ S $ t 

• itt = oid 

• it,t21 ... ,itntn+l independent for O $ t1 $ t2 $ ... $ tn+l 

• the distribution of j,t only depends on t - s (we write <l>t for the dis
tribution of iot) 

• limt• o+ <l>t(c1 ® ... ®en) = o(ci) ... o(en) (where we put o(c) = o(c)) 

Notice that (T(C), T(A), T(o)) is a *-bialgebra. The above definition of a 
Levy processes says that T(j,1) is a Levy process on the *-bialgebra T(C) in 
the sense of (11]. Therefore, the theory of Levy processes developed in (11] 
applies and we obtain a realization of our Levy process on a Bose-Fock-space 
as the solution to a quantum stochastic differential equation in the sense of 
Hudson and Parthasarathy (7]. 

We describe the situation more precisely. Let D be a pre-Hilbert space. We 
denote by L(D) the *-algebra formed by all linear operators R : D • D which 
possess an adjoint R* on D (i.e. there exists a linear operator R• : D • D 
such that (!;., R.() = (R*I;., () for all I;., (ED.) Suppose that we are given 

• a linear mapping r: C • L(D) 

• a linear mapping e : C EB C • D 

• a linear mapping t/J : C • C. 

We put r(c) = r(c)* and t/J(c) = t/J(c) and we will always assume that the set 
{r(b1) ... r(bn)e(b) lb,b1,•• .,bn EC EBC} is total in D. 

Consider the quantum stochastic differential equation 

dj,t = j,t*dlt; j., = o 
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with 

I1(c) = A;(e(c)) + At(r(c) - c5(c)id) + At(e(c)) + 1p(c)t; c EC EB C 

in the sense of [11], Theorem 2.5.1. Then the solution to these equations is 
a Levy process on C whose generator w : T(C) • C is given by 

w(c) 'lf;(c) for c EC EB C 
w(c1 ® e:i) = (e(c1), e(e:i)) for c1, e:i EC EB C 

w(c1 ® ... ® c,,) = (e(c1), r(c2) ... r(c,,_i)e(c,,)) for c1, ... , Cn EC EB C, n ~ 3 

Conversely, starting from a Levy process, by applying the GNS construc
tion to its generator, one obtains D, e, r, 'If; such that the above quantum 
stochastic differential equation yields a version of the process. The quantum 
probability space underlying our Foclc-representation of the Levy process is 
given by the *-algebra L(eD) and the vacuum state. Here 

eD = n domcl1 n LJr(E) 
<>?;0 E 

with N the number operator, r(E) the Bose-Foclc-space over L2(R+) ® E, 
and where the union is taken over all finite dimensional subspaces E of D. 

We pose the following question. Let the coalgebra B also carry the structure 
of a *-algebra such that the following are satisfied 

• the comultiplication b..: B • B ®Bis completely positive (c.p.) 

• the counit c5 : B • C is a *-algebra homomorphism 

We call such an object a hyper-bialgebra; see [3] where the concept of a quan
tum hypergroup was introduced. What are the conditions on the coefficients 
e, r and 'If; such that the corresponding Levy process consists of c.p. map
pings? 

We equip T(B) with an other multiplication, denoted by •, by setting 

(bi ® ... ® ~) · (c1 ®,. • ® Cm) = b1 ® ... ® bn-1 ® (bnc1) ® C:I ®• .. ®Cm· 

which turns T(B) into a hyper-bialgebra. This new hyper-bialgebra has 
another interpretation. Consider the free product 
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of unital hyper-bialgebras B and C(p) (cf. [12]) where C(p) denotes the *
bialgebra generated by a single projection p (i.e. an indeterminate satisfying 
p2 =p=p*). Then 

B U1 C(p) = (kern B) U kern C(p) Ell Cl 

(here U is the free product of algebras) and the *-bialgebra T(B) can be 
recovered in B U1 C(p) if we identify b1 ® ... ® bn with pJ_b1pJ_ ... pJ_bnpJ_. 
Moreover, the hyper-bialgebra T(B) is also a sub-hyper-bialgebra of BU1 C(p) 
if we send b1 ® ... ® bn to b1PJ_ ... pJ_bn. 

We say that a hyper-bialgebra B satisfies Schoenberg's correspondence if for 
a linear functional '11 on T(B) the following are equivalent: 

(i) '11(1) = 0, w(B*) = w(B) for all B E T(B) and w(B* · B) ~ 0 for all 
BE kern T(6) 

(ii) exp.(tw)(l) = 1 and exp.(tw)(B* · B) ~ 0 for all BE T(B) 

where the convolution in (ii) is with respect to the comultiplication T(ll.). 

A *-representation of an algebra A on a pre-Hilbert space D is a *-algebra 
homomorphism from A to L(D). For a *-representation p of the *-algebra 
A on a pre-Hilbert space D and for a *-homomorphism 6 : A • C the 
pre-Hilbert space D becomes a two-sided A-module if we put 

a.e.b = p(a)e6(b) for a, b EA and e ED. 

We speak of (p, 6)-cocycles and -co boundaries of the Hochschildt cohomology 
associated with this bimodule structure of D. 

Theorem 2.1 Let B be a hyper-bialgebra which we suppose to satisfy Schoen
berg's correspondence. Let i,t be a Levy process on B with coefficients D, e, 
rand VJ. Then the q.r.v. j,t are c.p. if and only if there exist 

• a pre-Hilbert space E and an isometry V: D • E 

• a *-representation p of B on E 

• a (p, 6)-1-cocycle 1J: B • E 

such that 
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• e = v· 0 7J 

• r(b) = v· 0 p(b) 0 V 

• -(TJ(b•), TJ(c)) is the (o, o)-coboundary of 'ljJ . 

Proof: Using Schoenberg's correspondence, it is not difficult to see that a 
Levy process on Bis c.p. if and only if its generator satisfies the condition 
(i) above. However, then we can apply Corollary 2.5 of [12].• 

Let j,1 be a Levy process with the extra property that the isometry V ap
pearing in the canonical construction of j,1 is unitary. We call such a process 
basic. In this case 7J = e, r = p and 1Jt(b1 © ... © bn) = i/J(b1 ... bn)- Therefore, 
a basic Levy process is given by a conditionally positive, hermitian linear 
functional 'ljJ with i/J(l) = 0 on B. In fact, there is a 1-1-correspondence 
between such functionals and basic Levy processes. 

3. Double coset hyper-bialgebras 

Let 81 and Bi be *-bialgebras. Suppose that we are given a Haar measure>. 
on B2 that is >. : 82 • IC is a state satisfying 

(id©>.) o 6.2 = >.1 = (>.©id) o 6.2. 

We will also assume that >. is faithful, a condition needed for the proof of 
Theorem 3.1 below. Let 1r: 8 1 • 82 be a *-bialgebra epimorphism. We put 

Next we define 

by 

= {b E Bil (id©1r) oll.1(b) = b© 1} 

{b E B1 I (1r®id)oll.1(b) = l©b} 

= Bi/B2nBi\B1 

i5.b = (id©(>. o 1r) © id) o ti.t3J. 

It is not difficult to check that (B, A, o) with A= .6.fB and ,5 = 81 fB is an 
example of a hyper-bialgebra; see [3]. We sometimes write B = Bi/ /B2 and 
call B a double coset hyper-bialgebra. 

100 



Theorem 3.1 Double coset hyper-bia/gebras satisfy Schoenberg's correspon
dence. 

The proof will be given at the end of this section. 

To analyse the situation consider first a convolution semi-group 'Pt on B = 
Bi/ /B2. We know that 'Pt is the convolution exponential of 1/J = ft'Ptlt=O, the 
pointwise derivative at O of r.p1, i.e. 

<fJt = exp.(t1/l) 

which is defined pointwise as the series 

oo 1/J*" n 1/1*2 L-, t =o+1/Jt+ 21 t2+ ... , 
n=O n. " 

see [10]. Now a linear functional /3 on B C Bi can be extended to Bi by 
setting 

/3 = /30 {(.Xo7r) ®id® (,Xo7r)) o6_(3) 

because {(.Xo1r)®id®(.Xo7r))o6.<3) mapsB1 toB. Moreover, the restriction 
of /3 to B gives back /3. We may write 

The convolution semi-group <fJt is mapped to 'Pt with the properties 

<{)a+t = (p, * <{)t (with respect to 6-i) 
'Pt • -Xo1r=rpofort • O+ 

Thus 'Pt is a continuous convolution semi-group on Bi which does not start 
at the counit 51 but at ,X o 1r! 

This leads to the following general consideration. Let B be a *-bialgebra and 
suppose that we are given linear functionals 'Pt satisfying 

'{J,+t = '{J,*'{Jt 

<fJt • <po 
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Can we differentiate 'Pt at O? Let us look at matrices first. Let At E Md(C) 
with A,+t = A,At and At -+ A0• Since A~ = Ao we can find a basis of (Cl 

such that A0 is of the form 

( ~ ~) 
with I the n x n-unit matrix, n $ d. We have AoAt = At = AtAo which 
means that At has the form 

with Bt E Mn(C) and 

B,+t = B,Bt, Bt • I. 

We know that Bt = etG with G = }iBtlt=o and therefore 

and 

A - -AetG (
etG O) · 

t- 0 0 - 0 

d -
dtAtlt=O = G 

(1) 

where we put G = ( ~ ~ ) . In the case of a general coalgebra C and 

'Pt E C', 'Pa+t = cp. * 'Pt, 'Pt • cpo, we use for a given element b in C the 
fundamental theorem on coalgebras (see [14]) to find a finite-dimensional 
sub--coalgebra Cb of C containing b. For Tt: Cb • Cb, Tt(c) = (id®cpt) ofi.(c), 
c E Cb, we have Ta+t = T,Tt, Tt • T 0 • By what we saw for matrices it 
follows T t = T O eta and 

'Pt(c) = 6 o Tt(c) = cpo * e!"'(c) for c E Cb 

with 1/J = 6 o G. We also have 

d 
dt'Pt(c)lt=o = (cpo*1P)(c) = ('1/J*cpo)(c) = 1/J(c) 

for c E Cb. Since the intersection of two sub--coalgebras is a sub--coalgebra, 1/J 
can be defined on the whole of B such that 

d 
dt'Pt lt=O = 1/J; 'Pt = 'Po * e!"'. 
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A sesqui-linear form L on a vector space V is called positive if L(v, v) 2:: 0 
for all v E V. In order to prove a Schoenberg type result for convolution 
semi-groups (on *-bialgebras) which do not start at the counit, we proceed 
like in [10] by showing 

Lemma 3.2 LetC be a coalgebra. We form the tensor product (C®C, A, J®8) 
of the coalgebras (C, b., J) and (C, D., o) where C denotes the complex conjugate 
coalgebra ofC. Let Lt be linear functionals onC®C {that is the Lt are sesqui
linear forms on C) satisfying 

• L.+t = L, * Lt (with respect to A) 

• Lt • Lo pointwise for t • 0+ 

Then for 
d 

K = dtLtlt=O 

the fallowing conditions are equivalent: 

(i) Lo is positive and 

K(c, c) 2:: 0 for all c EC with Lo(c, c) = 0, and K(c, d) = K(d, c) for 
allc,dEC 

(ii) Lt are positive for all t E R+ 

Proof The proof is similar to the counit case. We give it here in a version 
adapted to our situation.- (ii) => (i) is proved by differentiating. For 
the proof of (i) => (ii) it suffices to show that L0 *e~ is positive. Thanks 
to the fundamental theorem on coalgebras we may restrict ourselves to a 
finite-dimensional C. 

We choose a scalar product S in C. We begin by showing that to each f > 0 
there exists a o > 0 such that 

L0(c, c) :::; o and II c II= 1 => K(c, c) > -f. 

(Notice that by assumtion K(c, c) is real.) To see this we form the sets 

1 
An,<= {c EC I II c 11= 1 and Lo(c,c):::; - but K(c, c):::; -€}. 

n 
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The An,, are closed with nn An,, = 0. The latter follows from the fact that 
K(c, c) ?: 0 if Lo(c, c) = 0. By compactness there is no such that Ano,• = 0. 
Put o = ;t.. 
Next we show that to each e > 0 there exists n, such that 

L K+eS o+--
n 

is positive for all n ?: n,. By the first part there is a o > 0 such that for 
II c II= 1 

This means 

K(c, c) + e?: 0 if L0 (c, c) $ o. 

K+eS 
(Lo+--)(c,c)?: 0 

n 
for all c EC with II c II= 1 and Lo(c,c) $ o. For c EC with II c II= 1 and 
Lo(c, c) >owe find n, such that 

IK(c,:)+el $ 11 K~I +e $ 0 

for all n ?: n,. Then ( L0 + K: eS) (c, c) ?: 0 
for all c EC, II c II= 1, Lo(c, c) > o, n?: n,. Thus 

L K+eS o+--
n 

is positive for all n ?: n,. Since the convolution product of two positive forms 
on C is positive we have that 

L (L K+eS) L -L (-, r K+eLo*S*Lo) O o* o+--- * o- o* u®u+-------"-- ?: 
n n 

for all n ?: n, and 

L (L K+eLo*S*Lo)"" -L (r r K+eLo*S*Lo)"" 0$ o* o+------ - o* u®u+------
n n 

converges pointwise to the form L0 * e{; +• L0*8*Lo which, therefore, must be 
positive. By lettting e tend to 0, we arrive at the desired result.• 

As a direct consequence we have 

Theorem 3.3 Let B be a *-bia/gebra and let 'Pt EB', t E lR+, satisfy 
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• 'Ps+t = 'Ps * 'Pt 

• 'Pt • 'Po 

Then for 1/J = }i'Pt le=o the following conditions are equivalent: 

(i) <po is positive and 

1/J(b•b) ~ 0 for all b E B with cpo(b•b) = 0, and cp(b•) = cp(b) for all 
bE B 

(ii) l{}t is positive for all t E R+ 

Proof We observe that, by applying the mapping 

:F: 81 • (B © 8)1 

given by 
:F(cp)(c, d) = cp(c*d), 

we can reduce everything to the situation of the preceeding lemma.• 

Proof of Theorem 9.1: Let 8 = 8 1//82 be a double coset hyper-bialgebra. 
Then we define the homomorphism fr from (T(Bt), •) to Bi by 

fr(b1 18> ••• 18> bn) = b1 ... bn. 

It is straightforward to check that T(B) equals T(Bt)//Bi, so that T(B) is 
again a double coset hyper-bialgebra. Thus it is sufficient to prove that for 
a linear functional 1/J on a given double coset hyper-bialgebra we have 

1/J conditionally positive and hermitian ==> 1Pt = e!,"' positive 

However, 'Pt and '¢1 satisfy the conditions of Theorem 3.3 with '{Jo= ,\07r_ To 
see that '¢1 satisfies (i) of Theorem 3.3 we remark first that (,\ o 7r)(b•b) = 0 
if and only if b E kem 7r since ,\ is faithful. Then, using the fact that kern 7r 
is a bi-ideal, one shows that, for b E kem 7r, ( (,\ o 7r) 18> id 18> (,\ o 7r)) o !:).i3l b•b 
is of the form ~ cte; with e; E kem 6. An application of Theorem 3.3 yields 
the positivity of 'Pt and of 1Pt• • 

4. The hyper-bialgebra U(2}//U(l} 
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Ford EN we denote by U{d) the free (non-commutative!) *-algebra gener
ated by indeterminates Xk1, k, l = l, ... , d, with the unitarity relations 

d 

L XknXin = Oki 
n=l 

d 

L XknXnl = Oki 
n=l 

The *-algebra U{d) is turned into a *-bialgebra if we put 

d 

fi.1Xk1 = LXkn®Xn1 
n=l 

01Xkl = Oki· 

{2) 

{3) 

This *-bialgebra has been investigated by P. Glockner und W. von Walden
fels [6]. If we assume that the generators Xkz, x;1 commute we obtain the 
coefficient algebra of the unitary group Ud. This is why U (d) was sometimes 
called the non-commutative analogue of the coefficient algebra of the unitary 
group. It is equal to the *-algebra generated by mappings 

ekl: U(c' ® 1i) • B(1i) 

with 
ek1(U) = ukl, U E U(c' ® 1i) C Md(B(1i)) 

where 1i is an infinite-dimensional Hilbert space and U(c' ® 1i) denotes 
the group of unitary operators on c' ® 11.. Moreover, B(1i) is the *-algebra 
of bounded operators on 1i and Md(B(1i)) denotes the *-algebra of d x d
matrices with elements from B(1i). 

Proposition 4.1 
(a) On U{l) a faithful Haar measure is given by A(xn) = Oo,n, n E Z. 
(b) On U{l) an antipode is given by setting Sx = x• and extending S as a 
*-algebra homomorphism. 
(c) Ford> l the *-bialgebra U(d) does not posses an antipode. 
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Proof: Only (c) requires a proof. Let us suppose that we are given an an
tipode Son U(d), d > 1. Then 

d d 

L L S(Xkn)Xn1Xim xjk 
m=l n=l 

d d 

= L S(xk1) L Xn1Xim 
n=l m=l 

d 

= L S(Xkn)8n1. 
n=l 

= S(xk1) 

Similarly, one proves that S(xk1) = xrk• Since S is an antipode it has to be 
an algebra anti-homomorphism. Therefore, 

d d 

S(LXknXin) = L S(xjn)S(xkn) 
n=l n=l 

which is not equal to 8kl if d > 1.• 

Using the result of Glockner and von Waldenfels, we can describe the coal
gebra structure of U(d) as follows. Define a mapping 

.&1 : U(d) • Map (u(c'@ 1l) X U(c' ® 1l), B(1l) ® B(1l)) 

by setting 
d 

.&1 ekl (U, V) = L Ukn ® Vn1. 
n=l 

An emdedding £ of U(d) ® U(d) into Map (U(c' ® 1l) x U(c' ® 1l), B(1l) ® 
B(1l)) is given by 

L(b ® c)(U, V) = a(U) ® b(V) 

and we have 
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Let us now apply the construction in the beginning of this paragraph to the 
situation 

B1 = U{2); ~ = U{l) = C{x,x*)/xx• = 1 = x*x 

and 

( 1r(xu) 1r(x12) ) _ ( x O ) 
1r(x21) 1r(x22) - 0 1 

In order to describe B in this case, we introduce two gradings I and g on 
U(d) by setting 

1 (xi~>) = -1 if k = 1 and€= 1 { 
1 if k = 1 and € = 0 

0 if k = 2 and € = 1 

g (xio/) = 1 (x/f) 

where we use the notation xi~> = x,., and :4~) = xz,. Since (2) and (3) are 
homogeneous elements of the free *-algebra generated by x,.,, the gradings 1 
and g are well-defined. Denote by B)0J and Bi,(o) the space of homogeneous 
elements of degree O in U(d) in the 1- and g-grading repectively. 

Proposition 4.2 

B)o) = 
B1,(0J 

B = 

{b E U{2) I (,r@id) oli.1 = l©b} 
{b E U{2) I (1 ® ,r) 0 ti., = b© 1} 

Proof: We prove the first identity. If we consider (,r©id) o b.. 1b as an element 
of Map (U(1i) x U(C1 © 1i),B(1i) © B(1i)) we have for a monomial b = 
1:(<1) i:{<n) 
"k1h · · · "knln 

For an arbitrary element 

b = L b(n), b(n) E B)n) 
nEZ 
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in U(d) we have 

b ( U@ Uu U @ U12 ) = ""'Un @ b(n) ( Uu U12 ) 
1 @ U21 1 @ U22 ~ U21 U22 

nEZ 

which is equal to 

L l @ b(n) ( Uu U12 ) 
U21 U22 

nEZ 

for all u E U(1l) and all U E U(Ci @ 1l) if and only if b(nJ = 0 for n -:p O.• 

B is not a *-bialgebra. We have Ax22 = x22 @ X22 but 

AX22X;2 = X22Xn @X22Xn + (1 - X22X;2)@ (1 - X11Xt1). 

Notice that U2/ /U1 is the unit sphere S1, so, in this sense, U(2)//U(l) might 
be regarded as a non-commutative version of S1. 

Following [11], Section 5, a basic Brownian motion on B is a basic Levy 
process on B whose generator 1/; satisfies 

1/;(bc) = 1/;(b)o(c) + o(b)'l/;(c) + d(c")d(b) 

where d is a derivation on B, i.e. a linear functional on B with 

d(bc) = d(b)o(c) + o(b)d(c), b, c E 8. 

5. Examples of generators on U(2)//U(l) 

We will now consider a class of basic Levy processes on B = U (2) //U (1). Let 
B = (b;;) a hermitian 2 x 2-matrix and let A;;, 1 $ i,j $ 2, be four complex 
matrices. Define p, 1/, and 1/; on the generators of U(2) by 

p(x;;) = 01 ( Xij )idM,' 1 $ i,j $ 2, 

p(xi;) = 01(:c;;)idM,, 1 $ i,j $ 2, 

TJ(X;;) = A;;, 1 $ i,j $ 2, 

11(xi;) = -A;;, 1$i,j$2, 

1 2 
1/;(x;;) = ib;;- 2L(Ak;,Aki), 1 $ i,j $ 2, 

k=l 

1/;(xi';) 
1 2 

= -ib·· - - L(Ak· Ak") 1 $ i,j $ 2, ,.. 2 ,, J ' 

k=l 
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where (A, A') = I: a;;a:; for A= (a;;), A'= (a\;) E Md is a scalar product 
on Md- These maps extend to a unique triple on U(2) in the sense of Def
inition 2.3 of [5]. Actually, this is the form of a general Gaussian triple on 
U(2), cf. [11], Section 5 and [5]. The restrictions of p, 1J and 1/1 to B define a 
triple on B and therefore the quantum differential equation 

dj,t = j,t * dlt ; j., = 6 

yields a basic Levy process on B. 
It is instructive to compare this process with the process j on U (2) obtained 
by solving the quantum stochastic equation 

dj,1 = i,t *1 dlt ; j,, = 61 

where *1 denotes the convolution w.r.t. the coproduct A1 of U(2). Even 
though the differentials appearing in these two quantum differential equa
tions coincide, in general they are different because they come from different 
coproducts. Therefore one expects the processes to be different, too. This 
is the case. It can be checked by computing the expectation values or by 
verifying that j,1 is not a *-homomorphism (wheras j is a Levy process and 
therefore always a *-homomorphism). 

Let us study the first few moments of iot: We have 

1/J(x;;Xi.1) = -(A;;, Ai.1) + 6;;1/J(xi.1) + 61,11/l(x;;), 

1/J(x:;xi.1) = (A;;, Ai.1) + 6;;1/J(xi.1) + 61,11/J(x;;), 

t/J(x;;xi1) = (A;;, A1i.) + 6;;1/J(xi.1) + 61,11/l(x;;), 

1/J(x;;xi1) = -(A;;, A1i.) + 6;;1/J(xi.1) + 6,.11/J(x;;) 

for the values of 1/1 on products of the generators. In particular, we have 
1/J(xuxi1) = IIAul!2 + ibu - HA11H';HA2dl' - ibu - HA11H';HA21U2 = -IIA211!2, 
1/J(x22x22) = -IIA12ll2 -

Due to the form of the coproduct A1 on U(2), we get 

E(j01 (x;;)) = ( et(,J,(:i:.,ll,s•.1s•) ii, 

E(iot(x;;)) = ( /(,µ(:i:.,l).s•.1s2) ii, 
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and similar formulae for the second-order elements, i.e. write i,t,(x;,ilxi~J) 
as a matrix, with the elements ordered in the following way, 

and then exponentiate this matrix. 
For the moments of iot we get 

E(ioc(X22)) et¢(x22) = exp (itb22 -tllA12!12; IIA22!12)' 

E(jot(x;2)) = et¢(x22) = exp (-it/½2 _ tllA12!12; IIA22!12) , 

and 

EU01(X22X22)) 

EU01(x~x~)) 

et"1(x,,x,,) = exp (2it/½2 - tllA12!12 - 2tllA22!12), 

et"1(x,,x;,) = exp (-2itb22 - t11Adl2 - 2tl!Adl2) • 

We have 

Axuxi1 XuXi1 ® X11Xi1 + (1 - X11Xi1) ® (1 - X22X~). 
Ax22x;2 = X22X;2 ® X22X;2 + (1- X22X~) ® (1 - X11Xi1), 

and therefore 

'Pl \Ot'1P(X11Xi1) - (1 - \01)i,l,(x22x;2), 
ip2 \021P(X22X~) - (1 - \02)1P(X11Xi1), 

for \O,(t) = EUot(x,;xrn, i = 1, 2. Since \O;(O) = o(x;;xr;) = 1, we get 

\0 (t) = i,t,(xuxi1)et(,t,(x11:cj,)+¢(x22x;,n + i,t,(x22x22) 
I i,t,(x11Xi1) + i,t,(x22X22) ' 

i,l,(x22x22)et(¢(:z;11xj,)+"1(:c22x;,)) + i,l,(x11Xi1) 
= <p2(t) = ¢( * ) + tf;( • ) , XuXu X22X22 
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6. Quantum stochastic differential equations 

On U (2) we have 

2 

dJ,t(X;j) = I),t(Xik)dit(Xkj), 
k=l 

where 

On B we have, e.g., 

and 

dj,t(X22Xn) = j,t(X22X;2)dit(X22Xn) + (j,1(x22xk) - id)dI1(X11Xi1) 

i,t(X22x;2)(dit(X22x;2) + dlt(Xnxi1)) - dlt(xuxi1). (4) 

For j,1(x22)i,t(x22 ), on the other hand, we get 

d(j,t(x22)i,1(xk)) = j,t(X22)dj,t(xk) + dj,t(X22)i,1(x;2) + dj,t(x22) • dj,1(x;2) 

= i,1(X22)i,1(x;2)dI1(Xn) + j,1(X22)i.t(xk)dit(X22) 

+i,1(x22)i,1(x;2)dI1(x22) • dI1(x;2) 

= j,t(X22)i,t(x;2)(dlt(Xn) + dJt(x22) + dlt(X22) • dlt(x;2)) 

But since dlt is a *-homomorphism on ker ,51 and dlt(l) = 0, we get 

dit(x;2) + dI1(x22) + dit(x22) • dI1(x;2) 

= dI1(x;2 - 1) + dI1(X22 - 1) + dlt(X22 - 1). dI1(Xn - 1) 
= dit(X22 - 1 + xk - l + (x22 - l)(x;2 - 1)) 

dit(X22Xn - 1) = dlt(X22xk), 

and therefore 
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We see that the quantum stochastic differential equations (4) and (5) differ 
if dlt(xuxi1) # 0, and therefore we get 

in that case, i.e., j,t is not a homomorphism. Note that It(xuxi 1) and 
It(x22x22 ) are of the form 

lt(Xuxr,) 

It(x22xk) 

= -2A;(Au) - 2At(Au) - IIA21!12t, 
-2A;(A22) - 2At(A22) - IIA12il2t 

i = 1, 2, so that it is not difficult to give the explicite solutions of (4) and 
(5). 
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Samples of algebraic central limit theorems based on Z/2Z 

Yukihiro Hashimoto t 

1. Introduction 

Random walks associated with subgroups of an infinitly many free product G of Z/2Z bring us various 
samples of algebraic central limit theorems. Let F;,o-; be a copy of Z/2Z and its generator o-. Taking the left 
regular representation of G on 12(G), n. pair (A,</>) of a group •-algebra A of G and a tracial state¢(·) := (·o.,6,) 
is considered an algebraic probability space, where o, is a characteristic function of the unit e of G. 

It is well-known fact that the limit distribution under </> associated with a discrete Laplacia.n 

0"1 + 0"2 + • · · + O"N 

./N 
converges to the Wigner semi-circle law t;X[-2 ,21 ✓4 - .:2dz, of which limit process has a. free Fock representation 

lim ¢ ((1 + o-2 :-w·. + O"N )"') = ((A1 + A)"'l, 1), N-+oo N 

where Al a.nd A a.re ca.nonical creation a.nd annihilation operators actiong on an 1-mode free Fock space r(C) 
with a cyclic element 1. · 

Let us take a. sequence { w;; := o-;o-; I i f, j}. The assymptotic beha.vior of a Laplacian 

l L w;; 
JN(N - 1) 1:fi¢j:,N 

under </> is grasped as a special case ,\ = l of a Fock representation 

((A1 +A+>.Pyn1,1), 

where Pis a projection orthogonal to the vacuum 1, that coinsides with a representation obtained in the studies 
of Haagerup state [14] a.nd [2], [3] where the concept of the singleton independence was investigated. Starting 
with a partial sum 

1 
S2 (,,N) := ,Iv I: 

1$:i<j$.N 
i'5.mu:{-yN,1} 

(w;; + w;;) 

where vis a constant so that ¢(S2(,,N)) = 1, the limit process has a representation, for instance, if "I equals 
to a constant O $ a $ 1, 

Ji!'oo 4>(S2(,,N)"') = ( ( J2 : 0(A1 +A+P)+ ✓~ =:(xi +X + yt + Y + Q +R))"' 1,1) 

on a 4-mode Fock spacer, a free product of four 1-mode Fock spaces, where A,Al,X,Xl,Y,Yt are canonical 
creations and annihilations and P,Q,R are projections orthogonal to 1 with certain mutual relations (section 
4). 

Considering sequences such as {w;;k = o-;o-;o-k I i,j,k: diffrent each other} drives us into a.nether general
ization. The asymptotic behavior of 

JN(N- l)(N - 2) 
L tDijk 

1'5:.i,j,J:.'5.N 
;,;,, : different each other 

has a representation 

(((A1)3 + B 1 + B + A3 )"'1, 1) 

on a. 1-mode Fock space, where A I and A a.re canonical creation and a.nnihilation operators, Bl and B are 
'conditional' creation and annihilation ones, which kill the vacuum 1, acting on the subspace orthogonal to 1 
where Al= Bl and A= B hold. (The term 'conditional' is borrowed from the significa.nt paper [7].) 

fThit work i., supported by JSPS Research Fdlow. 
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Throughout this study, the lattice path counting works effectively, which gives exact solutions to moment 
problems associated with some of these limit processes, with the help of the reflection method ( e.g. [16)) and 
residue calculi. In the case of the last sample, a residue 

1 - %6 
f(t) := Re•,=o 1 1 

(1-t(z 3 +z+ ;+ ~))z 

gives the moment generating function F(t) = 1/(1 - t2 f(t)). 
The aim of this study is to collect samples of algebraic central limit theorems for detecting new concepts of 

independences in the sense of the algebraic probability theory, in a category of 'non-free' algebra. Such researchs 
on relations between the independences and algebraic relations will bring us interpolative concepts from the 
classical independence to the free independence. It is au important work to interpret these samples iu tenns of 
interacting Fock spaces [1], giving us a united understanding of algebraic central limit theorems. 

2. The Wigner semi-circle law on •Z/2Z 

Let F, and 17; be a copy of Z/2Z and its generator respectively. Taking the left regular representation ,r 
of G = •F., an infinitly many product of F;'s, a pair (A,~) of a group •-algebra A of G and a tracial state 
~(·) := (•o.,o,) is considered an algebraic probability space, where o, is a characteristic function of the unite 
of G. 

To obtain the algebraic central limit theorem with respect to freely independent elements 17/s, 

S (N) ·- 171 + 172 + • · · + 17N 
1 .- ,/N ' 

let us observe the action of each terms ,r(u,,),r(17;,) .. •ir(17;,.}/( ,/N)m on o., in an expansion of 

( ,r(ui) + ,r(172¼ · .. + ,r(uN))"' 

(abbreviate ,r, the rest). Since 17,'s are algebraic free, only the terms with the subindices forming a non-crossing 
pair partition survive in the limit N • oo. For a term O"i1 • • • u;'", the rule 

O" ;_ +--) "'' 

O'iJa -f---+ '\., and 

u;,. +-+ ./, if 10';,.u;_.+1 ·••CT;_I < lui,+1 ·••O'i,nl, 

gives a correspondence of the terms 17;, , .. 17,_ to sequences,/•··'\. of up-down arrows, where 117;1 ... 17,_J 
denotes the reduced length of the product. Such a sequence <1 · · · <m of arrows <, ='\. or ,/ satisfies 

#{i J <;='\.,I::$ i :$ m}:::: #{i J <; =,/,k :$ i :$ m}, fork> 1 and 

#{i I<, ='\.,l $ i $m} =#{i I<; =,/,1 $i $m}, 

which is called a •equence of Catalan type here. 'll ( <1 • .. <m) denotes the heightof <1 • .. <m defined as '11 (<1 .. • <m) 
= 111(<1) + ···+111(<m) where 111('\.) = +1 and 111(,/) = -1. Then, a sequence<1·"<m is of Catalan type if 
and only if '11 { •• • • • <m) :::: 0 (k > 1) and '11 ( <1 • • • <m) = 0 hold. The number of terms of corresponding to a 
sequence <1 • • · <m of Catalan type is 

N(N- l)··•(N-~ + 1); 

of order 0(( ,/N)m), allowing an expression 

( 
0-1 + 172 + " • + O"N ) M,,. := Ji!'oo ~ ( ,IN )m = #{sequence <1 •••Em of up-down arrows of Catalan type}. 

Taking '\. for a creation and ,/ for an annihilation, the right hand side coinsides with a Fock representation 

((A1 + A)"'l,1), 

where A I and A are canonical creation and annihilation operators respectively actiong on an 1-mode free Fock 
space r( C) with a cyclic element 1. 

A sequence <1 • · • <2m of up-down arrows of Catalan type corresponds to a Catalan path: a minimal path on 
a lattice Z2 from (0,0) to (m,m) laying under the diagonal line y =., + 1. The reflection method (cf. [16][22]) 
shows that the number of Catalan paths with length 2m equals to 

#{ minimal path from (0, 0) to (m, m) } - #{ minimal path from (-1, 1) to (m, m) }, 
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which is eqivalent to 

[z0 ] (z+ ¼f-[z2 ] (z+ ~r 
= [z0 ] (z + ¼f -[z-2] (z + tr 
= constant tenn in (1- z2 ) (• + ½) m 

= Jle••=O { (1 ~ zl) (z + ~r} I 
where [z1 ]/(z) denotes a coefficient of ,.1e in a Laurent series /(z). Then a residue calculus gives the moment 
generating function 

1- z2 

Re•,=o (1-t(z+~))z 

1-J'f=Ttf 
2t2 

As the Cauchy transform of the limit distribution µ associated with S1 ( N) equals to 

! (!) _ t - ./t2 - 4 
t 1 f - 2 I 

the Stieltjes inversion formula ( c/.[5]) yields the Wigner law 

dµ = z~X(-2,21 ✓4 - z2ck. 

3. Folding of free elements I 

Let us consider elements w,; := u;u; (i i j), which arc not free each other. A noticeable difference from 
the previous section is that, in some cases, a muliplication by w;; fixes the reduced length of a product, e.g., 
lw12to2SI = lu1u,I = 2 = lto2sl, Thus, an observation of the action of a product to;,;, ·••w,_;_ on 5. allows a 
correspondens of such a product to a sequence of symbols '\, ,/ and ~ by way of the rule 

tDi ... j... t--J, ,, 

Wi•iit +---t .._, 

w,.;. ~ ✓, 

if lwi,_;. Wii+d•+i · · · Wi,,.;,,. I > lwi•+ti•+t · · · 'Wi,,.;"" I, 
if lwi_.;.w••+1i•+t ·••UJi_; ... I = lwi•+d•+i ·••Wi_;,..I, 

if lw,,;.wi1;+1i•+1 ·••Wi,..j .... l < lw••+d•+t ·••Wi,..; ... 1-
By definition, for a product w,.;, • • • w,_;_, 

q,( w;,;, · .. w,_;_) = 1 

and 

holds provided that the sequence i1i1 • · · i.,j., of subindiccs forms a non-crossing pair partition with ii f ii 
(k = 1, ... , m), and as seen in the previous section, only such products survive in the limit N • oo. Those 
products correspond to sequences <1 • • • <m of symbols '\, ,/ and ~ of Catalan type with inner singleton, [2]: 
Definition 3.1. A sequence <, .. , <m of symbols '\, ,/ and - is called Catalan type with inner ,inglcton, 
provided that 

(i) the rest sequence ••• • • • •;• removed all ~ '• from , 1 • • • <m is of Catalan type. 
(ii) '12(<1+1 · · ·<m) > 0 holds if <i =-, where '12(<1 · • ·<m) denotes the heightof<1 • • •<m defined as 112(<1 • • •<m) 

=1)2(<1)+···+'12(<m), '12('\) = +2,'12(/) = -2andl)2(~) =0. ~ is called an inner singleton here. 
Since the number of terms in an expansion of 

S2(N)"' := 1 L w;; ( )

m 

✓N(N - 1) l'.,i,tj$N 
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corresponding to the same sequence , 1 • • • <m of Catalan type with inner singletons, which is equivalent to 
nothing but the number of sequences i,i, · · • imim of subindices forming non-crossing pair partitions with 
i, ,ft j, (k = 1, ... ,m), equals to 

the m-th moment has an expression 

N~oo 4>(S2(N)"') = #{sequence <1 · · · <m of Catalan type with inner singletons}. 

A I, A and P denote a creation, an annihilation and a projection othogonal to the vacuum 1 rcspecticely, acting 
on an I-mode free Fock space r(C). Then, taking"\, ✓ and~ for Al, A and P respeclively yields a Fock 
representation for assymptotic behavior of S2(N): 
Theorem 3.2. 

lim 4>((~ L w,;)"')=((A'+A+P)ml,1). 
N-+oo N(N - 1) l$•#i$N 

In the investigation of the Haagerup state [2], a general representation 

((Al +A+ AP)ml, 1) 
with a parameter A. A description 

m-2 

((Al+ A+ AP)ml, 1) = L #{•, •· •<m : of Catalan type with k inner singletons}• A1 

l=O 

is connected with a lattce path counting on Z2 by way of the rule 

"\ +-+ fl+: (z,y) • (z + 1,y) • (z + 2,y), 

✓ +-+ {l_ : (z,y) • (z,y + 1) • (z,y + 2) and 

~ +-+ Oo: (z,y) • (z,y+l) • (z+I,y+l). 

A sequence •• • • • ,,.. of Catalan type with inner singletons corresponds to a lattice path w1 ··•Wm from (0, 0) 
to (m, m) which consist of moves O+, {l_ and 0 0 , walking under the line y = :i: + 1 without accrossing the 
diagonal y = z. Let I be the largest number that 172(<1 • • • <m) = 0 holds, then by definition, <m ="\, •1 =✓ 
and 2 $ I $ m. In the part <1+1 • • • <m-i, ~•s occur with no restrictions: only Definition 3.1 (i) holds, 
named of Catalan type with 1ingleton1. The corresponding path W1+1 •·•Wm-I lays under the line y = z without 
accrossing the line y = :i: - 1, connecting (2,0) with (m - I+ 1, m - l - 1). Putting 

m-2 

Fm := L#{•1···<m: ofCatalantypewithkinnersingletons}·A1 and 

•=• 
m 

/m := L #{ <1 · · · <m of Catalan type with k singletons } • A k, 

the decomposition 

implies a recurrence formula 

(3.1) 
m-2 

Fm = L F1-ifm-l-1t 
l=O 

which is nothing but a conditional momcnt-cumulant formula [7] with a cumulant R2 (✓,"\) = 1. Since ~•s 
have no restrictions in the sequence <1 • · • <m of Catalan type with singletons, it follows that 

#{ <1 • • • <m : of Catalan type with k singletons } 

= (7)#{<1 ···<m-k : of Catalan type} 

= (7). ( 
l)m-l 

constant term in ( 1 - z2) z + ; 
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Hence 

"' ( ) ( 1)"'-• f,,. L 7 >.• · constant term in (1 - z2 ) z +-;-
i=O 

constant term in (1 - z2 ) ( z +; + >.)"' 

Res,=•{ (1~z') (z+ ;+>.f}· 
Then the generating function 

is given by 

00 

t(tJ ,= I: t,,.t"' 
m=O 

f(t) f:
0 
Re•,=• { (1 ~ z') (z +; + >.r} t"' 

Re••=• ( (1-t(::r +>.))z) 

1 - >.t - J((H 2)t - 1)((>.-2)t - 1) 

2t2 

In view of (3.1), the generating function 

"" 
F(t) := L F,,.t"' 

rn=O 

has a function&! equation 

F(t) - 1 = t2 /(t)F(t), 

and hence 

1+ >.t - J((H 2)t - 1)((>.- 2)t - 1) 
F(t) = 2(.\ + t)t . 

The Cauchy transform G(t) of the distributionµ~ associated with the operator Al+ A+ >.P under the tracial 
state (•l, 1) is given by 

G(t) 

(3.2) 

}F(D 
t + >.- ✓(>. + 2 - t)(>. - 2 - t) 

2(1 + >.t) 

Again, the Stieltjes inversion formula yields a. non-symmetric deforma.tion of the semi-circle law: 

Theorem 3.3. The distributionµ~ associated with the operator Al+ A+ .\P under the traci&i state (•l, l} is 
given by 

where 

(3.3) 

for any .\ E R. 
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Remark. In the study of Haagerup state [15], the same distribution (3.3) is obtained only for -1 $ ,\ $ 0. 
Moreover, a coordinate exchange 

t=l+,\z aud /3 = ,\' 
give a conneclion with the free Poisson distribution ( cf. [7]) 

where 

1rpJJ = { 
(1 - /3)00 + irpJJ, 0 $ /3 $ 1, 

1 $ /3, 

1 ✓4/3-(t-1-/3)2 
~X[(1-✓i!)•,(1+v'll)•J(t) t dt 

-\'dµ:,.. 

According to a relation between the Cauchy transform of a distribution and its orthogonal polynomials 
( c/.[32]), a continued fractional expression 

g(t) = C2 
t - b1 - ---.....::.~--

t - b, - CJ 
t-b3---• 

of the Cauchy transform of a measure induces recurrence rdations among its monic orthogonal polynomials 
{Pn(t)}, 

Po(t) = 1, P1(t) = t - b1, 

Pn(t) = (t - bn)Pn-1(!} -C..Pn-2(t) (n <! 2). 

In the case of G(t) in (3.2), a direct calculation gives an unfavorable expression ( c/.(7]) 

1 
G(t) = l+-\t 

t+,\- 1+-\t 
t+,\- t+,\- ... 

however, a small trick removes the difficulty. Note that G(t) is a solution of a quadratic equation in G, 

(3.4) (t + ,\ - (1 + At)G)G = 1. 

Put (1 + ,\l)G(t) = og(t) + /3 where a and /3 are constants, and suppose that g(t) is a solution of 

(3.5) (t-b-cg)g=l 

which implies g(t) has a suitable continued fractional expression 

1 
g(t) = C 

t-b- C 

t-b- t-b-·--

Substitution of g into (3.4) and comparison with (3.5) give the solution 

a= 1, /3 = ,\, b = ,\ and c = 1, 

hence 
1 

g(t)=t--\-g(t) 1 
t-,\- 1 

t-,\- t-,\-, .. 

G(t)- _I_ - 1 
- t - g(t) - 1 

t- 1 
t-,\- t--\-··· 

Thus, the monic orthogonal polynomials associated with dµ:,. arc determined by 

Po(t) = 1, P1(t) = t, 
Pn(t) = (t - ,\)Pn-1 {t) - Pn-2(t) (n <! 2), 

120 



with the Jacobi parameters [l) 

(3.6) OJ =01 

Wn. =} 

Y. H.:1.1hi1noto 

On= A (n 2: 2), 

(n 2: 1), 

which declares that Theorem 3.2 gives nothing but an interacting Fock representation with the Jacobi param
eters (3.6). 

4. Folding of free elements II 

Let us start with a partial sum of S,(N), 

1 
S2(,,N) := .Ju L (w;;+w;;) 

l,Si<j$_N 
i~mair:{-rN,l} 

where ti denotes the variance ti= 7N((2-7)N-l) so that ¢,(S2(,,N)2 ) = 1. Contrast to the previous section, 
the asymmetricity on the subindices ca.uses more rich phenomena., depending on the growth rate of 7 to N. We 
observe the three cases: 

(A) ,N = 1, 
(B) -,N • oo a.nd 7 • 0 as N • oo, 
( C) 7 equals to a constant O $ a $ l. 

A product w,.;, • · · Wi.,.j.., is connected with a sequence Et ···Em of symbols ~, ~, ~, V, U, U, !/., ~o 
and ~ by way of the following rule: 

1Di.,.j.., <f-+ ~ 1 if im s; 7N < im, 
Wi.,.j.,. +---+ ~, if im :$ '"(N < im, 

w,,..;,.. ~ ~, if im,im. ~ 7N, 

w,,;. f--4 ~o, if !w,,.;.w,•+li•+a ·••wi...,.;.,.I > lwi1i+d.tH •··w,.,.;MI, 
w,,;. f--4 v, .if lw,.;.w;•+do+, •••w;_;_I = lw••+d•+• •••w;_;_I, and 

Wi•j• f--4 !(o, if lw,.;. Wi•+1i•+1 · • · Wi,..; ... I < lw••+d•+t · · · w,,..j_ I, 

Wi•i• f--4 ~' if lw,.;,. Wi.1i+1i•+1 · · · 'Wi-,,..; ... I > l10••+ii•+1 · · · w,...._; .... I, 
w,,;. f--4 V if lw,.;. w,,.+d•+t · · · w,.,.; ... I = lwt,+d•+t • · · w, ... ; ... I, and 

w,.;,. f--4 !(., if lw,,.;. w,•+d•+1 ... w, ... ; ... I < lw••+d•+i .. -w,"'; ... I, 

w,.;,. f--4 ~' if lw,.;. Wi•+ti•+i ... w, .... ; ... I > lw••+d.1:+1 ... w,..,; ... I, 
Wi•j• f--4 

.. -, if lw,.;,. w;•+d•+t • • • w,.,.; ... I = lwi.i..+d•H • • • w, ... ; ... I, and 

w,.;,. f--4 ~, if !tu;,.;, Wi•+d•+s · · • 'Wi_; ... I < lw;•+ii•H · · · w;,..;_ I-
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Consider an action of the symbols ~, ~, :-__•, V, V, V, ~, ~o and ~. on a sequence 1< = 1<1 • • • l<m of 
o's and o's given by 

~ox.=•o", ~·1'..=0•K., :-.:x.=••", 

~ 1 =•o, ~ 1 = oe, ~ 1 = •• , ~ 0 = ~ 0 = ~ 0 = o, 

UK= { 
•x.2•••1tm, if X.1 = o, 

1/.1<={ 

IC.3•••K.m, if tt11'2 = oe, 

0, otherwise, 0, otherwise, 

U1<= { 
OK2•••1tm., if "1 = ., ~-I<={ 1'3 •·•Km, if t-.:1 x.2 = eo, 

o, otherwise, o, otherwise, 

VK= { 
J<, jf 1"] = ., ~-I<={ 1'3 •••J(m, jf K.11C.2 = •• , 

o, otherwise, o, otherwise, 

where O is a fixed point of all symbols and 1 an initial point. The reduction rule among w,;'s, such as 
10101110 2 = u 1u2, is reflected fajthful]y in the above rule. The equation w,.;, ••·w;_;_ = e corresponds to 
<1 •··<ml= 1 particularly. 112(<1 •··<m) denotes the height of £1 •··<m given as the length of the sequence 
<1 ···<ml of o's and o's, putting the length of 1 = 0 and that of O = -oo. 

The action of the symbols produces a direct combinatorial expression on a free Fock space. Let r = I'(a, b, z, y) 
be a unital algebra over C freely generated by a, b, z, y with the unit 1, taken for a free product of four 1-mode 
Fock spaces, r = I'(Ca) • f(Cb) • f(Cz) • f(Cy), equipped with a canonical inner product. An interpretation 

••++a, oo tt b, eo Hz, 

induces operators Af,A,P,Xf,X,Yf,Y,Q,R corresponding to•"'• 
respectively, acting on r, under the rule defined below: for u E r, 

oo +t y, 

t Au={ u', ifu=au', u'er, 
A u = au, 0, otherwise, 

t { u' if u = zu', u' E r, 
X u = zu, Xu = o,' otherwise, 

Yiu= yu, Yu= { ~:• ~t~e~~: u' Er, 

Pau = au, Pbu = O, Pzu = zu, 

Qzu = bu, Qyu = 0, Qou = yu, 

Rzu = 0, Ryu = au, Rau = O, 

4.1. The case of (A): ,N = 1. 

Pyu =0, 

Qbu = o, 
Rbu=zu, 

Pl =0, 

Ql = O, 

Rl =0. 

Since a morphism wi; • g; (and then, w., • gi"1 ) yiclda an isomorhism from the subgroup of G = •Z/2Z 
generated by {wu} to a group freely generated by {g;}, S2(1/N,N) induces the free central limit theorem. A 
1-mode Fock representation is given by 

Nli.!°00 ,p(S2 (1,N r) ={(Al+ A)ml, 1), 

4.2. The case of (B): ,N > 1 and , --t 0 as N--+ oo. 
An effect of folding free clements appears, however, the asymmetricity on the subindices causes a difference 

from the previous section. Consider a product Wz•'°•h"'b = e with a, b :;; ,N and z ~ N. This type of products 
have no contribution to the limit distribution, as the number of such indices (a,b,z) has smaller order than 
,/if. This observation shows that a product w;.;, --•w;_;m containing a factor w,.;. with ik,ik $ ,N has no 
contribution in the limit N • oo, exactly, 

Lemma 4.1. For a. equation £1 •··Eml = 1, let TN be the number of products w,.;, •••w,_;_ = e of w,;'• 
(1 $ i ,/ j ~ N) corresponding to £1 • • • •m• Then, 

if k > 0, 

(t.r. if k = O, 
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where k denotes the total number of ~ 's, V's and ~ 's appear in <1 · · • <m• 

Proof. By definitions, the number of choice of subindices i,j,'s assymptotica.lly equals to 

(-yN)'i-((1--y)N)"'?(-yN)l, 

hence the assertion. 

As a result, a Fock representation on r(a,b,:z:,y) is obtained. 

D 

Theorem 4.2. The assymptotic behavior of S2 (-y,N) with-yN > 1 and -y -t Oas N -too has a representation 
on the Fock space r(a,b,:z:,y), 

rf!'oo ,t,(S2 (-y,N)m) = ( (~(Xf +X + yt + Y +Q+R)r 1,1). 
Suppose that <1 · • • <,,.1 = 1 holds. Like the innner singletons, 0---''s and •J's occur only at the height 

> O, however, by definition, V and V should appear pairwise at the same height, which brings us another 
combinatorial description. Let us consider the Fock space r(a,b,:z:,y) defined above. Putting z = (:z: + y)/,/2 
and c =(a+ b)/,/2, the action of zt =XI+ YI, Z = X + Y and O = Q + R is given by 

ztu = ,/2zu, Zzu = v'2u, Ozu = cu, Ocu = zu (u E r(a,b,:z:,y)). 

Hence we have 

( (~(X1 +X + yt + Y +Q+ R)) m 1,1) = ((zt +z + ~O)ml.1) 

Let us consider more general situation 

((Z1 + Z + .>.o)ml, 1) 
with a parameter ).., which is connected with the weighted walks, starting the origin 1 and returning there after 
m-step, on an induced subgraph of the binary tree. (The weights are given in the figuer below.) 

C 

z 

Let F,,. be the number of m-step walks leaving and returning to 1, allowed reaching 1 several times in the 
middle of the walks. Samely let / m be the number of m-step walks leaving and returning to z without reaching 
1, allowed reaching z several times in the middle of the walks. By the self-similarity of the graph, one has for 
m 2: 2, 

m-2 

f,,. L (/1, + )..F1,)fm-1<-2, 
•=0 
m-2 

F,,. = L J,.F,,._,._,, 
•=0 

where /o = F0 = 1. Putting the moment functions, F(t) = I;,,. F,,.t"' and /(t) = I;,.. f,,.t"', one has 

f(t) - 1 t2(/(t) + >,.F(t))f(t), 

F(t) - 1 = t2 F(t)2 • 

Hence 
>,.'t2 F(t)' + (1 - >,.2 )12 F(t) 2 - F(t) + 1 = 0, 
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and the Cauchy transform G(t) of the distribution dµ.A associated with Theorem 4.2 is given as a solution of 

>.2tG(t)' + (1 - >.2 )G(t)2 - tG(t) + 1 = O. 

Remark. Putting ).2 = 1/2, dµ.A coinside with the distribution in Bzamp/e, 1.5 {1.16) and {1.17) of [23), up 
to the variance, where the anti-commutation ab + ba of semi-circle elements a, b which are free each other is 
observed. Indeed what we have done in the case of (B) is a calculation of the anti-commutation of semi-circle 
elements. Intuitively, this is because, in the limit we have 

S ( N) ("' + ... + U-,N) ("-rN+I + • •' + O'N) ("-rN+I + • · • + O'N) ("' + .. • + U-,N) 
2 "1, ~ ,nN ,IN + ,IN ,nN ' 

which is noting but the anti-commutation of semi-circle elements that are free each other. 

4.3. The case of ( C): "1 equals to a constant O $ a $ 1. 
hi this case, such a product WuWdWbr with a,b $ 7N and 7N < z,y $ N contributes to the limit 

distribution; the symbols ~, V and :1/. appear. 

Lemma 4.3. For a equation•• ... ,,,.1 = 1, Jet TN be the number of products w;,;. .. •W;m;_ = e of w;;'s 
(1 $ i ,j, j $ N) corresponding to , 1 • • • ,,,.. Then, 

TN ( a )t(l-a)~ 
rf!'oo (vv)"' = 2 - a 2 - a 

where k denotes the total number of~••, V's and :1/.'s appear in , 1 ... ,,,.. 

Proof. Just repeat the proof of Lemma 4.1 in the case of (C). D 
Then, again aFock representation on r(a,b, z,y) is in hand, which interpolates the distributions in Theorem 

3.2 and Theorem 4.2. 

Theorem 4.4. The assymptotic behavior of S2 (1, N) with 7 =constant a {O $ a $ 1) has a representation on 
the Fock space r(a,b,z,y), 

Nli!100 t/>((S2("1,N))"') = ( ( ✓2 : 0 (A1 +A+P)+ ✓!=:(X1 +X +Y1 +Y+Q+R))"' 1,1 )· 

5. Multi-folding of free elements 

In the previous sections, we saw that the double folding of free clements gives samples for conditionally 
free central limit theorems. However multi-folding of free elements suggests more general concept of indepen
dence. For instance, let us consider elements 10;;1 := u;o-;u1 (i ,j, j I k I i). Note that the difference of 
reduced length of 10;.;,1, w;,;,1, • .. w,_;_1_ and w;,;,•, • • •w;m;_km equals to ±3 or ±1. Then, for a product 
w;,;.1, • • • 10;m;_1m, one associate a sequence of symbols A I, A, Bt,B's by way of the rule 

w;ffi;_1_ - A1, 

tu;.;.1. ~ A1, if lwi,,;.•.w1.+ii,+ik•+1 ·••1V;,..;,..1,..l- lw1.,+1;,+1k,+1 ·••tDi,.;,..1,..I = +3, 

Wi,.;,•. +----+ B1, if lwi.;,.1r.wi,+ti•+i.A:,+1 ··•'Wi,..;.,.1c,..I - lwi.+1j,.+1 .A:.+i •· •w,,..; .... 1c"'I = +1, 

w;,;,1:, +----+ B, if !w;,;,1c,wa,+1 ;,+1 •,+1 ·••Wi,,.;'"•"'I - Jwi,+d,+it,+1 ·••Wi,..j"''""' = -1, and 
w;.;,.•. -t----+ A, if Jw,,;.,,w,,+d•+•••+i · · •10;,..;,.•.,.I - lwi•+•i•+•'•+t ·· ·to;,.;,..Ji:,..J = -3. 

Suppose lhat 10;.;,1, • · •w;m;mkm = e, that is the sequence of sub indices id1k1 ·· •imj,,.k,,. forms a 11011 

crossing pair partition, which implies m is to be an even number. Let €1 • • • <,,. be the corresponding sequence 
of A I, A, Bl, B defined above. By definitions, snch a sequence <1 • • • <m corresponds to a restricted Catalan path 
on Z2 from (0,0) to (3lm/2J,3Lm/2J) in the following way: each symbol<, is taken for a three step walk, 

A1 - fiH: (z,y)-+ (z + l,y)-+ (z + 2,y)-+ (z + 3,y), 

B 1 - n+1:(z,y)-+(z,y+l)-+(z+l,y+l)-+(z+2,y+l), 
B - n_,: (z,y)-+ (z,y+l)-+ (z,y+2)-+ (z+ l,y+2) and 

A - n_,: (z,y)-+ (z,y + 1)-+ (z,y + 2)-+ (z,y + 3), 

and the corresponding lattice path consists of the walks fi±s and n±,, walking under the line y = :i: + 1 with 
out accrossing the diagonal y = a:. Note that the walks n+I and fi_1 may start only from the trianguler areas 
under the line y = ., - 1 and y = :i: - 2 respectively. 
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Y. Hathhnolo 

Let us observe the assymptotic beha.vior of 

1 
S3(N) := ---;,s=c==~=~ L w,;k• 

✓N(N - l)(N -2) ,s,,;,;#¢i~N 

From the argument a.hove, it is easily seen that all odd moments vanish a.nd the 2m-th moment has an expression 

Ji~.., <f,(S3 (N)1m) = #{Catalan path on Z2 from (0,0) to (3m,3m) consisting of O±S,0±1 }. 

Summing up, we have an combinatorial description. 

Theorem 5.1. Let Al and A be canonical crea.tion and annihilation operators ou a 1-mode Fock space r(C), 
and Bl and B be opera.tors killing the vacuum 1, acting on the subspa.ce orthogonal to 1 where At = Bl and 
A= B holds. Then the assymptotic beba.vior of Ss(N) has a combinatorial description 

lim <f,(S,(N)m) = / ((A 1)3 +Bl+ B + A')ml, 1) . 
N • oo \ r(C) 

Remark. According to [7], Jacobi parameters associated with conditionally free central limit distributions are 
of the form 

w, = p, Wn = q (n ;=:: 2), an = 0 (n ~ 0). 

Contrast to the conditionally free case, above example has aperiodic Jacobi parameters, 

"'' = 1, "'• = 3, "'• = 6, "'• = 8/3, "'• = 217/48, ... , 
an= 0 (n ~ 0). 

Acknowledgement. The auther expresses his gratitude to Professor R. Speicher for pointing out mistakes 
in the case of (B) of section 4, and for many valuable instructions. 
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Limit laws and semistability on 
infinite-dimensional locally compact groups 

W. Hazod, Dortmund 

The limit behaviour of automorphism-normalized products of independent random 
variables was investigated in the past and the possible limit laws, in particular stable 
and semistable laws are nowadays quite well understood, as long as the underlying 
group is a real or p-adic Lie group. 
In fact, if the normalizing operators are localized on a continuous one-parameter group 
T then - without further restriction on the underlying group - the possible limit 
laws are concentrated on the contractible subgroup C(T), in this case a closed Lie 
subgroup. But if the underlying group G is infinite-dimensional and if the normalizing 
automorphisms are not embedded into a continuous group then new (and unexpected) 
phenomena appear. There is still no general theory available but the stucture of 
possible limit laws can be investigated by a series of illustrative examples. As in 
the finite-dimensional setup the contractible subgroups C(a) play an important role 
as the possible limit laws are concentrated on these subgroups. 
The paper is organized as follows: It starts describing the role of contractible subgroups 
C(a) showing that on metrizable locally compact groups semistable continuous con
volution semigroups with trivial idempotent are representable as continuous injective 
homomorphic images of semistable continuous convolution semigroups on contractible 
completely metrizable topological groups. The investigation is continued with semista
bility on totally discontinuous groups including the p-adics as a detailed example. 
Then, as particular examples of infinite-dimensional groups investigations of semista
bility on infinite products Kz follow, including the shape of C(a), marginal distri
butions and finally for Lie groups K, a comparision of Gaussian semistable limit laws 
on Kz and on the corresponding (infinite-dimensional) Lie algebra. In fact, infinite 
products G = Kz of compact groups turn out to be of particular interest: The shift 
a defines an automorphism, a permutation of infinite order acting on the coordinates, 
and the existence of such automorphisms causes significant differences to the situation 
of finite products. We mention new features appearing in the situation G = Kz: 
• The intersection of the contractible parts C(a) n C(a- 1 ) is a dense subgroup. 
• There exist (a,a)-semistable laws (for a E (0, 1)) such that any projection to a 
finite product Kn is not semistable. 

To simplify notations we shall troughout assume the underlying group G to be second
countable. We recall some well-known definitions. (See also [3], [14], [6], [7], [2]): 
0.1. Definition. A continuous convolution semigroup (µ 1 : t ~ 0) - in short µ. -
is called (a,a)-semistable for (a,a) E Aut(G) x (0,1) if a(µ 1) = µa 1 ,t ~ 0. 
µ. is stable w.r.t. a one-parameter group T iff a1(µ,) = µ,t for s,t > 0, where 
T = (at : t > 0) ~ Aut(G) with multiplicative parametrization a1a, = a1.,, t, s > 0. 
Note that in this definition of (semi-)stability local compactness of the underlying 
group is not necessary. 
Continuous convolution semigroups in M 1 (G) with idempotent µ 0 = c:, are repre
sented by generating functionals (cf. e.g. [9], [12]) defined on the test functions 'D(G) 
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resp. on the regular functions £(G). Let 9.F(G) denote the cone of generating func
tionals. 

Since (semi-)stability is closely related to the limit behaviour of automorphism-nor
malized convolution products we have to define domains of attraction: 
0.2. Definition. FDPA(µ.) := {v E M 1 (G) : 3(an) ~ Aut(G), k(n) /' oo, 
such that anv[k(n)t] • µ 1 , t 2'. O} ( domain of partial attraction) 
FDSA(µ.) := {v E FDPA(µ.): k(n)/k(n+ 1) • a E (0,1)} (semi attraction) 
FDA(µ.):= {v E FDPA(µ): k(n) = n} (domain of attraction). 
If an E {a1 : l E Z} for some a E Aut(G) (normal attraction) we use the notations 
FDNPA(µ.) (if an = a1Cnl,!(n) /' oo), and FDNSA(µ.) resp. FDNA(µ.) (if 
an= an). (Cf. e.g. [5].) 

The role of contractible subgroups 

The investigations of the structure of the contractible subgroups C(a), Cx(a) defined 
below play an important role in the theory of semistability on groups. We list some 
properties, pointing out in particular the additional features in case of e:z:ponential Lie 
groups (of course not to be expected in the infinite-dimensional situation). 

We define (cf. (15], [6], (7], (2], [11]): 
1.1. Definition. Let a E Aut(G), let K denote a compact a-invariant subgroup. 
Then the contractible and K -contractible parts are defined as 
C(a) := {x E G: an(x) n..:::.'.f e} and Cx(a) := {x E G: an(x) • K • K} respectively. 
For a one-parameter group T = (a1 : t > 0) we define analogously 

C(T) := {x: a1(x) ~ e} and Cx(T) := {x: a1 · K ~ K}. 
More generally we define for a sequence (an)neN ~ Aut(G) 
C((an)neN) := {x E G: an(x) • e}, and analogously Cx((an)) is defined. 
Obviously, these contractible parts C(a), Cx(a), etc. are subgroups of G. 

1.2. Remarks, The following observations are frequently used: 
a) We have the following characterization: C((an)n?:I) =: C = {x : for any subse-

quence (n') ~ N there exists a subsequence ( n11 ) ~ (n') with anx ~ e}. 
We fix a sequence (an)neN• For a subsequence (n') ~ N put C(n') := C((an)ne(n'))
b) Let d be a metric on the (second countable) group G. Put for e > 0 c<•) := 
{x : limsup d(an(x),e) < e}. Obviously, c<•) is Borel measurable. Hence C = 
nn?:l C(l/nl is Borel measurable, and analogously we obtain measurability of C(n'l. 

c) Let G be an e:z:ponential Lie group with Lie algebra V. For a E Aut(G) let a 0 

denote the differential, defined by exp(a 0 (X)) = a(exp(X)), XE V. Let (an) and 
C as above. Define C 0 :={XE V: a; (X) • 0}. Then C 0 is a subalgebra and 
we have exp(C 0

) = C. In particular, C and the subgroups C(n') defined in a) are 
closed connected subgroups. 

For e:z:ponential Lie groups we observe with the notations introduced above: 
1.3. Proposition. a) Assume that there exists a sequence (an) ~ Aut(G) which is 
contracting on G, i.e. an(x) • e for all x E G. Then G is a contractible Lie group, 
hence nilpotent and simply connected. 
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b) More generally, for any sequence (an) the contractible part C = C((an)n?;1) is 
a closed connected subgroup. If C is an -invariant for sufficiently large n then C is 
contractible, hence nilpotent. In particular if an = an for some a E Aut(G) then 
C(a) is a contractible, nilpotent and a-invariant subgroup. 

[ We have C = C((an)n?;l) = G by assumption. Hence V = C 0 
( cf. 1.2.c), i.e. 

a: (X) • 0 for all X E V. Therefore we obtain Ila: II • 0, hence a: - and therefore 
also an - is contractive for sufficiently large n, i.e. (an)mx m~ e, x E G. See also 
[17]. The rest assertions follow immediately.] 

The connections between semistability and contractibility are illuminated by the fol
lowing observations. ( See e.g. [15], [6], (7], see also 1.6 below): 
1.4. Proposition. a) Let G be a locally compact group and let µ. be an (a,a)
semistable continuous convolution semigroup with trivial idempotent µo = t:, and 
Levy measure T/· Thenµ. is concentrated on C(a), i.e. 
µ 1(CpC(a)) = 0 for all t, and furthermore TJ(CpC(a)) =0. 
b) And with the same proof we obtain for non-trivial idempotents: If µ 0 = WK then 
all the measures µ 1 are concentrated on the K-contraction group CK(a) of a. 

Analogously, for stable continuous convolution semigroups we have: 
Let T = (at)t>O ~ Aut(G) be a subgroup (with a1., = a1a,). Let µ. be T-stable. 
Thenµ. is (a1, t)-semistable for all t E (0, 1). Hence 1.4 applies. For stable laws with 
continuous group T we obtain a stronger result ([6]): 
1.5. Proposition. Let (µ 1)t>o be a T-stable continuous convolution semigroup on 
a locally compact group G su;h that µ 0 =WK. Then all µ 1 are concentrated on the 
K -contraction group C K(T) of T. 
(Note that in this situation we need not assume G to be second countable since ac
cording to [6] the subgroups CK(T) and C(T) are closed in G and hence measurable.) 

Proposition 1.5 applies in particular for K = { e}. We obtain: 
If µ. is a T-stable continuous convolution semigroup with trivial idempotent and if 
T is continuous then µ. is concentrated on the closed subgroup C(T), isomorphic to 
a contractible simply connected nilpotent Lie group on which T acts contractively. 
Hence for continuous groups T the investigation of T-stable laws with trivial idem
potents is completely reduced to contractible simply connected nilpotent Lie groups. 

Not only limit laws, also the attracted laws are concentrated on contractible parts. 
Generalizing the proof of 1.4 we obtain: 
1.6. Proposition. Assume µ. to be a continuous convolution semigroup with trivial 
idempotent µ 0 = t: •. Let v FDPA(µ.), i.e. k(n) /' oo, an E Aut(G) such that 
an(v)[k(n)t) • µ 1,t 2'. 0 and assume moreover limsupk(n)/k(n+ 1) < 1. 

Then v(C((an)n>i) = 1. 
[ W.l.o.g. we ass~e k(n)/k(n + 1) $ K < 1 for n ~ 1. Let U E il( e) be relatively 
compact Borel neighbourhoods. Let A denote the generating functional and T/ the 
Levy measure ofµ •. According to a theorem of E. Siebert (cf. [13], [5], (4]) 

an(v)[k(n)t) • µ 1 , t ~ 0 iff k(n) · (an(v) - e,) • A. 
Hence supn?:l k(n) · an(v)(CpU) $ K(U) < oo. Therefore 

J Ln?:l lcpU o andv = Ln an(v)(CpU) 
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1 '°' k(l) k(n-1) k( ) ( )(C U) < K(U) '°' n = k(l) Lm k(2) · · · --;;r,.y- · n · an V p _ ~ · L.., K: < oo . 

Whence lcpU o an • 0 v-a.e. In other words, {an(x)} is relatively compact with 
LIM(an(x)) ~ U for v-almost all x. (LIM denoting the set of accumulation points). 
Let Uk E il ( e) with Uk ,l. { e} . Repeating the above arguments we obtain 
v(ndx: LIM(anx) ~Uk})= v(C((an)neN)) = 1 as asserted.) 

1.7. Corollary. a) Assume (as in the case of stable µ.) that k(n)/k(n + 1) • 1. 

Then for any a E (0, 1) there exists a subsequence (n') with k(n)/k(n + 1) ~ a. 
And according to 1.6 we conclude v(C((an)ne(n'))) = 1. 
b) (Domains of normal (semi-)attraction). Let On = an for some a E Aut(G), 
k(n)/k(n + 1) • a E (0, 1) and anvlk(n)t) • µ 1,t ~ 0. Then v(C(a)) = 1. 

Let On= a1(n) with l(n) /' oo. Let C := C((an)). Then v(C) = 1, but in general 
Cf= C(a) is possible. However, for exponential Lie groups we observe 
1.8. Proposition. Let 1G be an exponential Lie group, let a E Aut(G),l(n) /' oo. 
Then C := C((al(n))neN) = C(a). 

[ Let V denote the Lie algebra of G, let as above a O E GL(V) denote the differential 

of a defined by exp(a O X)= a(expX), X EV. For x E G let X = exp-1 (x) EV. 

G being exponential, a1(nlx • e iff a O l(n) X • 0. As easily seen, this is the case iff 
o o k 

X belongs to the contractible a -invariant subspace Uizl<l {Y: (a - zI) Y = 0 for 
} o o n • oo ) some k EN = C(a ). Therefore a nx --t 0; whence a"x • e follows. 

The relevance of the description of C((an)n>1) in 1.1.a) is shown by the following 
1.9. Proposition. Let G be a group in ihich the·subgroups C((an)) are closed, 
e.g. an exponential Lie group (1.2.c)). Let (an) be a sequence in Aut(G) and let 
v E M 1(G), such that an(v) • c, (infinitesimality). Then supp(v) ~ C((an)), 
[ Let II E M 1 (1G) and assume Onll • ce, for some sequence (an) ~ Aut(G). Consider 
the probability space (G, B, v), B denoting the Borel sets. Consider (an = an(· ))neN 
as a sequence of G-valued random variables on the probability space ( G, B, v). By 
assumption, an(v) • c., hence an(·) converge to e in distribution, equivalently 
in probability. Therefore for any subsequence (n') ~ N there exists a subsequence 

(n") ~ (n') with an(·)~ e v-a.e. I.e., we have v(C(n")) = 1, with the notations 
from above. 
Ccn"l being closed, supp(v) ~ C(n"l follows. Therefore, supp(v) ~ n(n') C(n"l = C.] 

Retopologisation of C(a): Intrinsic topologies 

We recall the following results from E. Siebert's investigations ([161): 
Let a E Aut(G). Then there exists a unique topology Or turning C(a) into a 
topological Hausdorff group C(a) (not necessarily locally compact), furthermore there 
exist ii E Aut(C(a)) and a continuous injective homomorphism cp : C(a) • G such 
that cp o ii= a o cp (hence cp(C(a) = C(a)). 

2.1. Properties. a) If G is complete and metrizable and if a E Aut(G) is contractive 
then we have C(a) = C(a) = G . 
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b) Or is stronger than the relative topology of C(a) (as a subspace of G). 
c) If 1G is metrizable then C (a) is metrizable too. 
d) If 1G has a countable basis then C(a) has a countable basis too. 
e) If 1G is complete then C(a) is complete too. 
f) If 1G is totally disconnected then C( a) is totaly disconnected too. 

Let µ. be a continuous ( a, a, )-semistable convolution semigroup with µo = ee . Ac
cording to 2.1 there exists a contractible completely metrizable group lHI := C(a) with 
contractive automorphism ii E Aut(lHI) and an injective continuous homomorphism 
<p : lHI '---+ 1G such that :p( lHI) = C (a) and <p o ii = a o <p • 

Then cp- 1 is a Borel isomorphism C(a) • lHI. Hence <p induces a bijection 
M 1 (1HI) f-- • {v E M 1 (G): v(C(a)) = l},v t-t cp(v) =: µ. In fact, a continuous affine 
bijective convolution homomorphism. But cp- 1 need not be continuous. 

Nevertheless any continuous convolution semigroup µ. concentrated on C(a) gener
ates a continuous convolution semigroup cp-1(µ.) =: v. on IHI: 
2.2. Proposition. Let G and IHI be completely metrizable topological groups and 
<p : IHI '---+ G be an injective continuous homomorphism. Put L := rp(lHI). If IHI is 
u-compact then L is measurable. 
a) If v. ~ M 1 (1HI) is a continuous convolution semigroup then Ut>D supp(vt) gen
erates a (closed) u-compact subgroup H1. Hence rp(v0 ) = µ. defines a contin
uous convolution semigroup in M 1 (G) concentrated on the measurable subgroup 
L1 := cp(llll1) ~ G. 
b) Conversely, assume IL = r.p(lHI) to be a measurable subgroup ~ G. Let µ. be 
a continuous convolution semigroup in M 1 (G) with µ1(L) = 1 for t 2'. 0. Then 
v. = ,p-1(µ.) ~ M 1 (1HI) is a continuous convolution semigroup (with cp(v.) = µ 0 ). 

Proof: a) is obvious by continuity of <p. 

To prove b) note first that v. is uniquely defined by µ 0 and v. is a convolution 
semigroup. We have to show that t t-t Vt is continuous. 
lHI is completely metrizable. Hence Vt is tight for any t 2'. 0, therefore the support 
is u-compact. Hence w.l.o.g. we assume Ill!= U K(m) with an increasing sequence of 
compact sets K(m) ~ H . Hence in order to prove continuity it suffices to show that for 
any t 2'. 0, for any sequence tn • t and for any K(m) the restrictions v 1n Ix:<=> =: ,_~m) 
converge weakly to VtlK<=> =: ,_(m): [ Indeed, we have the representations 

Vtn = limm>I ,_~m) and v1 = limm>t ,_(m) with non-negative measures (convergence 
in norm). And therefore, if we can -prove ( 11:~m), f) n~ ( ,_(m), f) for f E C 6(lHI), 
for all m E N, we easily conclude ( Vtn ,J) • ( v1, f)] 
For any compact set K ~ IHI the restriction 'PIK defines a topological isomorphism 
K • cp(K) =: K# ~ G. Hence for compact sets K ~ Ill! we observe according to the 
portemanteau theorem applied to the continuous function s t-t cp(v,) = µ. that 

limsup Vtn(K) = limsup (µ 1J(K#):::; µt(K#) = cp(vt)(cp(K)) = v1(K). 
Therefore, again by the portemanteau theorem applied to the restrictions v,IK we 
conclude continuity of s t-t v,IK for all compact K ~ IHI. 
In particular, 11:~m) ~ ,_(m), m EN, as asserted. • 
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Now we are ready to prove the following 
2.3. Theorem. Suppose 1G to be a locally compact group and let µ. be a continuous 
convolution semigroup with trivial idempotent. 
a) Let 1G be second countable and let µ. be (a, a)-semistable. Then there exist a 
completely metrizable topological contractible group H with contractive automor
phism ii, and a continuous injection <p ; H ~ 1G such that ip(lll!) = C(a) and 
'f' o ii = a o <p. Furthermore there exists an ( ii, o: )-semistable continuous convolution 
semigroup v. ~ M 1(H) with ip(v1) = µi,t 2 0. 
b) In particular, if 1G is a Lie group then H is a homogeneous (Lie) group. 
c) Analogously, if 1G is totally disconnected then H is totally disconnected too. 
d) Let T = (ai)t>o be a continuous group in Aut(IG) and let µ. be T- stable. Then 
H = C(T) is a closed subgroup, (isomorphic to ) a homogeneous group, <p is the 
canonical injection and v. is the restriction µ. IJBI. 

e) Let G be a p-adic Lie group. Then ]H[ = C(a) is a closed subgroup hence again <p 

is the canonical injection and v. is the restriction µ. hm. 
Note again that in case b) (and d)) the investigations of (semi-)stable laws are 
completely reduced to simply connected nilpotent Lie groups. 
[a) is an immediate consequence of Proposition 2.2 above. According to 1.5 µ. is 
concentrated on C (a) . Now b) and c) are immediate consequences of a), for d) see 
[6]. e) follows by [181, cf. [2]. ] 

Note that within the category of complete and metrizable groups our knowledge of 
the structure of contractible groups is considerably poor. However, for special cases 
- if the group Ill[= C(a) with the natural topology is locally compact - we obtain 
a reduction of the problems and a complete overview of possible semistable laws. We 
describe the situation for totally disconnected groups: 

Semistable convolution semigrov.ps on contractible totally disconnected groups 

A locally compact totally disconnected group 1G is contractible with contractive a E 
Aut(G) iff 1G admits a filtration (Gn)nEZ adapted to a, i.e. if there exist compact 
open subgroups Gn ~ Gn-1 with non= {e} aund LJGn = IG, such that a(Gn) = 
Gn+1,n E Z. The filtration (Gn)neZ is said to be normal if Gn are compact open 
normal subgroups in G. (See [15).) 

3.1. Remark. Let G be a contractible totally disconnected locally compact group 
with contractive a E Aut(IG) and filtration (Gn)neZ• Assume the filtration to be 
normal. Then 1G = limn EN 1G / Gn is a projective limit of discrete groups. Therefore any 
continuous convolution semigroup (µ 1)i>o on G is a limit of Poisson semigroups µ~n) 

on G/Gn. (Convolution semigroups on cliscrete groups are Poisson.) Letµ. be (a, a)
semistable. Then the automorphism a is not representable as limit of automorphisms 
of the factor groups IG/Gn and µ~n) can not be semistable. [ Semistable Levy 
measures are infinite or trivial, hence semistable laws on discrete groups are trivial. ] 

For totally disconnected locally compact groups admitting a contractive automorphism 
a we obtain a complete description of all possible semistable laws. Let (Gn)nez be 
a filtration of 1G adapted to a. Then Z := Go\ G1 is a cross-section for the orbits 
{ a"(x) : n E Z}, x E G\{ e}. Let us remark that Z is locally compact. 
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First we note ( Cf. [15]): 
3.2. Proposition. Let T/ be a positive measure on B(G) with 77( { e}) 0, let 
o: E]O, 1[ and a E Aut(G). Then the following assertions are equivalent: 
(i) T/(CpU) < oo for all U E il( e ); and a(T/) =a· T/i 
(ii) there exists some finite positive measure K on B(G) such that ;-(G\Z) = 0 and 
such that T/ = l::keZ a-k · ak(1,,). In fact, we have K = 11lz-

Since in the case of totally disconnected groups convolution semigroups are uniquely 
determined by their Levy measures, proposition 3.2 provides a complete description 
of the possible semistable laws: 
3.3. Corollary. Fix a E (0, 1). By K ,-+ T/ := Lkez a-k • ak(1,,) there is given a 
bijection between the finite measures K on B(G) concentrated on Z and the Levy 
measures 77 on G such that a( T/) = a · 77 and K = 11 I z , hence between K E M 1 ( G) 
with 1,,( CpZ) = 0 and ( a, a )-semistable continuous convolution semigroups µ • . 

We consider two examples of contractible totally disconnected groups: 
3.4. Example. (Semistable laws on the p-adics ) For some prime power p let Qp 
denote the locally compact field of p-adic numbers. For any t E Qp we define the 
"homothetic" transformation Ht : x ,-+ t · x. Via the mapping t ,-+ Ht we obtain 
Aut(Qp) ~ Q; , cf. [8], (26.18 d).) Let I · IP denote the p-adic valuation of Qp, In 
view of IHt(x)lp = ltlp · lxlp, the automorphism He is contractive iff ltlp < 1. Qp is 
totally disconnected. Moreover the subset A= Zp = {x: Jxlp :S 1} of p-adic integers 
is a compact open subgroup of Qp; (see [8], § 10). 
Qp may be considered as the subset of the direct product ®kez{0, ... , p-1} consisting 
of sequences x = (x(k))keZ such that x(k) = 0,k :SK for some K = K(x) E Z. (It is 
sometimes convenient to represent x equivalently as formal power series l::kez x( k) · i' 
with x(k) = 0 for k :SK.) Let n := n(x) := min{k E Z: x(k) # 0} if x -/= 0. The 
p-adic valuation is given as lxlp := p-n(.:c), if x -/= 0, and I0lp := 0. 
The field of rational numbers Q is canonically densely embedded in Qp and hence -
endowed with the continuously extended algebraic operations of Q - the I· Ip-closure 
Qp is a locally compact totally disconnected topological field, and Z is dense in Zp. 
Put An := {x : lxlp :S p-n},n E Z, then (An)nez is a nested sequence of compact 
open subgroups with n An = {0}, LJ An = Qp. And any compact subgroup is of the 
form .6.n for some n E Z ([8], 10.6). 
Obviously, Hp• (Ao) = .6.n, n E Z, more generally, H1.6.o = An if lt[p = p-n. Hence 
in particular (An)nez is a (normal) filtration adapted to a := Hp . For any t E IQ; 
with ltlp < 1 the automorphism Ht is contractive. In particular, Hp is contractive. 
If ltlp = p-d, d E N, then ( G(n) := And)nez is a filtration adapted to Ht. We observe 
G(n)/Gcn+l) = Z/(pd · Z). 
The Haar measure w.o.. is absolutely continuous to the Haar measure WQ,: 
Normalize WQ, such that WQ, (.6.o) = 1. Then w.o.0 is the restriction WQ, J,i. 0 • And 
Wt;n = Hp•(W,i. 0 ) = Hp•(WQ, l,i.0 ) = .6.(Hp•) • WQ, 1,i.. = pn • WQ, It.., 
In other words, JQ. fdw,i.. = pn · Ji .. 1.~p-• fdwQP for f E L1 (Qp,WQ•). 

Next we investigate in some details the following example of a semistable continuous 
convolution semigroup on the additive group G = (Qp, +). 
Let d E N and t E Qp with ltlp = p-d, put a := H1 E Aut(Qp), and let (G(nl := 
.6.nd)nez be the corresponding filtration. 
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An ( a, a )-semistable conti_nuous convolution semigroup µ. is defined by the Levy 
measure11=c·I:kEZa-k,ak(v), 0<a<l, c::::o, vEM 1 (GcoJ\Gcl))- (Cf. 3.3.) 
We call A E MI(Qp) rotation invariant if H:,:(A) = A for all x E 1U, where 1U = {t: 
ltlp = 1} is the group of units in Q; ~ Aut(Qp,+). (Cf. also (1], (19].) 
The orbits 1[J • x are given by {y E Qp : IYlp = lxlp}, hence a function f : Qp -+ C is 
1U-invariant iff /(·) = r.p(I · Ip) for some function r.p: IR+-+ C. Since for any n E Z we 
have u • iln = L:i.n, u E 1[J, we easily conclude that we,.. is rotation invariant. 
Obviously, µ 1 is rotation invariant if II has this property, v as above. We consider 

d 

the special rotation invariant measure v :=pf-I· (waco> - "i"WGcl)) E M 1(G(o))- As 
easily seen, since G(o)/G(l) ~ Z/pd · Z ~ {0, ... ,pd - 1}, we have 

°"pd-I I I °"pd-I 
WGcoi = L.Jk=O p" · ez; * WGc•>. Hence v = p•-t · i..Jk=I ez; * wac,,. 

( Qp, +) is a locally compact A belian group, hence µ. may be represented in terms of 
the Fourier transform: Following the representation in (8], § 25, we obtain the following 
description of QP : 
Fix a nontrivial continuous character 'PI : Qp -+ 1' with kernel ker <p1 = L:i.o. (1' 
denoting the torus {z EC: izl = 1}.) 
For y E Qp define 'f'y : x ~ 'f'I(Hy(x)) = r.p1(y · x). Any continuous character is 
obtained in that way and by y ~ r.py we obtain an isomorphism, hence QP ~ Qp . 
Let a= H1 E Aut(Qp) then we observe r.py(ax) = 'f'a(y)(x) =: a•(r.py)(x). Hence 

(Q;, ·) ~ Aut(Qp) acts in a natural way on Qp. 
Now we have the means to compute explicitely the Fourier transform v since 
wa<•>(r.py) = 1 iffy E Gc-n) , and= 0 else. Hence 

v(r.py) = pf~1WG(o)(r.py)- /-IWGc,,(r.py)- Therefore 
µ1(r.py) = expt · f(r.py - l)dTJ 

= exp(tc · I:kEZ a-"( l~1 (wa(h) (r.py) - 1) - /-1 (wac•+•) (r.py) - 1)) 
For simplification we assume now d = 1, ltlp = p-1, hence Gen) = L:i.n, n E Z. In 
this case, wc,.,(r.py) -1 = 0 if y E £:i._k and= -1 else. And the representation yields: 
There exists some constant C = C(a,p) > 0 such that µ1(r.py) = exp(-t • C • a-M) 
for y E L:i.-M\L:i.-M+I , i.e. for !Yip= pM. Define -y := -lna/lnp > 0, hence 
a = p--r, then we obtain 

i11(r.py) = exp(-t · C · IYI]), YE QP 
And conversely, µ1(r.py) = exp(-t • Cly!]) defines a rotation invariant (Hp,a)-semi
stable continuous convolution semigroup on Qp for any 0 < a < 1 ( and -y = -y( a) as 
above) and any C > 0. 
At the first glance this representation is similar to the Fourier transform of ( elliplically) 
symmetric stable laws on IR or on real vector spaces V. But note that there is an 
essential difference: In the real or vector space case we have O < -y ~ 2, in the p-adic 
situation there is no restriction on -y > 0. Hence the similarity is only formal. 

Some further remarks: The Levy measure T/ = c • I:1:EZ a-kak(v), with a= Hp, v = 
~ · (wii. 0 - } ·we,.,) as above, is absolutely continuous with respect to the Haar 

measure on Q, and the density is given by c• ~ • I:1:Ez(a/p)-k • lii.,\L:>.•+i, as easily 
seen inserting dwc,../dwQ, = pn · la. in the definition of 11· 
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In fact, the Levy measure T/ is absolutely continuous and unbounded, whence µt « w;:,, 
follows, cf. A. Janssen [10] resp. E. Siebert [14]. For more details see the investigations 
Albeverio et al. [l] and K. Yasuda [19] where Levy processes with rotation invariant 
semistable continuous convolution semigroups are considered; these laws are called 
"stable" in [19] . 

The following example points out once more the typical structure of totally discon
nected contractible locally compact groups : 
3.5. Example. (Cf. [15]). Let F be a finite group of order r > 1. By A we denote 
the set of all sequences x = (x(k))kEZ E pZ such that x(k) = e for all k < ko and 
for some k0 E Z U { +oo}. Defining the product of two such sequences componentwise, 
A becomes a group. Every subset Acn) := {x = x(k) = e for all k < n},n E Z, is 
a normal subgroup of A. If n tends to +oo then the groups A(n) decrease to the 
identity e of A; if n tends to -oo then the groups A(n) increase to A. 
We furnish A with the (unique) topology that turns A into a topological To - group 
and has (A(n))nez as a basis of the identity e (cf. [8], (4.5) and (4.21)). Then A is a 
totally disconnected topological group. 
Every factor group A(n)/ Acn+l) is finite (it is isomorphic with F); hence Aco) is totally 
bounded. Moreover A is complete with respect to its left uniform structure. 
Thus Aco) is compact, and therefore A is locally compact. 
Now let p((x(k))kez) := (x(k - l))kEZ for all£= (x(kfoez in A (the shift restricted 
to A). It is easy to see that p is an automorphism of A such that p(A(n)) = A(n+I) 
for all n E Z. Consequently, p is bicontinuous and contractive; and (A(n))nEZ is a 
normal filtration of A adapted to p. In fact, it is easily verified that A = C( a), and 
p = ii (cf. 2.1) where a denotes the shift on the direct product pz_ (See 4.1 below). 

For later use we mention the following simple lemma generalizing 3.2, which enables us 
to construct semistable laws on general locally compact groups in concrete situations. 
Let S(a,o:) = S(a,o:)(IG) := {A E 9:F(IG): a(A) = o: · A} denote the set of (a,a)
semistable generating functionals. 
3.6. Lemma. Assume that 1G is a locally compact group, a E Aut(IG),B E 
9:F(IG), o: E (0, 1). Assume that for f E V(IG) the series I:~-oo a-k • ( ak(B), !) 1s 
absolutely convergent. 
Then A: f H (A,!) := I;~00 o:-k · ( B, f oak} belongs to S(a,a). 

[ As easily seen, A is almost positive and normalized (cf. [12), [9]). Hence A E 9:F(IG). 
And a(A) =a· A obviously follows.] 

(Semi-) stability on solenoidal groups 

There exist compact connected finite-dimensional groups and stable semigroups of 
probabilities µ. with supp(µt) = IG,t > 0. (IG cannot be a Lie group.) The 
corresponding group of automorphims T = (a1)t>O is contractive on a dense subgroup 
( the range of the exponential map), but not contractive on 1G. t H at is not continuous 
in this example, and 1G is not second countable. 
3.7. Example. Choose !Rd, the real line with the discrete topology, and let 1G be 
the solenoidal group 1G = (!Rd)" (= ,B(IR.), the Bohr compactification of IR). Then 
7p: !Ra • IR,'ljJ(x) := x, is a continuous injective homomorphism, therefore the dual 
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homomorph.ism 'P : i (~ IR) -+ (!Rd)" = G is continuous, injective and has dense 
range. (Indeed G is one-dimensional and <p: IR-+ G is just the exponential map.). 
:Xow let (v1 )i>o be strictly stable on IR, i.e. let b1 = H1a : x >--+ t"' · x, t > 0, x E IR and 
assume b1(v.) = v,1 • b1 can be regarded as automorphism of !Rd, therefore the dual 
map b1 =: a 1 : G-+ G is an automorphism of G. 
y E !Rd is identified with a character '"/y of G, defined on the dense range ip(!Rd) by 
( cp(x),-yy} = eixy,x E !Rd. Therefore ( a1(g),'Yy} = (9,'YH,a(y)} for all t > 0, y E !Rd, 
g E G. 
Define µ 1 := ip(vt) 1>o• Obviously a1(µ,) = a,(cp(v,)) = cp(b1(v,)) = cp(vi.) = µ 1, for 
t,s > 0. So (µ,),;,:a-is stable w.r.t. T = (ath>o• 
The group T is not contractive on (the compact group) G, but T acts contractively 

on the range cp(IR) : for x E IR we observe a1(cp(x)) = cp(t0 • x) ~ cp(0) = e. 
On the other hand µ 1 = cp(v1) is concentrated on cp(IR). (cp(IR) is u-compact and 
hence measurable.) According to 2.3 any (semi-)stable law on G arises in that way. 
\Ve note that t >--+ a1 is not continuous: There exist elements g E G which are non
continuous characters on IR. But the set of continuity points S(T) is dense. 

Semistability on infinite products of compact groups 

If G is a (real or p-adic) Lie group (not necessarily contractible) we have a more or 
less complete survey over semistable laws supported by G. (See e.g. [3], [6], [7], [14], 
[2]). Beyond this class of groups there exist semistable laws, but the properties may 
differ in a characteristic manner. To point out those differences we investigate as a 
particular example infinite products G = Kz where K =j: { e} is a compact group. Let 
a denote the shift, a(x)(k) := x(k + 1) for x E G, x: Z -t K. 

4.1. Proposition. a) There exist non-trivial (a, a)-semistable laws on any group 
representable as infinite product G = Kz, in particular on the infinite-dimensional 
torus ']['z, where a denotes the shift and a E (0, 1). 
b) Analogously, there exist non-trivial stable laws on any group G = K 1R, for a 
nontrivial compact group K; in particular on the infinite-dimensional torus 1['111 • In 
this case the automorphism group T is the (non-continuous) group of shifts. 
[a) Let K =/: {e} be a compact group (e.g. K = 'll'). Define G := Kz and let 
a: G-+ G be the shift a(x)(k) := x(k + 1), k E Z, for x E G, x: Z-+ K. For 
any n1 < n2 E Z, let J := {n1, ... n2} and K,J := KJ. Obviously, 'D(G) = £(G) = 
{! = f' o 1r J for some J ~ Z and f' E 'D( K, J)} ( 1r J : Kz -+ K J denotes the canonical 
projection). Consequently, for any generating functional B# E 9:F(K,J) we define 
B E QF(G) via ( B, !} := ( B#, f') where f = f' o 1r J. 

For any f E 'D(G) obviously I:kEZ a-k • ( B, f oak} converges (indeed the entries are 
zero, except a finite number.) Therefore A= ~a-k • ak(B) is a semistable generating 
functional on G (cf. 3.6). 
b) Let G = K"' be represented as G = {x: IR~-+ K} and define T = (a1)t>o to be the 
group of shifts a1(x)(s) := x(ts), x E G, t, s > 0 (with multiplicative parametrization). 
T is a non-continuous group in Aut(G) fulfilling a1a, = ai.. (If K is finite or K = 'll'm 
then there exist only trivial continuous groups in Aut(G)). 
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Let .>-~r) be a continuous convolution semigroup on K (~ J((r)) and define 

µ, := ®r>OA~rl for any coordinate r > 0. Then, as immediately seen, 

a1(µ,) = ®r>OA~r/tl, t > 0. Hence for fixed 'Y > 0, we have 

ai, (µ,) = µ,.i, s ?: 0, t > 0 iff .>-~~] = A~r/t'l (r > 0). 
In analogy to a), let v. be an arbitrary continuous convolution semigroup on K 

with generating functional B. Then µ~-y) := ®r>oar(v,fr'h) fulfil the relations 

ap (µi-rl) = µ~-Yi -
If we identify K with K 1 ~ G and consider B E Q:F(K) as generating functional 

B E Q:F(G) then (e.g. for 'Y = 1) the generating functional of µ~1 l is given by 
A = Er>• r-1 • ar(B). In fact,· f E V(G) depends only on finitely many coordinates, 
{r1 , ... , Tr} say. Hence ( A, f) is well defined and we have ai(A) = t-A for all t > O.] 

4.2. Remark. In a) assume in particular J = {0}, consider K = J((Ol as subgroup 
of G. Let B = B<0l E Q:F(K) denote the generating functional of a continuous con
volution semigroup µ. = µ~0l ~ M 1(K). Then the continuous convolution semigroup 

generated by A has product form µ1 = ®kezµ\kl, with µ\kl = µ 0 -•t 

C(a) n C(a-1 ) on infinite products Kz 

We consider the subgroups :F1 := :F1(a) := {x E G : limk---+oox"(k) = e}, :Fr := 
{x E G: limk---+-oox"(k) = e}, :Fo := {x E G: limlkl---+oox"(k) = e} = :F1 n :Fr and 
:F := {x E G : x( k) ,f e finitely often}. 
Obviously, C(a) = :F1, C(a-1 ) = :Fr , and we observe :F = :Fo iff K is finite. 

If G is a Lie group then C(r) n C(r-1) = {e} for all r E Aut(G). [ This is easily 
proved e.g. repeating the arguments in [16], example 1.] Hence (a,a)- and (a-1 ,/3)
semistable laws are concentrated on subgroups with trivial intersection. 
In contrast, for G = J(Z and if a denotes the shift as above then :F and hence 
:Fo = C(a) n C(a-1 ) are dense in G. However, for semistable laws in productforrn we 
obtain: 
4.3. Proposition. Let p. and a. be non-degenerate (a, a)- and (a-1 , .B)-semistable 
continuous convolution semigroups of product form considered in 4.2. Then, for 
s,t > 0, p1 and a, are concentrated on the disjoint measurable subsets C(a)\:Fo 
and C(a-1 )\:F0 respectively. 
Proof: In fact, if K is finite, the assertion follows since by construction semistable 
laws have infinite Levy measures and are thus diffuse measures ([10], [14]). On the 
other hand, in this case :Fa= :Fis countable. Whence p1(:F) = a,(:F) = 0,t,s > 0. 

If K is infinite, assume according to 4.2 p1 = ®kezµ\k) with µ\kl = µ 0 -•i (where 
µ. is a continuous convolution semigroup in M 1(K) ~ M 1(K(kl)). And assume an 
analogous representation for a •. We have to show p1(:Fo) = a,(:Fo) = 0 for s,t > 0. 
Since µ 1 is non-degenerate the limit set LIM {µ 1 : t --+ oo} is contained in { c:,, * w H} 
for some non-trivial subgroup H C K. Therefore, as easily seen, for a neighbourhood 
U E il( e) in K we have limsup µ 1{U} < 1. I.e. µ 1{U} ::; ,-;, < 1 for sufficiently large 
t, hence µ?l {U} = µ 0 -•i{U} ::; ,-;, for sufficiently large k. For any L E N we conclude 

P1Uh1:sL K x Ilu1>L U} = (0jezµ)ilHI1u1:sL K x Ilu1>L U} = 0 
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since Illil>L µ 1.a-; (U) = 0. 
Whence µ 1{.Fo} = 0 for t > 0 as asserted since .Fo ~ ULEN Illil:SL K x ITlil>L V for 
any V E il { e} . • 

Marginals of semistable laws on ifinite products 

4.4. Remarks. a) If K is a finite group, then K" is finite for n E N, hence 
S(a,a)(K") is trivial but Kz = G possesses non-trivial semistable laws. But accord
ing to 3.1 no finite-dimensional marginal distribution is semistable. 
b) Finite-dimensional tori 'fd, d ~ 2, admit automorphisms with dense contractible 
subgroups and semistable laws on 'fd are homomorphic images of operator semistable 
laws on subspaces of V =]Rd. 
Let a denote the shift on the infinite-dimensional torus G = 'fz acting contractively 
on the dense subgroup .F1. Again, also in this _5:ase finite-dimensional marginals of 
(a, a )-semi stable laws need not be semistable: Let B E g .F( G) be a generating 
functional such that the generated continuous convolution semigroup is concentrated 
on a finite-dimensional torus IHI:= 'f1 , I finite ~ Z, e.g. on ']['{o}. Assume a E (0, 1) 
and put A:= LkeZ a-k •ak(B). According to 3.6 resp. 4.2 the continuous convolution 
semigroup generated by A is (a, a )-semistable. If B is a Poissongenerator then for 
any finite I ~ Z the projection onto 'f1 is Poisson and hence not semistable. 

Limit laws on infinite-dimensional tori 'fz and on JRZ 

5.1. Example. G = 'fz is arcwise connected, with (infinite-dimensional Abelian ) 
Lie algebra JRZ. In this case, the exponential map 11: = exp : V := JRZ -+ 'fz, J; := 
(<f,(k) : k E Z) >-+ (ei•</>(k) : k E Z), is surjective. There exists a linear subspace 
.F,° := {J; E JRZ: limk • -oo<P(k) = 0} of ]RZ and an automorphism a 0

, the shift 

on JRZ = V, which acts contractively on .F1° , such that a o exp = exp oa O and such 

that exp(.F1°) = .F1 . The restriction of the exponential map to .F,°, exp : .F1° -+ .F1 
is surjective but not injective. Moreover, it is not possible to describe a O by its 
action on finite dimensional subspaces. Also on V = JRZ, finite-dimensional marginal 
distributions of ( a O 

, a )-semistable laws need not be semistable as shown analogously 
to the situation '11.'z in 4.4.b) 

We avoided to develop a theory of generating functionals for the (non locally compact) 
group IRZ. Indeed, V = JRZ is a nuclear vector space and G = 'fz is a compact Abelian 
group. Hence Fourier transforms are available, and Fourier transforms in both cases 
are determined by finite-dimensional projections. 
Let e E V' i.e. let ef, E V' be a continuous linear functional, and ( e, X) := ei•( </>,X), 

and let 11: = 11:1 be a finite-dimensional projection. If ef, is constant on cosets of ker 11: 

then G 3 x = 11:(X) >-+ ei•( </>,X) =: ( x, ir(e)) defines a character ( = ii'(e) of G; and 
any continuous character arises in this way. 
Hence, with the notations introduced above the Fourier transforms fulfil 

A0 (e)=A(11:(0) for .\ 0 EM 1(V) resp. A=exp(.\ 0 )EM1(G). 
Analogously, let µ. denote the Poisson semigroup on G with Fourier transform 
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fit = exp(t(X -1)), then µ; (() = exp(t(X 0 
( r.(0)-1)) defines the Poisson semigroup 

µ: = exp•(>. 0 -c:o) on V. 
Assume >. to be concentrated on ']['{o}, put B := >. - c:, and define A E g:F(G) as in 

4.1.a). Assume further supp(>. 0 ) ~ [0,21r]. Then for ( := ir(~) E G,( = (((k))kez E 
('lrz)" ~ z•Z (weak product), we obtain 

A(()= :z=a-k. (ak(>. -c:,))"(() = L°'-k • (X(((k)) -1), and analogously, 

A0 (0 = :z=a-k • (a 0 k(>. 0 -c:o))"(() = :z=a-k · (X 0 (e(k)) -1). 

Let v. denote the semigroup on G defined by Vt = e1A. Then by vi° " := exp(tA 0
) 

there is defined a continuous convolution semigroup v: ~ M 1 (V) with 1r(vt0 ) = 
Vt, t ~ 0. (Fourier transforms A resp. A0 of generating functionals are logarithms of 
Fourier transforms of the generated probability measures, defined by Vt = exp(t · A) 
resp. vi° = exp( t • A0 

) • Hence A0 is well defined, even if we avoided here to define 
generating functionals A O on V.) 

As immediately seen, v. and v: are ( a, a)- resp. ( a O 
, ~ )-semistable. But for any 

finite-dimensional projection p: V • RI the Levy measure of p(A O ) is concentrated 
on the compact subset [0,21rf ~ RI, hence p(v.) can not be semistable. 

Central limit laws and rescaled canonical random walks on Lie groups 

6.1. Let IH[ be a Lie group with Lie algebra V. Let U and V be neighbourhoods of 
e and O in IH[ and V respectively such that exp : V • U is bijective. Let ,t• be a 
Gaussian convolution semigroup on V with covariance I w.r.t. a basis {X1 , ... Xa}. 
Consider .6. = ½:EX[ as Laplacian on H and on V simultaneously. Hence .6. generates 

symmetric Gaussian semigroups (µ.) in M 1 (11:1) and (1:) in M 1 (V). 

According to the usual central limit theorem (on vector spaces) it0 is representable 
as limit distribution of a canonical sequence of rescaled random walks: 
Consider {±X;: i = 1, ... d}, the nearest neighbours ofO in V (= Rd). Let (Y;);2'. 1 

be a sequence of i.i.d. r.v. with distribution v; = f;j L c±x,. Then for all n 
{Yt) := n-112Y;}n;:::1 is an i.i.d. sequence on the (rescaled) lattice n-1!2za (w.r.t. 

the fixed basis X;, 1 ::; i ::; d) with distribution v: = f;j :Z::: C:±n-1/2.x;. 

Define U·) to be the curves ~;(t) := exp(tX;)teJR in IH[, put 111\nl := exp(Y;(n)), 

then (TTi<i<m w(n))m;:::1 is a sequence of random walks on IH[ with distribution Vn = 
f;J L c:e;(,;;-n::-,,,). (In some sense rescaled nearest neighbour random walks, but not 
necessarily concentrated on sublattices of IH[). 

In M 1 (V) the CLT yields convergence of distributions of the rescaled random walks 
-1/2 '°'[nt) y. _ '°'[nt) y(n) 0 [nt] 0 t > Q n L,o J - LIO i , Vn • It , - . 

According to E. Siebert's characterization of limit laws (cf. e.g. [13], [5]) this is 
equivalent to n · (v: - c:o) • .6. (for er -functions on V with support in V). 
Since exp is (locally) bijective, again by Siebert's theorem this is equivalent to 
n · (vn - c:,) • .6. (for er -functions on IH[ with support in U). 
And again we obtain equivalence to vhnt] • µ 1 , t ~ 0 . 
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Hence Gaussian distributions µt on a Lie group ]H[ are representable as limits of 
distributions of the rescaled random walks Tii:,i:,[nt] w\nl, and vice versa. 

6.2. Remark. If L:i. is a sub-Laplacian then the corresponding Gaussian semigroup 
11° and the random walks v: m are concentrated on a subspace of V. But µ1 may 
have full support on IH[. 

6.3. Let G be a connected compact group with Lie algebra V. G and V are projective 
limits G = Jim,- Ga, G"' = G/ K 0 , resp. V = lim,- V"'. For fixed a let {Xf, ... X,t} 
be a basis of V"', let exp0 : V"' • Ga be the exponential mapping. 
Let (µt)t>o be a Gaussian convolution semigroup on 1G and let for fixed a µ't be the 
projected-measures on IG"' with Laplacian L:i."' = E(Xf )2 • And let it0 0 be defined 
analogously. (W.l.o.g. we assume the basis of va to be suitably chosen.) According 
to step 6.1 there exist random walks (v~)[nt] on Ga and (v: 0 )[nt] on V 0 converging 

0 

to µf resp. to it O , t 2:= 0. 

In particular we are interested in the following 
6.4. Example. a) If 1G = IJ Gn is a product of compact connected Lie groups 
Gn,n EN, then we obtain a projective basis {X;: i;::: 1} of V, such that {X;: 
dn + 1 $ i $ dn+d is a basis of Gn, hence {X; : 1 $ i $ d;+i} is a basis of 
IJ1:,j:,n G; =: Gn. 

If µt = ®kezµ)n) is a product of Gaussian semigroups µ)n) E M 1(Gn) with (Lapla
cian) generating functional L:i. then the basis {X;} can be chosen in such a way that the 
Laplacians L:i.n corresponding to the projection µjn) to Gn have the form Et" X;. 
In this case the approximating random walks admit a construction without making 
explicit use of the particular Lie groups: Elements of V may be represented as 
sequences ( c;) E !Rz, formally as E c;X;. The random walks defined on Gn according 
to 6.3 form a projective family (1r;(v: )[nt])m=l,2 , .•. , where 1r; : V • vm denote the 

canonical projections and v: E M1 (V) are of product form ®keNV: (k). 

Note that V = lim,- vn is a nuclear vector space, hence the projective families 
define probabilities v: on V. And analogously, (1rm(vn)[nt])m=l,2 , ••• formaprojective 
spectrum on 1G with Vn = ®keNV~k). 

Furthermore, 1r:(v:)[nt] • 1r:(1t), t 2:: 0, iff 7rm(vn)[nt] • 7rm(µt), t 2:'. 0, for all 
m E N. But this is equivalent to the convergence v~nt] • µt, t ;::: 0. 

Putting things together, for Gaussian laws we obtain equivalence of convergence of the 
random walks on 1G and V respectively, in other words, 

0 [nt) 0 .ff [nt) 
Vn • It , t 2:: 0 l Vn • µt, t 2:= 0 ( *) 
b) If we are in a situation analogous to 6.1, i.e. if 1G = Kz , L:i. = L:i.0 is a Laplacian 
on K = K(o), and L:i.n := a-n • an(L:i.),n E Z, (a denoting again the shift), then the 
limitsµ. and 1 : are Gaussian and (a,a)- resp. (a 0 ,a)-semistable on 1G and V 
respectively. 

In this situation, as easily seen, v: (k) and v~k) in a) are representable as 

(2d)-1 · Et c:±0 -•1•.n-1/2.x, and (2d)-1 • Et c:{,(±o-•f•.n-1/2) , shifted by a O k and ak 

respectively. And we obtain ( *) with Vk = ®kezv~k) and v: = ®kezv: (k) . 
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6.5. Remark. Note that the equivalence ( *) can only be proved for Gaussian limits: 
The construction makes heavy use of the fact that for finite-dimensional projections 
( at least for large n) supp(vn} and supp(v:) are contained in neighbourhoods U 
and V on which exp is bijective. Hence considering finite-dimensional projections we 
conclude that the limits have to be Gaussian: 
If IHI is a compact connected Lie group with Lie algebra V and exp : V • U bijective 
then (U and ) V must be bounded. Hence in particular, v: being concentrated 

on V has finite second moments. And therefore, if v: [nt] • 11° , t 2: 0, for some 
convolution semigroup •1: , then v: belongs to the domain of attraction of ,i° and 
has finite second moments, hence the limit must be Gaussian. 
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Functional central limit theorems for locally compact groups: 
the use of infinite dimensional Fourier analysis 

by Herbert Heyer 

In the theory of functional central limit theorems one considers scaled sums of infinites
imal arrays of cl-dimensional random vectors of the form 

k,.(t) 

Xn(t) := L Xnl 
l=l 

on a probability space (n, m, P) and studies the corresponding sequences {X,. : n E N} 
of stochastic processes Xn = {Xn(t) : t E R+} as functions in the Skorokhod space 
D (R+, Rd). One of the most profound contributions to the theory was to establish nec
essary and sufficient conditions for a sequence {X,. : n E N} of process X,. to converge 
in distribution on D(R+,Rd) towards an increment process X := {X(t) : t ER+}- A 
classical tool used in solving the convergence problem is the Levy-Khintchlne bijection 

Px +-+ (a,B,77) (1) 

between the set I'P(Rd) of distributions of increment processes X in Rd and the set 
P(R+, Rd) of characteristic triplets (a, B, 77) consisting of shift mappings a, diffusion map
pings B and Levy measures 77. The solution to the problem given for example in [12] 
consists in characterizing the convergence 

(2) 

of an increment process in terms of convergence conditions on the scaled sums of moments 
towards the characteristic objects in the triplet (a, B, 77). 

Functional central limit theorems of the described type can also be looked at within 
the framework of general locally compact groups G provided a Levy-Khintchine bijection 
similar to (1) is available. For Lie projective groups G this work was carried out in [8] and 
[13]. On the other hand the Levy-Khintchine bijection for Moore groups G described in [14] 
and [6] suggests the search for at least sufficient conditions for the convergence (2) in terms 
of generalized characteristic functions of G-valued random variables or synonymously, in 
terms of the Fourier transforms of their distributions on the dual of G. The definition of 
the Fourier transform of a probability measure on G therefore involves infinite dimensional 
unitary representations of G. The method of infinite dimensional Fourier transforms has 
been efficiently applied to commutative arrays and stationary increment processes in [15]. 
In their papers [9] and [10] G. Pap and the author make use of infinite dimensional Fourier 
transforms in order to propose sufficient conditions in terms of integrating families related 
to the given infinitesimal array. 
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The present article aims at surveying the methodical tools and some of the results 
achieved on the way to a solution of the problem in (2). In particular the author will elab
orate on an axiomatic approach to the Levy continuity property which plays an important 
role in arriving at the desired functional central limits. The subsequent discussion can be 
viewed as a supplement actualizing the very useful survey (13]. 
1. The case of a Lie projective group 

For the general setting we suppose that G is a second countable locally compact group 
with neutral element e. Given an array { Xnt : n, £ E N} of rowwise independent G
( valued) random variables and a scaling sequence {k., : n E N} consisting of increasing 
cad functions kn : R+ -> Z+ with k,,(o) = o and kn(R+) = Z+, such that the family 
{Xnt : n EN, 1 ~ £ ~ kn(t)} is infinitesimal in the sense that 

lim max P((Xnt E Ve]) = o 
n-+oo 1:5l:5kn(t) 

for all Borel neighborhoods V of e and all t ER+, we look at the sequence {X,. : n EN} 
of functional processes 

kn(·) 

Xn := II Xnt 
l=l 

(with Gas their state space). For any increment process X = {X(t) : t E R+} in G 
(normalized by X(o) = e and cadla.g) the family {µ(s, t) : (s, t) E S} of distributions 
µ(s,t) := Pxc.J-•X(t) forms a convolution hemigroup in the set M 1 (G) of all probability 
measures on G, i.e. µ(s,r) * µ(r,t) = µ(s,t) for alls ~ r ~ t,µ(t,t) = ee, and the 
mapping (s, t) >-> µ(s, t) from S = {(u, v) E Ri : u ~ v} into M 1(G) (together with 
the weak topology T..,) is ca.dla.g in each variable. X is stochastically continuous if and 
only if (s, t) >-> µ(s, t) is continuous. Returning to the initial array and to the sequence 
{ Xn : n E N} of functional processes in G we have finite dimensional convergence 

if and only if 

kn(t) • 

IT µ.,t _. µ(s, t) 
l=kn(s)+l 

for all (s,t) ES in the sense of the topology Tw on M 1(G). 

Applying the fact that to any continuous convolution hemigroup {µ(s, t) : (s, t) E S} 
in M 1(G) there corresponds the family {T,,t: (s, t) ES} of translation operators Ts,t := 
Tµ(s,t) defined in the space .C(C0 (G), C0 (G)) of all linear operators on the space C0 (G) of 
all continuous functions on G vanishing at infinity, by 
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Ts,tf(x) := Tµ(s,t)f(x) := J f(xy)µ(s, t)(dy) 
G 

whenever f E C 0 (G),x E G, one obtains a bijection 

H(G) <-> Evol(C0 (G)) 

between the sets H(G) of continuous convolution hemigroups in M 1(G) and Evol(C0 (G)) 
of (strongly continuous, positive, left invariant) evolution families of contractions on C0 (G). 
This bijection extends to a bijection 

S(G) <-> Contr(C0 (G)) 

between continuous convolution semigroups and semigroups of contraction operators on 
C0 (G). 

For the following we assume to be known what it means that a mapping F from S or 
R+ into a Banach space E is of (continuous) finite (bounded) variation. A convolution 
hemigroup {µ(s, t) : (s, t) E S} is said to be of (continuous) weak finite variation on a 
subspace C of C 0 (G) if 

(s, t) 1-+ (Tµ(s,t) - I)f(e) 

from S into R is of (continuous) bounded variation for every f EC. 

From now on let G be a Lie projective group with Lie algebra L(G), projective basis 
{Xi : i E I} and projective (weak) coordinate system {x; : i E I} (associated with 
{ Xi : i E I}). Examples of Lie projective groups are all locally compact abelian groups, 
all compact groups, in particular the torus group TN and the solenoidal group Q1 (which 
both are not Lie groups), and all maximally almost periodic groups generated by a compact 
neighborhood of the identity. For Lie projective groups G the space D(G) of (Bruhat) test 
functions is contained in the space C2(G) of twice left differentiable functions on G. The 
bijection 

S(G) <-> P(G) 

{µ(t): t ER+}<-> (a, B, TJ) 

between S(G) and the set P(G) := RI x MI,+ x L(G) of triplets (a,B,TJ) consisting 
of vectors a, symmetric positive semidefinite matrices B and Levy measures 'f/ has been 
established in final form in [2], where also the tools for the general framework have been 
collected. The corresponding bijection 

Hwtv(G) <-> P,.,(R+, G) 

{µ(s, t) : (s, t) ES}<-> (a, B, TJ) 
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between the set HwJv(G) of continuous hemigroups {µ(s, t) : (s, t) E S} of weakly finite 
variation on G and the set P1,,(R+, G) of triplets ( a, B, 17), where a is a continuous mapping 
R+ -> R1 of finite variation with a(o) = o, B an increasing continuous mapping R+ -> 

MJ,+ with B(o) = o and 77 a measure in M 1(R+ x G) such that 77(R+ x {e}) = 0,77([0,t] x 
·) E L(G) for all t ER+, and 

t >-> I f(y)17([0, t] X dy) 

is continuous for all f E D(G)+ with f(e) = o. The set of all such measures 17 will be 
denoted by L(R+, G). While the first cited (Hunt) bijection is produced by a generating 
function, the letter one requires generating mappings and the notion of a weak backward 
equation. 

The following functional convergence result has been proved in [8]. 
1.1 Theorem. Let {µnl: n,£ EN} be an array of measures in M 1(G),{kn: n EN} a 
scaling sequence, and let D denote a dense subset of R+· It is assumed that 

(i) there exists a continuous function t >-> a(t) = (a;(t));eJ on R+ 
such that for all t ED, i EI 

lo,, (t) 

L j x;dµ,it -> a;(t) as n-> oo, 
l=l 

(ii) there exists a continuous function t >-> B(t) := (b;;(t));,;eI on R+ 
such that for all t E D,i,j EI 

kn(t) 

L j x;x;dµnt-> b;;(t) + j x;(y)x;(Y)11([0, t] x dy) as n-> oo, 
l=l G 

(iii) there exists a measure 17 E L(R+, G) such that for all t ED and bounded continuous 

functions f on G vanishing in a neighborhood of e 

kn(t) LI fdµnt-> J f(y)17([0,t] X dy), 
l=l G 

(iv) for all T > o, i EI 

Then (a,B,17) E P1,,(R+,G), and 
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kn(t) • 

IJ µnl--> µ(s, t) 
l=kn(s)+l 

for all (s, t) E S, where {µ(s, t) : (s, t) E S} E Hwfv and 

{µ(s, t) : (s, t) ES} +-> (a, B, T/), 

The proof of the theorem is based on the corresponding result for a Lie group G estab
lished in [7). 

2. Infinite dimensional Fourier transforms 

In this section G is assumed to be an arbitrary locally compact group. By a representa
tion of G we always mean a continuous homomorphism U from G into the group U(1-l(U)) 
of unitary opera.tors on the complex representing Hilbert space 1-l(U). The set of all repre
sentations of G will be denoted by Rep(G). Of particular importance is the subset Irr(G) 
of a.II irreducible representations U of G which by definition admit no nontrivial closed 
U-invaria.nt subspace of 1-l(U). The famous Gelfa.nd-Raikov theorem states that Irr(G) 
separates the points of G. We also introduce for any cardinal a the a-dimensional Hilbert 
space 1-l(a) and the sets Repa(G) and lrra(G) of all U E Rep(G) or U E Irr(G) respec
tively with 1-l(U) = 1-l(a). For the union of the sets Repn(G) for n EN we write Rep1(G). 
The prominent class of Moore groups G is defined by the inclusion Irr(G) C Rep1(G). 
It contains all compact and all a.belian locally compact groups and has a well understood 
structure as is cited in (5). 

Now we look at the set G := Irr(G)/ ~ of unitary equivalence classes of irreducible 
representations. In the standard references [4) and [18] from which we pick most of the 
subsequent information, G is ca.lied the dual of G. For any U E G we consider the space 
1-lci) (U) of all u E 1-l(U) with !lull = 1. We note that the symbol U will be used for the 
class in G as well as for any of its representations. For a given U E G and u, v E 1-l(U) 
the corresponding coefficient of U is defined by p.,,.,(U) :=< U(•)u, v > . In the case that 
u = v we write p.,(U) instead of p.,,.,(U). The next definition concerns the reduced dual of 
G introduced as the set Gr of all U E G such that there exists a u E 1-l(l) (U) admitting 
the approximation (in the sense of the compact open topology 7;,0 ) 

Pu(U) = lim fn * J;: 
n-.oo 

for some sequence Un)n?_l in cc(G). 

Since G can be identified with the dual c•(G)" of the c•-a.lgebra. c•(G) of G where 
c•(G)" carries the hull-kernel topology, we obtain the Fell topology on G. A base of the Fell 
topology at the identity representation 1 of G is given by the family of finite intersections 
of sets of the form 

V(C,c:) := {U E G: There exists u E 1-lci)(U): lp,.(U)(x) - 11 < c: for all x EC}, 
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where C is a compact subset of G and c: > o. Furnished with the Fell topology G is a 
quasi-locally compact (Baire) space which is second countable if G is second countable. 
Gr is a closed subspace of G. The equality Gr = G can be characterized by either of the 
subsequent statements 

(i) 1 E Gr 
(ii) Every continuous positive definite functions on G can be approximated (in the sense 

of Tc0 ) by functions of the form f * j~ with f E cc(G). 

(iii) The constant function 1 on G can be approximated (in the sense of Tc0 ) by function 

of the form f * t~ with f E cc(G). 

For any cardinal a the sets Repa(G) and Repa(C*(G)) are bijectively related to each 
other. Consequently the weak topology on Repa(C*(G)) induces a topology on Repa(G) 
which supplies an equivalent definition of the topology of Ga as the subspace G consisting 
of all U E G of dimension a. 

We are now prepared to introduce the main tool of harmonic analysis on a locally 
compact group G: the Fourier transformµ of a measureµ E Mb(G) given for any U E 
Rep(G) as an element µ(U) of the space .C(1-i(U)) of all linear operators on 1-i(U), by 

< µ(U)u,v >:= J Pu,v(U)dµ 

whenever u, v E 1-i(U). Clearly, IIP,II $ l!µII, Moreover, the applicationµ 1--> µ from Mb(G) 
into the set of mappings from Rep(G) into LJ{.C(1-i(U)) : U E Rep(G)} is linear, multi
plicative, injective and bicontinuous in the sense of the following equivalences expressed 
for a sequence (JLn)n~l and a measureµ both in M1(G): 

(i) µn--> µ (in the weak topology T,,,) 

(ii) [1,n(U)u--> µ(U)u for all U E Irr(G),u E 1-i(U). 

(iii) < /J,n(U)u, v >-->< µ(U)u, v > for all U E lrr(G), u, v E 1-i(U). 

The implication (iii)~(i) can be considered as a narrow version of the Levy continuity 
theorem for probability measures on a locally compact group. For the problem dealt with 
in [10] it turned out to be helpful to work with a wider version of Levy's theorem which is 
axiomatized as follows. 

2.1 Definition. G is said to admit the Levy continuity property (LCP) with respect to a 
subset r of Rep(G) if there exists a topology on r with the following property: Given a 
sequence {µn: n EN} in M 1(G) and a mapping h: r--> LJ{.C(1-i(U)) : U Er} which is 
continuous on r n Repa ( G) for all cardinals a, satisfying 

/J,n(U) -> h(U) 

whenever U Er then there exists a measureµ E M 1(G) such that 
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and 

µ(U) = h(U) 

for all U Er. 

It is shown in [5] that any Moore group G admits (LCP) with respect tor:= Rep1(G) 
the topology on r being Teo on U{Repn(G) : n EN}. 

Following the note [3] we report on a different axiomatization of the Levy continuity 
theorem. 

Let G be a second countable locally compact group and r a subset of G such that 1 E r. 
A mapping h : r -> £, := U{C('H.)/ ~: 'H. is a Hilbert space} with h(l) being a scalar 
(operator) is said to be continuous in 1 if for every c > o there exists a neighborhood V of 
1 (with respect to the Fell topology in G) satisfying the following property: If U EV n r 
then there is a representative h(U) of the class h(U) E C('H.) / ~ for some Hilbert space 1-l, 
and a vector u E 1-l with \lull = 1 such that 

I < h(U)u, u > -h(l)I < c. 

Obviously, the Fourier transformµ of any measureµ E Mb(G) considered as mapping 
r -> £, is continuous at 1. 

For subsets r of G (for groups G that are amenable and of type I) such that o-(rc) = o, 
where o- denotes a representing measure (in the direct integral decomposition) of the left 
regular representation of G, the following modification of (LCP) holds. 

2.2 Definition. Let G be a second countable locally compact group and r C G with 
1 Er. G is said to admit the modified Levy continuity property (MLCP) with respect tor 
if for any given sequence {µn : n EN} in M 1(G) and any mapping h : r -> £, which is 
continuous at 1 and satisfies 

fi.n(U) -> h(U) E £, 

for all U E r there exists a measureµ E M 1(G) such that 

and 

µ(U) = h(U) 

for all U E f. 

Following the exposition in [3] we note that if G is of type I (f.e. if G is nilpotent or 
solvable or a Moore group) then there exists a representing measure u of the left regular 
representation of G such that o-(G~) = o. If, in addition, G is amenable (f.e. if G is 
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an almost connected nilpotent or a Moore group) then 1 E suppa for every representing 
measure O', and hence G admits (MLCP) with respect to any subset r of G with a(rc) = o. 

On the other hand G admits (MLCP) with respect to G provided every neighborhood 
of 1 (in G) contains a representation U such that for any u E 1-t(U) the coefficient p.,(U) 
vanishes at infinity. Applying this fact it turns out that a noncompact, connected simple 
Lie group G with finite center admits (MLCP) with respect to G if and only if G violates 
the Kazdhan property which states that 1 is isolated in G. 
3. Convergence of scaled arrays of distributions 

A (continuous) convolution hemigroup {µ(s,t) : (s,t) ES} of probability measures 
on a locally compact group G is characterized by the fact that the corresponding family 
{µ(s, t)(U) : (s, t) E S} of operators in C(1t(U)) is a (continuous) evolution family for 
each U E Irr(G). Given a subset r of Rep(G) we define a convolution hemigroup {µ(s, t) : 
(s,t) ES} in M 1(G) to be of (continuous) :F-finite variation with respect tor if for eacb 
U E r the mapping 

(s, t) 1-+ µ(s, t)(U) - I 

from S into C(1t(U)) is of (continuous) finite variation. 

3.1 Definition. Let {µ(s, t) : (s, t) E S} be a convolution hemigroup in M 1(G) and let 
r C Rep(G). A family {(Ip : U Er} of mappings cpu E FV(R+,C(1t(U))) is called an 
integrating family related to {µ(s, t) : (s, t) ES} if for all U Er, cpu (o) = o and 

whenever (s, t) E S. 

µ(s, t)/\(U) =I+ j µ(s, r-)A(U)cpu (dr) 

l•,tJ 

If a convolution hemigroup {µ(s, t) : (s, t) E S} admits an integrating family for r c 
Rep(G) then {µ(s, t) : (s, t) E S} is of :F-finite variation with respect to r. Conversely, 
if {µ(s, t) : (s, t) E S} is a convolution hemigroup of :F-finite variation with respect to 
r then it admits an integrating family for r. Moreover, let {µ(s, t) : (s, t) E S} be a 
convolution hemigroup of continuous :F-finite variation with respect tor C Rep(G). Then 
the integrating family { cpu : U Er} related to {µ(s, t) : (s, t) ES} is uniquely determined, 
and cpu E C(R+, £(1-t(U))) for all U Er. 

In the classical situation of G = Rd (ford;::: 1), where Irr(G) ~ Rd, any convolution 
hemigroup {µ(s,t): (s,t) ES} in M1 (G) can be characterized by a triplet (a,B,11) in 
P(R+, G) such that 

µ(s, t)A(U) = exp{i < U, a(t) - a(s) > -½ < U, (B(t) - B(s))U > 

+ j (ei<U,y> - 1 - i < U, h(y) > )1/()s, t) x dy)} 
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for all U E Irr(G)((s, t) ES), where h denotes a truncation function on G. It turns out 
that {µ(s, t) : (s, t) ES} is of F-finite variation if and only if a is of finite variation, and in 
this case the integrating family {ipu: U E frr(G)} related to {µ(s, t) : (s, t) ES} consists 
of functions ipu E FV(R+, .C(1t(U))) given by 

ipu(T) = log µ(o,T)"(U) 

whenever T E R+· In terms of increment processes associated with hemigroups the above 
stated Levy-Khintchine correspondence 

{µ(s, t) : (s, t) ES} +-+ (a, b, r,) 

between the sets H(G) and P(R+,G) is proved in [12}. 
A similar description of the integrating family can be given in the case of Moore groups 

G which are known to be Lie projective. The necessary argument relies on Section 5 of [5} 
and the method developed in [14). In the special case of abelian locally compact groups a 
comparison of the various versions of convolution hemigroups of finite variation has been 
carried out in [1). 
Results for specified limits 
3.2 Theorem. For every n E Z+ let {µ,.(s, t) : (s, t) E S} be a convolution hemigroup 
admitting an integrating family { ip~ : U E Irr( G)}. Suppose that for every U E Irr( G) 

(i) there exists a dense subset D of R+ such that for all t E D 

'P~ (t) -> 'P~ (t), 

(ii) for the sequence of moduli of continuity 

limsupwr(Vy,!{i 8)-> o as 8-> o 
n-+oo 

whenever T > o. 

Then 
µ,.(s, t) --+ µo(s, t) 

for all (s, t) E S, and {µo(s, t) : (s, t) E S} is a convolution hemigroup of continuous 
F-finite variation with respect to frr(G). 

3.3 Theorem (Convergence). Let {µne : n, £ E N} be an array in M 1 ( G) and { kn : 
n EN} a scaling sequence. Moreover, let {µ(s, t) : (s, t) ES} be a convolution hemigroup 
in M 1(G) admitting an integrating family {ipu : U E Irr(G)}. Suppose that for every 
U E Irr(G) 
(i) there exists a dense subset D of R+ such that for all t E D 

kn(t) 

L (JJ.nL(U) - I) --+ 'Pu (t), 
l=l 
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(ii) 
kn(t) 

limsup sup L 11.unt(U) - Ill -> o as o-> o 
n-+oo 0~~~~1T t=kn(s)+l 

whenever T > o. 

Then 
kn(t) • 

IJ µnl-> µ(s, t) 
l=kn(s)+l 

for all (s, t) E S, and {µ(s, t) : (s, t) E S} is a convolution hemigroup of continuous F-finite 
variation with respect to Irr(G). 

Results for unspecified limits 

Here we assume that G is a locally compact group admitting (LCP) for some fixed 
r C Rep(G). 

3.4 Theorem. For every n EN let {µn(s, t) : (s, t) ES} be a convolution hemigroup in 
M 1(G) admitting an integrating family {,p~: U Er}. Suppose that for every U Er 

(i) there exists a dense subset D of R+ such that for all t E D the sequence { ,p~ : n E N} 

converges in C(H.(U)), 

(ii) limSUPn-,oo) WT(V<p!{i c5)-> o as c5-> o whenever T > o. 

Then there exists a family {,pu E FV(R+,C(1i(U))) n C(R+,£(1-i(U))): UE r} such 
that 

locally uniformly for all U Er. 

If, in addition, 

(iii) the mapping U 1-> ,pu from r n Rep0 (G) into C(R+, C(H.(a))) is continuous for each 

a, 

(iv) the mapping U 1-> V'Pu from r n Rep0 ( G) into C (R+, R+) is locally bounded for each 

a, 

then there exists a convolution hemigroup {µ(s, t) : (s, t) E S} of continuous F-finite 
variation with respect to r such that 

µn(s, t) -> µ(s, t) 

for all (s, t) E S, and { ,pu : U Er} is an integrating family related to {µ(s, t) : (s, t) E S}. 

3.5 Theorem (Convergence). Let {µnl: n,e EN} be an array in M 1 (G) and {kn: 
n E N} a scaling sequence. Suppose that for every U E r 
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(i) there exists a dense subset D of R+ such that for all t E D 

(ii) 

{
kn(t) } tt ({4.e(U) - I) : n EN converges in £('H.(U)), 

kn(t) 

limsup sup L llflnt(U) - Ill -+ o as o-> o 
n-t-OO o7~;~1T l=kn(s)+l 

whenever T > o. 

Then there exists a family {iP E FV(R+,£('H.(U))) n C(R+£('H.(U))) : U Er} such 
that 

kn(t) 

sup II L (/J,nl(U) - I) - rpu (t)II-+ o 
tE[o,T] l=l 

for all U E r whenever T > o. 

If, in addition, conditions (iii) and (iv) of Proposition 3.4 hold, then 

kn(t) • 

IJ µ,,.e -> µ(s, t) 
l=kn(•)+l 

for all (s, t) ES, and {µ(s, t) : (s, t) ES} is a convolution hemigroup of continuous .F-finite 
variation admitting { rpu : U E r} as its related integrating family. 

For the technical background and proofs of the results we refer the reader to (10]. The 
main idea is to reduce the study of convolution hemigroups on G via Fourier transform 
to the study of evolution families of operators and related operator-valued integrating 
functions which are chosen to be of finite variation. These integrating functions are applied 
in order to obtain integral representations of the given evolution families the integral 
involved being a (Bogdanowicz) generalization of the (bilinear) Lebesgue-Bochner-Stieltjes 
integral for operator-valued integrands and integrators. 

4. Convergence of scaled arrays of random variables 

In this section we wish to reformulate the previous results in terms of increment processes 
and scaled products of random variables taking their values in a second countable locally 
compact group G which is also a complete separable metric group. Let X := {X(t) : t E 
R+} be an increment process in second countable G and let {µ(s, t) : (s, t) ES} denote the 
associated convolution hemigroup of distributions µ(s, t) of increments X(s)-1 X(t) of X. 
The process Xis said to be of (continuous) finite .F-variation with respect tor C Rep(G) 
if the convolution hemigroup {µ(s, t) : (s, t) E S} is of F-finite variation with respect 
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to r in the sense of Section 3, and to admit an integrating family for r c Rep( G) if 
{µ(s, t) : (s, t) E S} does. 

Results for specified limits 

4.1 Theorem. For every n EN let Xn = {Xn(t): t ER+} be a cad.lag increment process 
in G which is of .1'-finite variation with respect to Irr(G) and admits an integrating family 
{cp~: U E frr(G)}. Moreover, let {µ(s,t): (s,t) ES} denote any convolution hemigroup 
of .1'-finite variation with respect to Irr(G) and let {cpu : U E Irr(G)} be some integrating 
family related to {µ(s, t) : (s, t) E S}. We assume the conditions (i) and (ii) of Theorem 
3.2 to be satisfied. 

Then there exists a G-valued stochastically continuous cadlag increment process X = 
{X(t): t ER+} of continuous .1'-finite variation with respect to Irr(G) such that 

in distribution on D(R+, G), and Px(a)-'X(t) = µ(s, t) whenever (s, t) ES. 

4.2 Theorem. Let { Xnt : n, £ E N} be an array of rowwise independent random variables 
with values in G, and let {kn: n ;:=: 1} be a scaling sequence. Moreover, let {µ(s,t) : 
(s, t) E S} denote any convolution hemigroup in M 1(G) admitting an integrating family 
{cpu: U E Irr(G)}. We assume that for every U E Irr(G) 

(i) there exists a dense subset D of R+ such that for all t E D 

(ii) 

kn(t) 

L (E(U o Xnt) - I) ..... cpu (t), 
t=l 

k,.(t) 

limsup sup L IIE(U o Xnt) - Ill--> o as 8--> o 
n-+oo 0~~~~~T l=kn(s)+l 

whenever T > o. 

Then there exists a G-valued stochastically continuous cadlag increment process X = 
{X(t): t ER+} of .1'-finite variation with respect to Irr(G) such that 

kn(·) 

II Xnt ..... X 
l=l 

in distribution on D(R+, G), and Px(s)-'X(T) = µ(s, t) whenever (s, t) E S. 
Results for unspecified limits 

Similar to Section 3 we need also here the additional hypothesis that G admits (LCP) 
for some fixed r c Rep(G). 
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4.3 Theorem. For every n E N let Xn := {Xn(t) : t E R+} be a cadlag increment 
process in G which is of F-finite variation with respect to r and admits an integrating 
family { <p~ : U E r}. Suppose that for every U E r conditions (i) and (ii) of Theorem 3.4 
are satisfied. 

Then there exists a family {<pu : U E r} of mappings <pu E FV(R+,.C(ri(U))) n 
C(R+, .C(rl(U))) such that 

locally uniformly for all U Er. 
If, in addition, conditions (iii) and (iv) of Theorem 3.4 are fulfilled, then there exists 

a stochastically continuous cadlag increment process X = {X(t) : t ER+} of continuous 
F-finite variation with respect to r such that 

in distribution on D(R+, G), and { <pu : U E r} is an integrating family related to the 
convolution hernigroup of distributions of increments X(s)-1 X(t) of X. 

4.4 Theorem. Let { Xnt : n, £ E N} be an array of rowwise independent random variables 
with values in G, and let { kn : n ~ 1} be a scaling sequence. Suppose that for every U E r 
(i) there is a dense subset D of R+ such that for all t E D the sequence 

{
kn(t) } 
~ (E(U o Xnt) - I) : n E N 

converges in .C(rl(U)), 

(ii) 
kn(t) 

limsup sup L JIE(U o Xnt) - Ill --> o as o--> o 
n~oo oS•StST 

t-,s;• l=kn(s)+l 

whenever T > o. 

Then there exists a family { <pu U E r} of mappings <pu E FV(R+, .C(rl(U))) n 
C(R+, .C(rl(U))) such that 

locally uniformly for all U E r. 
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If, in addition, conditions (i) and (ii) of Theorem 3.4 are fulfilled, then there exists a 
stochastically continuous cadlag increment process X = {X(t) : t E R+} of continuous 
.r-finite variation with respect tor such that 

in distribution on D(R+, G), and { cpu : U E f} is an integrating family related to the 
convolution hemigroup of distributions of increments X(s)-1 X(t) of X. 

5. Suggestions for further research on the subject 
An open problem in functional limit theory for locally compact groups is the specifi

cation of sufficient conditions enforcing the limiting process to be a diffusion. For Lie 
projective groups diffusion hemigroups and their corresponding increment processes have 
been characterized in [8] and [1]. We recall the following 

5.1 Definition. A convolution hemigroup {µ(s, t) : (s, t) ES} on a locally comact group 
G is said to be a diffusion hemigroup if for all T > o and for every neighborhood V of e 

Under Lipschitz conditions one shows that a convolution hemigroup on G is a diffusion 
hemigroup if and only if the corresponding increment process is a diffusion process in the 
sense that it has continuous paths. 

For convolution semigroups {µ(t) : t E R+} on G and their corresponding stationary 
increment processes the analoguous diffusion property 

valid for every neighborhood V of e defines Gaussian semigroups and Gaussian processes 
respectively. 

In the sequel we shall sketch theorems on the convergence towards a Gaussian semigroup 
and on the martingale characterization of Gaussian semigroups, two results whose possible 
extensions to diffusion hemigroups by means of infinite dimensional Fourier transforms 
would be of great value for the development of functional central limit theory. 

Let {µ(t) : t E R+} be a convolution semigroup on G and {µ(t)A(U) : t E R+} the 
associated semigroup of operators µ(t)"(U) in .C(?-f.(U)) whenever U E Rep(G). For any 
U E Rep(G) one introduces the infinitesimal generator(N(U),N(U)) of the representing 
semigroup {µ(t)"(U): t ER+}- It turns out that the domain N(U) of N(U) contains the 
space ?-f.0 (U) of U-differentiable vectors of 1-f.(U), and 1-f.o(U) contains the Garding space 
?-f.1(U). If U E Rep1(G) then ?-f.1(U) = ?-f.0 (U) = 1-f.(U). For arbitrary U E Rep(G) the 
operator N(U) admits a Levy-Khintchine representation on 1-f.o(U), and {µ(t) : t ER+} 
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is uniquely determined by the family {Res1i,(U)N(U) : U E Irr(G)}. The author of 
[15] studies the convergence of sequences of convolution semigroups towards a limiting 
convolution semigroup on G. In particular he achieves the following central limit result. 

5.2 Theorem. Let G be a Lie projective group, and let {tint : n, e E N} be a commutative 
infinitesimal array in M 1(G) satisfying the condition that 

kn 

lim "tln,t(Vc) = O 
n-+o:> L.-J 

l=l 

whenever V is a neighborhood of e. Suppose, moreover, that 

kn 

limsup LI < fi,nt(U)u - u, u > I < oo 
n--+oo l=l 

for all U E Irr(G) and u E H.0 (U). 

Then the sequence {µn : n E N} of row products 

kn • 

µn := II µnl 
l=l 

is uniformly tight, and for any of its nondegenerate limit points µ there exists a Gaussian 
semigroup {µ(t): t ER+} on G such that µ(1) = µ. 

Next we describe a martingale characterization of a Gaussian semigroup or process in 
terms of its representing semigroup as it is shown in [16]. 

For any Hilbert space 1-{, we consider C(H)-martingales {Z(t) : t ER+} (with respect 
to a filtration {F(t) : t E R+}) defined by the property that for all u,v E 1-{, the C
valued process{< Z(t)u,v >: t ER+} is a martingale with respect to {F(t) : t E 
R+}). Now, let {µ(t) : t ER+} be a convolution semigroup with representing semigroup 
{µ(t)"(U) : t E R+} for U E Rep(G). Let r be a subset of Rep(G) such that for all 
U Er and all t ER+ the operator µ(t)"(U) is invertible in C(H(U)), and that the Fourier 
mappingµ>-+µ from Mb(G) into the set of mappings from r into U{C(?-i(U)) : U Er} 
is injective. Then a stochastic process X = {X(t) : t E R+} in G is a (stationary) 
increment process corresponding to {µ(t) : t E R+} if and only if for each U E r the 
process {µ(t)"(U)- 1U o X(t) : t ER+} is an C(H(U))-valued martingale with respect to 
the canonical filtration of X. One notes that this equivalence holds provided G is almost 
periodic in the sense that Rep1(G) separates the points of G, and r := Irr(G) nRep1(G). 
If, moreover, G is a Moore group, it clearly holds for S := Irr(G). 

5.3 Theorem. Let G be a compact group for which a faithful representation FE Rep1(G) 
exists. Given a convolution semigroup {µ(t) : t E R+} on G and a stochastic process 
X = {X(t) : t ER+} in G with filtration {F(t) : t E R+} which has continuous paths, 
the following statements are equivalent: 

(i) Xis a Gaussian process corresponding to {µ(t): t ER+}-
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(ii) For each U E {F,F®F} the process {µ(t)"(U)- 1U oX(t): t ER+} is an .C('H(U))
valued martingale with respect to the filtration of X. 

As for the hypothesis on G in the theorem it should be noted that a compact group 
G admits a faithful finite dimensional representation if and only if G is isomorphic as a 
topological group to a (compact) group of orthogonal ( or unitary) matrices, or equivalently 
to G being a Lie group. Further equivalences can be found in [11]. 

In the proof of the implication (ii)=>(i) of the theorem the author of [16] applies the 
fact that for any convolution semigroup {µ(t) : t E R+} on a locally compact group G 
and any cadlag process {X(t): t ER+} in G the process {µ(t)"(U)- 1U o X(t): t ER+} 
is an .C('H(U))-valued local L2-martingale (for U E Rep(G)) if and only if the process 
{U o X(t) - N(U)J: U o X(s)ds: t ER+} has that property. 

In the case of an arbitrary locally compact group G admitting a faithful real represen
tation in Rep1(G) a result similar to Theorem 5.3 can be found in (17]. 
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Harmonic Analysis on Complex Random Systems 

TAKEYUKI HIDA 

MEIJO UNIVERSITY 

NAGOYA, JAPAN 

Abstract White noise analysis has an aspect of harmonic analysis arising from the 
infinite dimensional rotation group O(E) which is formed by all the linear isomorphisms 
of a basic nuclear space EC L2 (Rd). In fact, the white noise measureµ is kept invariant 
under the action of the group O*(E*) consisting of the adjoint transformations g• of 
the members g in O(E). 

In this report, pru:ticular attentions will be paid to a subgroup generated by the 
so-called whiskers. A whisker, we mean, is a continuous one-parameter subgroup {gt} 
of O(E), where each member g1 comes from a diffeomorphism of the time (or space
time) parameter space of the white noise. The most important whisker is the time 
shift. With this choice of a whisker, one can define a one-parameter unitary group 
{Ut} acting on the Hilbert space L2(E*,µ) and speak of the spectral multiplicity. This 
notion enables us to consider a sort of degree of complexity of random evolutional 
phenomena that propagate as the time or space-time parameter moves. 

Another interesting subgroup of O(E) is the conformal group C(d) generated by 
certain various whiskers involving the shift. The group structure of C(d) is well known, 
since it is locally isomorphic to the Lie group SO(d + 1, 1), so that it is ready to 
be applied to white noise theory. Indeed, this group C(d) plays important roles, in 
particular, in the investigations of reversibility and of variations of a random field X ( C) 
when C is deformed by the action of the group C(d). 

Together with some other significant examples of whiskers, we can carry on an 
essentially infinite dimensional harmonic analysis in line with the white noise 
analysis. 

§1. Introduction and background 
The subject of harmonic analysis on white noise space has undergone a vast development: 

Laplacians, Fourier transform and operator theory in general. While, complexity or complex 
systrm is proposing interesting future directions in various fields in science. We shall, in 
this note, focus our attention to random phenomena, namely random complex systems and 
in fact, tht•y can be discussed in line with white noise analysis. Note that the white noise 
anal~·sis has an aspect of an infinite dimensional harmonic analysis that arises from the 
infinite dimensional rotation group. Thus, our present aim is to investigate complex random 
systems expressed in terms of white noise by appealing to the theory of infinite diemsional 
rotation group. 

We shall briefly reYiew the white noise space and the rotation group as background. 
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White noise is a measure space (£•, µ), where E* is a space of genralized functions on 
Rd and it is taken to be the dual space of some nuclear space E, and where µ is a measure 
011 £• d<>terminecl by a characteristic functional 

Set (L2 ) = L2(E',11.). Then, we have a Fock space: 

A Gel'fand triple 
(S) C (L2) C (S)* 

defines the space (S)* of generalized white noise functionals. 
To have a visualized expression of (S)*-functional 'Pis an S-transform (Kubo-Takenaka) 

defined by 

(S9)(,;) = C{,;) J exp[(x,,;)]cp(x)dµ(x). 

The S-transform is usuful to define operators, like annihilation operator 81 and creation 
operator a;, that act on the space (S)*. Indeed, S is a bijective mapping from (S)* to its 
range. 

We thm come to the rotation group O(E) of E. Let g be a linear homeomorphism of E 
such that 

[[g,;I\ = [[,;I\, ,; E E. 

Then, g is called a rotation of E. The collection O(E) of all rotations of E forms a group 
under the usual product. Also, the compact-open topology is introduce to O(E), so that it 
is a topological group. 

Definition. The topological group O(E) is called the rotation group of E. If E is not 
specified, it is called an infinite dimensional rortation group and is denoted by 0 00 • 

Let g' be the adjoint operator of g. Necessarily g' is a continuous linear operator acting 
on the space E•. 

Proposition. The group O'(E') is isomorphic to O(E) under the correspondence g* t-+ g-1 . 

With the help of the characteristic functional we can prove 

Theorem 1. The white noise measure µ is invariant under the action of the group o• ( E'): 

g'. µ = µ. 

Hence, the operator U9 given by 

U99(x) = 9(g':r) 

is unitary. We can therefore introduce the unitary representation of the group O(E) on the 
Hilbert sµaee (L2 ). 
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§2. Subgroups of O(E) and their roles 

The group 0(£) is. in a sense. quite big; in fact, it is not even locally compact, and 
its structurr is wry complex. It would be a good idea to take subgroups separately and 
im·estigate their roles in white noise analysis. 

B. Finite dimesional subgroups 

Take a finite dimensional subspace, say En isomorphic to R". The collection of rotations 
g such that their restrictions to E,. are its rotations and identity on E;; forms a subgroup, 
denoted by Gn, Obviously, Gn is isomorphic to the linear group SO(n). 

I. Hyperfinite dimensional subgrpoup 

Set 
Goo= VnGn, 

Then, the infinite dimensional Laplace-Beltrami operator ~ 00 is determined by the subgroup 
G00 and is expressed in the form 

Ll00 = fa; 81dt. 

Also, we can prove (see [2]) the unitary representation {U9 , g E G00 } on Hn, n 2: 1, is 
irreducible. As a result, ~ 00 takes a constant value, in fact -n, on the subspace Hn, 

II. Infinite dimensional subgroup: The Levy group 

As is well known the Levy group g is essentially infinite dimensional. Its action can 
generally not be approximated by finite dimensional rotations. Contrary to the case I above, 
the Levy Laplacian ~L acts effectively on the space (S)' and annihilates the basic space 
(L2 ). There is a formal expression (due to H.-H. Kuo) of the Levy Laplacian that helps to 
understand its actions. 

It is noted that the subgroups that have appeared so far depend on the choice of a complete 
orthonormal system for L2(Rd). 

III. Ultra infinite dimensional subgroups: Whiskers 

There are significant one-parameter subgroups that come from the diffeomorphisms of 
the parameter space Rd. They are called whiskers. The most important whisker is the shift. 
Define S{ by 

sf~(u)=~(u-tej), ~EE; tER; j=l,2, ... ,d, 

where ei is the j-th coordinate vector of Rd. There are many other whiskers that have good 
relations (commutation relations) with shift. A significant class of whiskers is isomorphic to 
the conformal group C(d). 

As we shall discuss in what follows, the shift expresses the change of time or space-time 
and illustrates the propagation of random phenomena. 
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§3. Complex systems 

\\'hat we shall be concerned with are random complex systems which are time-oriented 
or space-time-oriented. Assume further that the systems in question are functionals of white 
noisl'. This means that we tacitly assume that white noise input is provided behind the 
system. The observed data shall be expressed as a stochastic process X(t) depending on the 
time t or a random field X(C) indexed by a manifold C, say a contour, that runs through 
a Euclidean space. :\[athematically they are functionals, maybe generalized functionals, of 
white noise. 

There are various approaches to those random complex systems; among others we propose 
the innovation approach. The original idea came from P. Levy's paper [4], where he has 
proposed a stochastic infinitesimal equation for a stochastic process X ( t). This can also be 
extended to the case of a random firld X ( C), although the existence of the proposed equation 
can not always be expected. With the help of the innovation we can measure thr complexity 
of random complex systems. In some cases we can form the innovation for our purpose, and 
they are now in order. 

Starting from a Brownian motion or a white noise , which is a basic elementary stochastic 
process or generalized stochastic process, resp., we discuss functions of Brownian motion (or 
white noise) taking the time development (shift) into account. 

1) Gaussian system 

Let X(t) be a Gaussian process with mean E(X(t)) = 0. Assume that X(t) is separable 
and has unit multipliocity in the time domain. Then, there exists a white noise B(t) such 
that 

X(t) = / F(t, u)B(u)du, 

where F(t, u) is a non random kernel function. In addition, {X(u), u $ t} has the same 
information as { B(u), u $ t} for every t. A representation satisfying these conditions is 
called canonical. 

The notion of multiplicity can be understood in such a way that associated with each 
tis a projection E(t) corresponding to the space spanned by the variables X(s), s $ t, (if 
necessary E ( t) is modified so as to be right continuous) so that the spectrum as well as the 
(spectral) multiplicity can be defined by the Heiliger-Hahn theorem. 

The unit multiplicity means that the given Gaussian process represented by a single 
Brownian motion (white noise) which we could call an elemental stochastic process. There are 
many Gaussian processes with higher multiplicity and number of the multiplicity expresses 
the "degree of complexity." 

2) Nonlinear functionals of white noise 

There are a lot of significant stochastic processes that are expressed by nonlinear func
tionals of a white noise (Brownian motion). There is requested a calculus, called white noise 
analysis, where a white noise {.B(t)} is taken to be the system of rnriables. 

In order to establish the causal calculus of complex systems of the abo\·e form of a 
stod1astic process, it is necessary to generalize the notion the multiplicity. xamely, a one
parameter unitary group {U(t), t E R}, acting on the space of white noise functionals and 
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rPpn•spnting the timP propagation, is introduced . .'\.ctually, U(t) is defined so as to hold the 
relation C(t)B(s) = B(t + s). 

Once the unitar~· group is introduced, one can see a cyclic subspace of the form 

H(f) = span{U(t)f, t ER}. 

Again the Hellinger·-Hahn theorem claims that there is a system { H(/11 ); n = 1, 2 .... } such 
that it is an orthogonal system and that the entire complex system in question is expressed 
as the direct sum of those cyclic subspaces. Those subspaces are arranged in the order of the 
spectral measures. The number of the cyclic subspaces is the multiplicity in the general sense. 
This multiplicity is different. from the Gaussian case, but it also serves to the measurement 
of complexity. 

Remark. A stochastic process formed by some nonlinear functional for which its innovation 
is actuall~· obtained (see [3)) can be discussed directly for degree of complexity. 

Example. The \Viener expansion. There is a famous application called the \Viener expan
sion. \:Ve want to identify an unknown system that permits white noise input as is illustrated 
below. 

input --t nonlinear system --t output 

Let the known nonlinear systems be provided in advance. If the same input as that to the 
nonlinear system is given, then their outputs can be compared to those of the unknown 
system. Thus, the \Viener expansion provides a tool to identify a random complex system 
that admits white noise input. Nonlinear system has usually infinite multiplicity which 
means we need, theoretically speaking, infinitely many known systems. 

§4. Reversibility and irreversibility: Roles of whiskers 
Reversibility and irreYersibility of random evolutional phenomena may be expressed in 

terms of the B(t) instead of the time parameter t itself and both properties are defined with 
respect to the conformal transformations mapping a time interval onto another in a time 
reYerse order. 

We start our discussion with a simple example in Gaussian case where the time interval 
is taken to be [O, 1] to fix the idea. 

1) A Brownian motion {B(t), t E [O, 1]} is certainly irreversible, since it is an accumulated 
sum of independent rnriables B(t)'s at every instant t, and both variance and entropy increase 
as t procf'eds. 

2) Let a Brownian motion B(t) be pinned at t = 1 to a position c, namely let B(l) = 
c. Then, we are given a Gaussian process, denoted by Xc(t). The reversibility maybe 
understood to be an inrnriant property of a process under the simple time reflection. If so, 
we haw 

Proposition. The probability distributipon of X 0 (t), t E [O, l], is invariant under the time 
ref election: t >-+ 1 - t. 

Proof easil~· comes from the computation of the covariace function: 
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f(t, s) = (t I\ s}{(l - t) I\ (1 - s)}. 

There are observations. 

1. It is easily seen that a Brownian motion B(t), which is an irreversible process, is viell'ed 
as a superposition of reversible processes ,\'At), c E R1, with the weight of the standard 
Gaussian measure g(l, c)dc to which B(l) is subject. 

2. The (forward) canonical representation of X(t) is expressed in the form 

X 1(t) = (1- t) ft - 1-B1(u)du, t E [O, l]. 
lo 1- u 

Tlw abm·e B 1(t) is a new Brownian motion that has the same information as X 1(t). 
While, the rewrsal canonical representation is given by 

11 1 . 
X2(t) = t -B2(u)du, t E [O, 1]. 

t u 

Two representations given above express the same Brownian bridge as a Gaussian 
process and they are linked by the projective transformation of the parameter t (see 
[2:Chapter 5]). There, a role of whiskers can be seen. 

The reversibility of a Gaussian process X(t) in white noise analysis is to be considered in 
tNms of the innovation. Since the time domain is limited to a finite interval, the innovation 
should be formed locally in time. This implies that there is a differential operator Lt such 
that 

LtX(t) = B(t). 

Now the reversibilit~· of a Gaussian process may be dealt with as follows. 

a) \\'e understand that a Brownian bridge is an elemental reversible Gaussian process. 
Thus, starting from a Brownian bridge we may consider general reversible Gaussian 
proeesses. 

b) We generalize the reversible property in such a way that the canonical kernels of forward 
and reversal representations are linked by conformal transformations. 

Thus, in the present situation we may assume that 

c) the system of the fundamental solutions of the differential equation 

Ltf =0 

consists of polynomials in (t - 1). 

Summing up we now haYe 

Theorem 2. Let a bridged Gaussian process X(t) satisfy the conditions a), b) and assump
tion c). Assume that the 07'der of the differential operator L1 is N uniformly int. Then, the 
process X ( t) is reversible. 
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PROOF. By assumption, we haYe the canonical representation of X(t) (see [1]): 

rt . 
X(t) = lo R(t, u)B(u)du, 

"·hen' R(t, 11) is Riemann's function of the form 

N (l - t)k 
R(t,u) = I>k-( )k' 

k=l 1 - U 

where we may assume a1 = 1 so that all the ak's are uniquely determined. Then, as 
a gf'lwralization of the Proposition a conformal map of the interval [O, 1] defines a new 
representation of X ( t) by using the forn·ard and reversal canonical representations. 

§5. Concluding remark 
\\'ith a generalization explained at the end of the last section, we are suggested to think 

of reversibility of a random field X(C). To fix the idea, C is taken to be a contour in the 
plane. To discuss reversibility, it is necessary to have an oriented family C of contours. 
Denote it b~· C = { Ct, t0 $ t $ ti} with the order C, < Ct for s < t denoting C, is inside 
of Ct. ?-dost important requirement is that the C1 expands as t increases from C0 to C1 

smoothly by the action of continuous family {g1} of conformal transformations. With this 
setup a reversibility of X ( C) can be discussed, where X ( C) is an integral of white noise over 
the domain (C) endosed by a contour C (cf. causality). 

It seems to be interesting to note that X(C1), t 0 :St$ t 1, denotes a trajectory (path) of 
a Gaussian random field and on the set of the trajectories a Gaussian measure is naturally 
introduced. It is, therefore, our hope that we are ready to apply to the path integral. Actual 
computations have been given in the case where {Cr} is a family of concentric circles. 
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Abstract 

In analogy to wavelet transforms, we use group-like structures in order to introduce 
a class of integral transformations. We consider them in the context of Hilbert 
spaces and study their inversion. 

0 Introduction 

Wavelet analysis was introduced as a mathematical tool by A. Grossmann, J. Morlet, 
and T. Paul in [4] and was motivated by applications in signal processing. Many exam
ples of important transformations can be recognized as wavelet transforms or are closely 
related to them (see [5], [6]). The mathematics of wavelet transform, as given in [5], is 
based on the theory of square integrable representations of locally compact groups and 
has a considerable range of generality. 
In this paper we consider some integral transformations of wavelet type acting on the 
space of square integrable functions on a commutative hypergroup. They generalize the 
classical wavelet transform and the windowed Fourier trans/ orm. This work was moti
vated by a preprint of M. Rosier [10] and a series of papers by K. Trimeche (see [12], 
[13], [14], [15], [11]). 

The first section recalls some results about commutative hypergroups. In the second 
section we define the left-transform. In the third section we discuss some special cases 
of the left-transform corresponding to transitive group actions. 

1 Commutative hypergroups 

Throughout this paper the following notation will be used: Let K be a locally compact 
space and denote by Cb(K), Co(K), and Cc(K) the spaces of continuous functions on K 
which are bounded, vanishing at infinity, and with compact support respectively. The 
symbol M(K) denotes the space of Borel measures on K, M+(K), Mb(K), and M!(K) 
are its subsets consisting of positive, bounded, and bounded positive measures, respec
tively. The er-algebra of Borel measurable sets of K is denoted by B(K). 
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The notion of a hypergroup generalizes that of a locally compact group. (For additional 
reading on hypergroups we recommend (1] and (7].) A hypergroup K is a locally com
pact topological space with an axiomatically defined convolution * on the Banach space 
Mb(K) of bounded measures. With this operation, Mb(K) forms a Banach algebra. The 
convolution * satisfies several requirements which are natural for locally compact groups: 
For example, * is weakly continuous, the convolution of probability measures is again a 
probability measure, there exists e E K such that the Dirac measure e, is the unit of the 
algebra (Mb(K), *)- Furthermore, there also exists a homeomorphism - : K---+ K with 
fK f (z-)Ex * Ey(dz) = fK f (z)ey- *Ex- (dz) for all x, y E K, f E Cb(K). (In the case that 
K is a group, - is given by inversion.) 

The hypergroup K is commutative if the algebra (Mb(K), *) is commutative. If K 
is commutative then there exists (up to a constant) a uniquely determined measure 
m E M+(K) satisfying Ex* m = m for all x E K; m is called the Haar measure. 
As in the case of groups, family (Tx)xeK of translation operators can be defined: For 
each x E K the corresponding Tx acts on suitable classes of functions by f >-+ Txf, 
(Txf)(y) = fK f dEx * Ey- Translation operators are contractions on L2 (K, m) and 
r; = Tx- holds for all x E K. For commutative hypergroups, a Fourier transform 
and a Plancherel identity are available. A bounded measurable function x : K ---+ (C is 
called character, if x(e) = 1, x(x) = x(x-), and Txx = x(x)x are satisfied for all x E K. 
The set K of characters is endowed with the compact open topology. The Fourier trans
form L1(K, m) ---+ Co(K), f >-+ J is defined by f(x) := fK x(x)f(x)m(dx). There exists 
a unique measure 1r E M+(K) (the Plancherel measure), such that the Fourier trans
form maps L1(K, m) n L2(K, m) into L2lK, 1r) L2-isometrically; it can be extended to 
a unitary operator :F : L2 (K, m) >-+ L2 (K, 1r). Similarly, the inverse Fourier transform 
L 1(K,1r) ---+ C0(K), g >-+ !J, !J(x) := Jx(x)g(x)1r(d~ maps L1(K,1r) n L2(K,1r) into 
L2 (K, m) also L2-isometrically. Its extension to L2(K, 1r) is the unitary operator :,:-1. 

We point out that in general the support S of the Plancherel measure is a proper subset 
of K. Translation operators are diagonalized by :F in the following sense: For all x E K 
the operator :FTx:F-1 acts on L2 (K, 1r) as the multiplication by the function K ---+ <C, 
x >-+ x(x). 

We explain the basic idea of this paper by means of the examples of the classical wavelet 
transform and of the windowed Fourier transform on IR: 

1. Given a function O ?' v E L2 (IR), we define L.: L2 (IR)---+ C(IRxIR\{O}), h >-+ Lvh 
as 

1-
(L.h)(b,a) = f ~v(~)h(r+b)dr, V h E L2(IR), 

b E IR, and a E IR\ {O}. The function (b, a) >-+ (L.h)(b, a) is up to the factor 
(b,a) >-+ lal½, the usual wavelet transform of h. Let us introduce on L2 (IR) the 
families (nheR and (Da)aeR\{O} of translation and dilation operators respectively 
as (Td)(r) := f(b + r), (Daf)(r) := ¼if(~) for all f E L2 (IR), r E 1R. With 
these operators we may write (L.h)(b, a) = (Dav, nh} for all h E L2 (IR), b E IR, 
a E IR\ {O}. 

2. Given a function O ?' v E L2 (IR) we define the transform Wv : L2 (IR) ---+ C(IR x IR), 
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as (Wvh)(b, a) = fa eiarv(r)h(r+b)dr, which is up to a factor the windowed Fourier 
transform. Again, using dilation (in this case modulation) operators (D~)aeR given 
by (D~f)(r) := e-iar f(r) for all / E L2 (JR), r E JR, and a E JR, the transform Wv 
may be written as (Wvh)(b, a) = (D~v, nh) for all h E L2(JR), a, b E JR. 

The following remarkable observation should be pointed out: If we define the actions /3 
and /3' of the groups (JR\ {O},·) and (JR,+) on the dual iR of JR as 

/3: iR X JR\ {0} I-+ iR 
/31 : R X JR I-+ R 

/3(x, a) := X • a, 
/3'(x, a) := x + a, 

then for each g E £2 (JR) we obtain all dilations (Da)aeR\{o} as :FDa:F-1g = g(/3(., a)) 
and dilations (D~)aeR as :FD~:F-19 = 9(/31(., a)). In both cases the dilations are unitarily 
equivalent via :F to operators on £2(iR), induced by an action of a group on iR. 
Motivated by this observation we start with a commutative hypergroup K, a function 
v E L2 (K, m), and an action /3 of a locally compact group G on K. We study the linear 
operator Lv : L2(K, m) • a:KxG, given by (Lvh)(b, a) := (Dav, nh) for all h E L2(K, m), 
(b, a) E K x G. Here lDa)aeG C B(L2(K)) are dilations defined by :F Da:F-19 := 
g(/3(., a)) for all g E L2(K, 1r), and (nheK are the usual translations of the hypergroup 
K. 

2 The left-transform 

Let (K, m) be a commutative hypergroup K equipped with a fixed Haar measure m. 
We assume that a locally compact group G acts continuously on the support of the 
Plancherel measure S = supp1r c K: That means that there exists a continuous mapping 
/3: S x G • S, (x,a) 1-+ Xa satisfying (Xa1 ) 42 = Xa142 for all XE Sand a1,a2 E G. 

Let µ be a fixed left Haar measure of G. We introduce the set {µX : x E S} of image 
measures of µ induced by the mappings G • S, a 1-+ xa: For each x E S we obtain 
µX(B) = µ({a E G : xa EB}) for all BE B(S). Let us also define the set {1r4 : a E G} 
of image measures of 1rls induced by the mappings S • S, x 1-+ X4 - For each a E G 
we obtain 1ra(B) = 1r( {x E S : X4 E B}) for all B E B(S). We suppose the following 
assumption to be satisfied: 

Assumption 1. For all a E G the measure 7r4 is absolutely continuous with respect to 
1rls and the corresponding Radon-Nikodym derivative satisfies ;;1: E L00 (S, 1rls). 

For each a E G and / E <V5 we define the function /4 E <V5 as /4(x) := / (xa) for all 
x E S. Due to the above assumption, the mapping / 1-+ /4 defines a continuous linear 
operator L2(S, 1rls) • L2(S, 1rls) for each a E G. Since the Hilbert spaces L2 (S, 1rls) and 
L2(K, 1r) are naturally isomorphic we may consider the mapping/ 1-+ /4 as a continuous 
linear operator on L2(K, 1r). 

Definition. 
{i) The operators (D,,.)aeG C B(L2 (K, m)), defined by Da L2 (K, m) • L2(K, m), 
h 1-+ ;:-1(:Fh)a for all a E G, are called dilation operators. 
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{ii} For each v E L2(K,m), the linear mapping Lv : L2(K,m) • a::«xa, ht-+ Lvh, 
given by (Lvh)(b, a) := (Dav, Tbh) for all (b, a) E K x G, is called the left-transform 
corresponding to v. 
{iii} The elements of A:= { v E L2(K, m) : (x t-+ fa 1.rv(xa)/2µ(da)) E L00 (S, ?l"ls)} are 
called admissible vectors. The elements of A\ {O} are called wavelets. 

Given VJ, V2 EA, we define Cv,,v, : S • (I:! as Cv,,v, (x) := fa (.rv2)(xa)(.rvi)(xa)µ(da) 
for all x E S. It follows from Cauchy-Schwarz inequality that Cv,,v, E L00 (S, ?l"ls). We 
remark that the function Cv,,v, is constant on each orbit: 

Lemma 1. For all Vi, V2 EA, XE S and Xo E /3(x, G) we have Cv,,v, (xo) = Cv,,v, (x). 
Proof. For Xo E /3(x, G) there exists a0 E G with Xo = x«o, and it follows that 

We conclude that 

since µ is a left Haar measure on G. (The same argument implies that µx = µx for 
XE /3(x, G)). • 
For an admissible vector v the left-transform can actually be discussed in the framework 
of Hilbert spaces: 

Proposition 1: 
{i) Given v EA the mapping ht-+ Lvh defines a bounded linear operator from L2(K, m) 
intoL2(KxG,m©µ). ~~~ 
{ii} (Lv, h1, Lv,h2) = fs (.rh1)(x)(.rh2)(x)Cv,,v, (X)?l"(dx) holds for all v1, v2 E A and 
h1,h2 E L2(K,m). 

Proof. (i) Let v E A and h E L2 (K, m). The function Lvh is measurable since 

Lvh(b, a) = (Dav, nh) = (.rDav, .rTbh) = k (.rv)a(x)x(b)(.rh)(X)?l"(dx) 

= fs (.rv)(xa)x(b)(.rh)(x)?l"(dx), 

and the integrand K x G x S • <r, (b, a, x) >-+ (.rv)(xa)x(b)(.rh)(x) is measurable in 
view of continuity of /3: (x, a)>-+ xa. 

Now Lvh E L2(K x G,m®µ) is seen as follows: 

oo > fs i(.rh)(x)l2Cv,v(X)?l"(dx) fs 1(.rh)(x)l2 fa 1((.rv)(xa)l2µ(da)1l"(dx) 

fa fs i(.rv)(xa) · (.rh)(x)l21l"(dx)µ(da) 

k JR l(.rv)a · (.rh)l2d1l"µ(da). 
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showing that (Fv)• • (Fh) E L2(K) for µ-almost all a E G. The isometry of F ensures 
that 

oo > lafx l(Fv)• · (Fh)l 2d1rµ(da) 

The first equality holds since 

(ii) Polarizing 

la fx l((Fv)"FhjY(b)l2m(db)µ(da) 

la L l((Fv)", FTbh}l2m(db)µ(da) 

{ j(Lvh)(b, a)l2m ® µ(d(b, a)). 
lxxG 

(Lvh,Lvh) = Is l(Fh)(x)l2Cv,v(X)1r(dx) 'vv E A,h E L2 (K,m), (1) 

we obtain 

• 
Remark. (The inversion of the left-transform.) Let us suppose that for a given v2 E 
A there exists v1 E A satisfying Cv2 ,v1 = 1. In this situation we obviously obtain 
(Lv,h1,Lv2~) = (h1,h2) for all h1,h2 E L2(K,m), which means L:,Lv, = !. 

3 Transitive group action 

In this section a special group action is considered: We suppose that there is essentially 
only one orbit in S, which implies that the function Cv,,v, is constant 1rls-almost every
where on S. This assumption is analogous to that of irreducibility for square integrable 
group representations. 

Assumption 2. The action /3 of G on S is assumed to be transitive, which means that 
there exists x E S with 1r(K \ /J(x, G)) = 0. Furthermore, we assume the measures 
µx E M+(S) and 1ris to be equivalent. 

Remark A similar condition is discussed in the case of groups in [2] Proposition 2. 
We denote by R the function given as R: K • IR+, R(x) := =._dd Ix (x) for all XE S, and 

"s 
R(x) := 0 for all x E K \ S. Obviously R > 0 1r-almost everywhere on K. 

Lemma 2. Assumption 2 implies: 
(i) A= {v E L2 (K,m) : R½Fv E L2 (K,1r)}. In particular A is a dense linear subspace 
of L2(K,m). 
(ii} If v is a wavelet then Lv is, up to a positive factor, an isometric operator. 
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Proof. (i): Let us choose an arbitrary x E S satisfying 1r(K \ f3(x, G)) 
v E L2(K, m). From 

it follows that v E A if and only if the above integrals are finite. 

0 and 

(ii): Since O =f v E A we obtain from the above arguments that L00 (S, 1rls) 3 Cv,v = 
fR lv(x')l2 R(x')1r(dx') > 0. It follows for all h E L2 (K,m) that .._.,...., 

>0 

>0 

Polarizing the last equality, we are led to the following orthogonality relation: 

For admissible vectors we may normalize the left-transform and obtain an isometric 
operator: 

Definition. Let Assumption 2 be satisfied and v E L2(K, m) be a wavelet. The isometric 
operator £. := IIL~vll Lv is called the wavelet transform corresponding to the wavelet v. 

Remark. As in the case of groups the wavelet transform £. is inverted on its range by 
its adjoint c;, what means £;£. = I; here 

c;e = IIL~vll fKxG ((b, a)n-n.v m 0 µ.(d(b, a)) 

holds in the weak sense for all ( E L2(K x G, m© µ.). The range of£. consists precisely 
of those ( E L2(K x G, m©µ.) satisfying£.£;(=(, where the last assertion is equivalent 
to 

\l(b,a) EK x G. 

3.1 A remark on discretization 

The most important feature of the classical wavelet transform is the discretization tech
nique, since multiresolution analysis based on orthogonal wavelets provide tools for the 
design of fast algorithms. The discretization of the classical wavelet transform is possible 
due to Poisson's summation formula on JR. Unfortunately, no corresponding result is 
available for commutative hypergroups. For this reason, no straightforward discretiza
tion technique can be done in the context of hypergroups and we can present only a 
discretization of the diation parameter. An alternative approach to discretization is 
based on a direct construction of the so-called wavelet frames. This construction is 
known in some special cases, see (10]. 
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Let the assumptions 1 and 2 be satisfied and v be a wavelet. A discretization of 
Lv is given by a set V C K x G such that Cvhlv determines Cvh uniquely. The most 
desirable case is that where V is discrete and h i--t Cvhlv is a bounded injective operator 
from L 2 (K,m) into l2 (V). In our setting, we consider only the case V = K x Gd, where 
Gd C G is a discrete subgroup of G. The group action /3 is restricted to the action f3d 
of the discrete subgroup Gd. The first assumption still holds for {3d, but the transitivity 
of f3d (second assumption) fails in general. However, for v E Ad (admissible vector for 
13d) the operator h i--t Cvhlv mapping from L2 (K) into L2(K x Gd) is still bounded. It 
is also injective, if infxes Cv,v(X) > 0. This follows from (1): 

(Lvh, Lvh}L'(KxGd) = { l(Fv)(x)l2Cv v(x)n(dx) ~ llhll2 inf Cv v(x) 'f h E L2 (K). 
ls ' xes ' 

Note that here Cv,v also corresponds to f3d and is given by: 

'<Ix ES. 

4 Examples 

Example I. (The wavelet transform on JR). The hypergroup, endowed with the 
Haar measure m, is ~ven as (K,m(dr)) := (JR,dr); this choice implies (K,n(dx)) := 
(JR, 21,dx) and S = K. The translations (Tb)beK are given as (Tbh)(r) = h(b + r) for all 
h E L2(K, m), b E K. Let us define (G, µ(da)) := (JR\ {O}, r,hda). The group G acts on 

K by multiplication: /3 : (x, a) i-t x • a. Assumptions 1 and 2 are automatically satisfied. 
We obtain for all a E G n°(dx) := 21; 101 dx, and, putting x := 1, the image measure µii. 
is given by µX(dx) = ½Jdx. The dilation (here modulation) operators are easily seen as 

acting as (D0h)(r) = (.r- 1(.rh)(. • a))(r) = r,hh(~) for all a E G, r E K, h E L2 (K, m). 
Given v E L2 (K, m), we obtain the left-transform of h E L2 (K, m) as 

f 1 f 1 u-b 
(Lvh)(b, a)= (Dav, nh) = JR ~v(ra-1 )h(r + b)dr = JR ~v(-a-)h(u)du 

for all (b, a) E K x G. The function R is calculated by R(x) := ~(x) = ~J for all 

x E K. By definition, 0 ,jc v E L2(K, m) is a wavelet if 

k R(x)IFv(x)l2n(dx) = JR ~:i 1Fv(x)l2 2~ dx = JR j.rv(x)l2 ,:,dx < oo. 

Example 2, (The windowed Fourier transform on JR). We choose (K, m(dr)), (K, n(dx)) 
and (nheK as in the previous example. Let us define the group as (G, µ(da)) := (JR, da). 
The group G acts on K by addition: /3 : (x, a) i-t x + a. Assumptions 1 and 2 are then 
satisfied. We obtain n°(dx) := 21,dx for all a E G, and, putting x := 0, the image mea
sure µx is found as µX(dx) = dx. The dilation (here modulation) operators are easily 
seen as acting as (D 0 h)(r) = (F- 1(.rh)(. + a))(r) = e-iarh(r) for all a E G, r EK. For 
a given v E L2(K, m), we obtain the left-transform of has 

(Lvh)(b, a) = (D.v, nh} = L e-iarv(r)h(r + b)dr 
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for all (b, a) EK x G. Since R(x) := *(x) = 211' each O ,f v E L 2(K, m) is a wavelet. 

Example 3. (Radial wavelet transform, a special case of (10]). The Bessel-Kingman 
hypergroup K with parameter a > -½ is given as K := IR+, the Haar measure is just 
m(dr) := r 20+1dr, and the convolution * of point measures satisfies 

r(a + 1) ((r2 - (x - y)2)((x + y)2 - r 2w-½ 
(e., * ey)(dr) = r(½)I'(a + ½)20-l (xyr)2" lux-yl,x+y]dr. 

The set of characters of K is just 

{r >-+ j.,(x · r) Ix E IR+,j., is the modified Bessel function of order a}, 

. ~ (-l)kr(a + 1) 2k 

Ja(z) := ~22kk!r(a+k+l)z Vz E <D 

and via this parameterization the dual K can be identified topologically with IR+· The 
Plancherel measure 1r, associated with (K,m), is given by 1r(dx) = (2"'~~::11))2dx, and 
its support S is equal to K. Let the group G := lR+ \ {O} act on K by multiplication: 
/3 : (X, a) >-+ x • a. We fix the Haar measureµ on Gas µ(da) := ¼da. Assumption 1 is 
satisfied since 1r"(dx) := (2•rcI:~~~.2"'+2dx for all a E G. The dilation operators can be 
obtained explicitly: It follows from 

Vh E Cc(K) 

h(~) 

that (D0 h)(r) = ••~+>h(~) for all h E L 2(K, m), a E _ G, and r E K. Finally to see 
Assumption 2 is satisfied, we set x := 1 and obtain µX(dx) = ½dx. This implies that 

R(x) := *(x) = ½ (2"~l~till' > 0 for all x E K. The function O ,f v E L 2(K, m) is a 
wavelet if 

{ 2 - r"' 1 (2"r(a + 1))2 2 x2o+l - {O(J 2 l 
00 > lR RJ.rvl d1r - lo X x2a+l J.rv(x)I (2"r(a + 1))2dx - lo 1.rv(x)I xdx. 

Example 4. Here we consider the wavelet transform on Chebli-Trimeche hypergroups. 
This is a generalization of the previous example. A Chebli-Trimeche hypergroup K with 
Haar measure mis given by (K, m(dr)) := (IR+, A(r)dr). The mapping A : IR+ • IR+, 
called the Chebli-Trimeche function, is assumed to satisfy several conditions. (For the 
exact definition of Chebli-Trimeche hypergroups we refer the reader to [1], p. 209). The 
set of characters K is identified with IR+ U i(O, p], ( the constant p E IR+ is called the 
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index of the hypergroup). By this identification the support of the Plancherel measure 
is given by S := IR+- Furthermore there exists a function C : IR+ • <V with 1rls(dx) = 
IC(x)l-2dx. By a result of Trimeche (see [12)): 

1cm1-2 

!~~ IC(x)l-2 < oo Va E IR+\ {O}. (2) 

Let us define the action of the group G :=IR+\ {0} on S by multiplication: f3: (x, a) t--t 

X · a. It follows from 

l f(x)1r"(dx) l f(x")1r(dx) = f 0 J(x · a)IC(xW2dx 

= 100 f(x · a)IC(x · aW2dx 
lo a 

= 100 f(x)IC(~W2~dx VJ E Cc(K) 
lo a a 

that 1r4 (dx) = Jc(:)J-• dx for all a E G. We conclude that Assumption 1 is satisfied since 
in view of (2) ~; E L00 (S, 1rls) holds for all a E G. As in the previous example, we 
endow the group G with the Haar measure µ(da) = !da. Choosing S 3 x := 1 the action 

/3 is easily seen to be transitive. It follows from ~(x) = i JC(~)J-, > 0 that Assumption 
2 is satisfied. The function O =f v E L2(K, m) is a wavelet if 
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On Inductive Limits of Topological Algebraic Structures 
in relation to the Product Topologies 

By 

Takeshi HIRAI, Hiroaki SHIMOMURA 

Nobuhiko TATSUUMA, and Etsuko HIRAI 

Abstract. In infinite-dimensional harmonic analysis, we encounter naturally induc
tive limits of certain topological algebraic objects, such as Lie groups, Banach algebras, 
topological semigroups and so on. In such cases, the inductive limit algebraic struc
tures are not necessarily consistent with the inductive limit topologies, contrary to the 
affirmative statement in [Enc, Article 210]. This phenomenon is studied in [TSH] in 
the case of topological groups. 

We study in this paper similar situations for other categories of topological alge
braic structures. Further, in relation to this, we study certain properties of general 
topological spaces for the 'commutativity' of (1) taking direct products and (2) taking 
inductive limits. 

This paper is a summarized version of [HSTH]. 

§I. Inductive limits and direct products 

I.I. Preliminaries. Let us consider an inductive system in a certain category 
C, of topological spaces, of topological groups, of topological vector spaces, or of 
topological algebras, etc., as 

{ (X"', rxJ, a- E A; </>p,"', a- j /3, a-, (3 E A}, 

where the index set A is a directed set, each X"' is an object in C with topology 
Tx0 , and </>p,"' is a (continuous) homomorphism X"' • Xp in C satisfying the 
consistency condition: </>1 ,p o </>p,"' = </>1 ,"' for any a- j (3 j "f. 

Then, on an inductive limit space X := li_rp X0 , we define the corresponding 
algebraic structure. On the other hand, we have also an inductive limit topology, 
denoted as 1~ rx0 or simply as r/f,d, in which a subset D of X is open, by 

definition, if and only if </>;1 (D) C X0 is open in Tx0 for each o: E A. Here, </>a 
denotes the canonical homomorphism from X0 to X. 

In this paper, we study about the harmonicity of the limit topology r[~d with 
the algebraic structure on X. Furthermore, we consider an appropriate variant 
of r/f,d in each category C (denote it by r{ provisionally here) and study various 
kinds of harmonicity, and propose several problems. 

Meantime, we find that one of the important points of discussions is the prob
lem of commutativity of (1) taking the inductive limit r{ and (2) taking direct 
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products. This commutativity is expressed symbolically as Tf x TJ ~ T{xY, 
for two inductive systems { (Xa, TxJ, o E A} and { (Ya, TyJ, o E .4} with 
Y = 1~ Ya. In the case where this commutativity holds, we say that the condi-

tion (DPA) (= Direct Product is Admitted)holds for TJ*l. 
More in detail, let us explain our problems in the following. 

1.2. Inductive limits of topological groups. 
Let {(Ga,TeJ;o EA} be an inductive system of topological groups with a 

directed set A as index set. Here Tea denotes the group topology on Ga and we 
are given an inductive system of continuous group homomorphisms ¢a2 ,01 ; G01 • 

Ga2 (01, 02 E A, 01 :::$ 02) satisfying ¢a3 ,o.2 o ¢o.2 ,a1 = 4>a3 ,o.1 for 01 :::$ 02 :::$ a3. 

Put G := Jim G0 and T;~d := Jim Tea the inductive limit of groups and that of 
• • 

topologies respectively. Then, as seen in [TSH], the multiplication G x G 3 
(g, h) H gh E G is not necessarily continuous with respect to the inductive limit 
topology T;~d• or more exactly, with respect to ( T;~d x T;~d• T;~d). 

Inspired by this rather critical phenomenon, we start to study the inductive 
limit topologies in detail in more general setting. 

1.3. A continuity criterion. 
Let { (XO , TxJ; o E A} be an inductive system of topological spaces. Take 

another inductive system {(Z0 , TzJ; a EA} of topological spaces with the same 
index set A and with an inductive system of continuous maps 4>~ 2.a, : Zo., • Zo.,. 
Then, assume that we are given a system of maps F0 of Xa to Z0 for a E A 
which is consistent in the sense that Fo., o ¢02 ,01 = 4>~,,a, o F01 for a1, 02 E 
A, o 1 :::$ o2 . Then this system induces a map F : X • Z := 1~ Z0 such that 
Fo4>0 = 4>~0F0 (o EA), where 4>a (resp. ¢~) denotes the natural map from X 0 

to X (resp. Z0 to Z), continuous with respect to ( Txa, T;!d) (resp. to ( Tza, T;~d) ). 
Furthermore the following fact is easy to prove. 

Lemma 1.1. If every map Fo. : X 0 • Z0 is continuous in (Txa, TzJ for 
a E A, then the induced map F : X • Z is continuous in ( T/;,d, T;~d). 

Let us apply this lemma to the above case ·of inductive limits of topological 
groups, by setting 

and F0 : X0 • Z0 as F0 (g0 , h0 ) = g0 h0 • Then, since Tea is a group topology 
on G0 , the map F0 is continuous for each o E A, and so, as their natural limit, 
the multiplication map F(g, h) = gh of X = G x G to Z = G is continuous, by 
Lemma 1.1, with respect to the topologies T;~;e := Jim ( Tea x TeJ on G x G = X 

• 
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and T;~d := lim Ta0 on G = Z. 
• 

1.4. Direct products of inductive limits of topologies. 
On the other hand, it is easy to see the following fact for the direct product 

of inductive limits of topologies. Take two inductive limits of topological spaces 

(X, T;!d) = (1~1 Xo, 1~ Txo) and (Y, Ti~d) = (1~ Yo, I~ Tyo), and consider their 
direct products. 

Proposition 1.2. The product space X x Y is naturally identified with the 

inductive limit space 1~ (X0 x Y0 ). On this space the direct product of inductive 

limit topologies T;!d x T;~d = (1~ Tx0 ) x (1~ Ty0 ) is weaker than or equal to the 

inductive limit of product topologies T;!iy := lim (Tx0 x TyJ, or in a symbolic 
• 

notation, Tf,.d x T;~d ~ T;!iy. In particular, for a subset of product type D x E C 

X x Y, it is open in the former topology if and only if so is in the latter. 

For an inductive limit of topological groups G := I~ G0 , taking into account 
the above result, we see from Lemma 1.1 that, in the case where the multiplication 
G x G 3 (g, h) >-+ gh E G is not continuous with respect to T;~d, the product 
topology T;~d x T;~d should be strictly weaker than the inductive limit topology 
T;~;a := lim (Ta0 x TaJ. Thus we come naturally to the following problem. 

• 

Problem A. Let the notations be as above. Then, give a necessary and suf

ficient condition for the equivalence of two topologies T;!d x T;~d and T;!iy := 

lim(Tx0 x TyJ on Xx Y, where (X,T;!d) = (limX0 ,limTx0 ) and (Y,T;~d) = 
• • • 

(1~ Yo, 1~ Tyo). 

1.5. Examples and further problems. 
Let us examine the simple example, Example 1.2 in [TSH], from the stand 

point of general topology. 

Example 1.1. Let Gn = Fn x Q, F = R, Q or T with the usual non-discrete 
topology Tn for n EN. Then, G = l~1Gn = (II' F) X Q, where IT' F denotes the 
restricted direct product of countable number of F's. The multiplication on G 
. t· "th t t a 1· H a a axa IS not con 111UOUS WI respec O Tind = ~Ta.. ence, Tind X Tind -< Tind . 

Furthermore, considering Gn as a topological space and express it as a direct 
product of two spaces as Xn x Y, with Xn = Fn, Y = Q. Then, X := Jim Xn = 

lim Fn = IT' F, and we see that the direct product topology T;!d x Ty itstrictly 
• 

weaker than T;!iy = 1~ ( Tx. x Ty) at every point of X x Y, by reexamining the 
proof in Example 1.2 in [TSH] for non-continuity of the multiplication on G. 
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In the above case, the topological space Y is fixed, and so the following problem 
is also important to study. 

Problem B. Let (X, T/;,d) = (1~ Xo,, 1~ Txa) be an inductive limit of topo

logical spaces and (Y, Ty) a fixed topological space. Then, give a necessary and 

sufficient condition for the equivalence of two topologies T/;,d x Ty and T;'~iy := 

l~(Txa XTy) onXxY. 

The former Problem A contains this Problem B, but it is worth to study 
Problem B by itself. We may expect that a solution to Problem B helps to solve 
Problem A. However the situation is not so simple that Problem A is reduced to 
Problem B, because, for instance, the topology Ty cannot be in general recovered 

from the system Ty. = Tvlv •. So we propose the following problem. 

Problem C. Let (Y, Ty) be a topological space and { (Y"', TyJ; o E A} be an 

inductive system of topological spaces such that Y"' C Y and Y = 1~ Y"' as sets. 

Assume that the restriction Ty lv0 of the topology Ty onto Y"' is equal to Ty0 • 

Then, Ty :::5 T;~d := 1~ Ty0 • Look for a necessary and sufficient condition for the 

equivalence of these two topologies on Y. 

1.6. A characterization of the product topology T;!d x T;~d· 

For the product Xx Y of two inductive limits of topological spaces (X, T;!d) = 
(1~ Xo,, 1~ Tx0 ) and (Y, T;~d) = (1~ Yo,, 1~ Ty0 ), we have by Proposition 1.2, 

the relation T;!d x T;~d :::5 T;!iy := 1~ (Tx0 x TyJ. 

Further we can characterize the product topology as the strongest topology on 
X x Y among direct product topologies weaker than T;!iy. More exactly, we 
have the following. 

Theorem 1.3. Let Tx and Ty be topologies on X and Y respectively such 

that Tx X Ty :::5 T;!iy. Then, Tx :::5 T;~d, Ty :::5 Tl~d, and so Tx X Ty :::5 T;!d X T;~d-

The above facts evoke studies on inductive limit topologies in various kinds of 
categories, such as the Bamboo-Shoot topology Tiis in the category of topological 
groups in [TSH] and its generalization, the locally convex vector topology T1!, in 
the category of locally convex topological vector spaces, and so on. 

§2. Inductive limit topologies in various categories 

As mentioned in 1.2, for an inductive limit G = 1~ Gn of topological groups 
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Gn, n 2: 1, the multiplication map is not necessarily continuous with respect to 
the inductive limit topology T;~d = 1~ Ta.. So we have introduced in [TSH] 

a so-called Bamboo-Shoot topology Tff s on G as the strongest group topology 
j T;~d, under the condition (PTA) on the inductive system { Gn }. 

In these respects, it is also natural to ask the similar question for other topo
logical algebraic objects, such as topological vector spaces(= TVSs), topological 
semigroups, topological rings, and topological algebras etc. 

2.1. Case of locally convex topological vector spaces. 
A good category of TVSs is the category of locally convex topological vector 

spaces (= LCTVSs) over a field F = R or C. In that category, we know well 
how to define an inductive limit of topologies. 

Let {(X,,, TxJ; a EA} be an inductive system of LCTVSs with ¢02 ,01 : X,, 1 • 

X02 , a1, a2 EA, a 1 ::s a2, a homomorphism in the category of LCTVSs, that is, 
a continuous linear map. On the vector space X = 1~ X 0 , we usually consider 
a locally convex vector topology as follows. 

On the limit space X = 1~ X,, of an inductive system { X,, } of LCTVSs, a 

locally convex vector topology, denoted by lcv-l~1 Tx0 or Tiiv, is defined as the one 
for which a fundamental system of neighbourhood of the null element O is given 
as {UC X; T{nropen, convex, balanced (i.e., >.x EU for x EU,>. E F, l>-1 :'.S 1), 
and absorbing} (cf. [Yo, 1.1, Definition 6, p.27]). Further we have also a simple 
characterization of neighboufoods of OE X, as is given in [Tr, §13, p.126]. 

Now we propose the following problem. 

Problem D. Assume that every space X 0 in an inductive system of LCTVSs 
has an additional structure or operation of the same kind, which induces as its 
inductive limit such a structure or an operation on the limit space X := 1~ X 0 • 

Is this structure or operation consistent with the Lev-limit topology Tiiv ? 

2.2. Multiplication or product in an inductive system. 
Let us first consider two concrete cases to show what kind of things we want 

to study. 
Let M be a non-compact differentiable manifold, and Mn /' M, n 2'. 1, be 

an increasing sequence of relatively compact, open submanifolds such that the 
closure Mn is contained in Mn+i• The space of complex-valued test functions 
(C00-functions with compact supports) on M, denoted by 7J(M), is a LCTVS 
obtaind as an inductive limit of the inductive system Xn = 1J(Mn) := { <p E 

C00 (M);supp(,p) C Mn}, n EN. Here 1J(Mn) is topologized in a usual manner 
by means of a countable number of seminorms. 

Let us consider two kinds of operations in X = 1J(M). First one is the point-
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wise multiplication T: Xx X • X, given as T(cp1,'-P2)(p) = 'P1(P)'-P2(P) (p E 
1v[), and the second one is the convolution T( r.p1, r.p2) = r.p1 * cp2 in the case of 

lvl = Rk. We ask if they are continuous or not in ( T1Jv x T1Jv, T1Jv). 
Note that, for the first T, supp( cp1 <p2) C supp( r.pi) n supp( cp2), and so it maps 

Xn x Xn into Xn- On the other hand, for the second T, supp(cp1 * <,02) becomes 
bigger and is in general comparable to supp(r.p1) + supp(r,o2), and so T maps 

Xn X Xn into X,a(n) with a (J(n) > n. 

Proposition 2.1. In the space of test functions X = 'D(M), the multiplica

tion map T(r,o1, \02) = 'Pi <pz is continuous in (T1J. x T1Jv, T1Jv). 

Proposition 2.2. In the space of test funct·ions X = V(Rk), the convolution 

map T(rp, 1/;) = r.p * 1/; is continuous in (Ti~ x T1Jv, T1~)-

In the above two cases, the proofs are not routine as may be expected. Here 
multiplications T are both commutative, but in our proofs the commutativity is 
not important but the special structure of the space 'D(lvl) is fully used. So, the 
proofs can not be generalized directly in the following general situation. 

Problem E. Assume that an inductive system { X 0 ; a E A} of LCTVSs has 

multiplications, consistent in the sense that, for any a, there exists a (J(a) such 

that T0 : X 0 x Xa • X,a(ci) is a continuous bilinear map, and that, for any 

a 1,a2 EA, there exists a "f EA such that "f c O'j, (3(7) c /3(aj), j = 1,2, 
and Tei; 's are naturally induced from T-y. Then the system { T0 } induces as its 

inductive limit a multiplication T on X = l~X0 • 

Is the limit map T continuous with respect to T1~ = lcv-1~ Txn ? 

2.3. Multiplication map between two spaces of test functions. 

Let lvl and lvl' be two differentiable manifolds. We assume that at least one 
of them, say lvl', is non-compact. 

The space of testing functions X = 'D(lvl) is equipped with a locally con
vex vector topology Tx, where Tx = Tx the usual C00-topology in the case lvl 
is compact, and Tx = T1Jv := lcv-1~ Tx. with Xn = V(Mn) as above in the 
case lvl is non-compact. The space Y = 'D(lvl') is equipped with the lcv-limit 

topology T1~. := lcv-lim Ty. with Yn = 'D(lvl~), where { M~; n = 1, 2, ... } is a 
• 

sequence of relatively compact open submanifolds such that M~ C lvl~+i and 
lvl' = Un>iM~. We can give to the product space Xx Y = 'D(M) x 'D(lvl') the 
lcv-limit topology T/f,,XY which is equal to lcv-lim (Tx x Ty.) if Mis compact, and 

• 
to lcv-1~1 ( Tx. x Ty.) if lvl is non-compact. 

Now put Z := 'D(lvl x lvl'). Then, we ask if the multiplication (or product) 
map T: X x Y • Z, given as T(r.p, 1/;)(p,p') = r.p(p) · 1/;(p'), p E lvl,p' E lvl', for 
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<p E X,1/J E Y, is continuous with respect to (Tx X T1~v,T1fvl• 

Theorem 2.3. Let M and M' be two differentiable man if olds. Assume that 

one of them, say M', is non-compact. Then, the multiplication map T : V(M) x 

V(M') 3 (,p,1/J) 1-t <p • 1/J E 'D(M X M') is not continuous in (Tx X Ti~v> T1fv), 
where X = V(M), Y = V(M'), Z = V(M X M'), and Tx = Tx or Tx = T1~v 
according as M is compact or not. 

The proof is interesting but we have no space to write it down here. 
Taking into account Propositions 2.1, 2.2 and Theorem 2.3, we propose the 

following problem. 

Problem F. Take three inductive systems of LCTVSs { (X0 , TxJi a- E A}, 
{(Y0 ,TyJ;o- EA}, and {(Z0 ,TzJ;o- EA}, and let their inductive limits be 

(X, T1;;v), (Y, Tt) and (Z, Tzfv)- Assume that, for every a- E A, there exists a 

continuous multiplication {bilinear map) T0 : X 0 x Y0 -t Zp(a) with a /3(a) ~ o-, 
which are consistent with these inductive systems so that there exists a multipli

cation T : X x Y -t Z as their inductive limit. Then, under what conditions, T 
is continuous in (T1;;v x T11:,,, T1~) ? 

Remark 2.1. In comparison to the so-called kernel theorem for distributions 
(cf. [Tr, Th.51.7]), we give a remark. In the situation in Theorem 2.3 with M' 
non-compact, take a distribution S on M x M' or S E 'D'(M x M'). Then 
the bilinear functional 'D(M) x V(M') 3 (,p,1/J) >-+ S(T(,p,1/J)) is not neces
sarily continuous in the product topology, because so is not the bilinear map 
T: V(M) x V(M') -t V(M x M'). 

2.4. Spaces of finitely many times differentiable functions. 
Let r be a non-negative integer and M' is a non-compact c(rl.c1ass differen

tiable manifold. Let us consider the space Y = ctl(M') of c<rl.class functions 
with compact supports. For r = 0, Y is nothing but the space of continuous 
functions with compact supports. Further let Z = C£00,rl(M x M') be the space 
of functions f (x, y) in (x, y) E M x M', which is simultaneously of class c(oo) 
in x E M and of class c<r) in y E M', and compactly supported. We topol
ogize Y and Z respectively as inductive limits of sequences of Banach spaces 
Yn = C(rl(M~), and Zn= c<oo,rl(Mn x M~). 

Theorem 2.4. Let M be a differentiable manifold and M' be a non-compact 

c<rl.class manifold for some r, 0 ::; r < oo. Put X = V(M), Y = Ctl(M') 
and Z = C£00,rl(M x M'). Then, the multiplication map T: Xx Y 3 (,p,1/J) t-t 

<p. </! E z is not continuous in (Tx X Tz~., T/i,,), where Tx = Tx if M is compact, 
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and Tx = T/f., if M is non-compact. 

§3. Bamboo-Shoot topology Tj5 and locally convex topology T(°f,, 

3.1. Bamboo-Shoot topology for PTA-groups. 
For an inductive system of topological groups {(Gc,,ToJ;a E A}, assume 

that the index set A is cofinal to a sub-directed-set isomorphic to N. Then we 
introduced in [TSH, §2] a condition called (PTA), and under this condition, we 
defined the so-called Bamboo-Shoot topology Tj5 on G = 1~ G", and proved 
that it is the strongest one among group topologies weaker than or equal to the 
inductive limit topology T;~d on G. 

3.2. Bamboo-Shoot topology and locally convex topology. 
The group topology Tj5 has an intimate relation to the locally convex vector 

topology T/f., as in the following problem. 

Problem G. Let {(Xn, II · lln); n E N} be an inductive system of Banach 

algebras. Then X = 1~ Xn has naturally a structure of algebra. Take an induc

tive system of topological subgroups Gn of (X}:, Tx:) the group of all invertible 

elements in Xn, with the restriction Tx: of II • lln-topology on X}:. In the case 

where the condition (PTA) holds, what is the relation between the Bamboo-Shoot 

topology Tj5 on G = lim Gn and the restriction T1!,lo onto G of the locally convex 
• 

vector topology Ti!, ? 

A. Yamasaki[Ya] and T. Edamatsu[Ed] studied certain special cases of this 
problem. 

Stitely generalizing the situation, we also propose the following proplem. 

Problem H. Assume that every (Xn, Tx.) is locally convex as a TVS. Then, 

with the locally convex limit topology Ti!,, does the algebra X become a topological 

algebra ? 

Furthermore, let Gn := xnx be the set of all invertible elements in Xn, Then, 

Gn is a topological group with the relative topology To. := Tx. lo., and they form 

an inductive system of topological groups. Then, under the condition (PTA), what 

is the relation between the Bamboo-Shoot topology Tj5 on G and the restriction 

Ti~vlo onto G of the locally convex limit topology Ti~., on X ? 

We also remark here that studies in different directions on inifinite dimensional 
Lie groups, containing the theory of their representations, are continued for ex
ample in [Boy] and in [NRW]. 
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3.3. Extension of Bamboo-Shoot topologies and their products. 
In the category of topological groups, we can extend in an abstract way the 

notion of Bamboo-Shoot topology on an inductive limit group G = Jim G0 for any 

(not necessarily countable) inductive system { (Go., TaJ, a EA; <f>;o., a~ ,6 }. 
In fact, we see easily from axioms of neighbouhood system of the unit element 

for a topological group (e.g., (GTl) ~ (GT5) in [TSH, §1.3]) that there exists, 
on an inductive limit group G = I~ Go., the strongest group topology under the 
condition that every canonical homomorphism <1>0 : G0 • G is continuous. We 
call it the extended Bamboo-Shoot topology and denote it again by Tifs-

In the case where the inductive system is countable and the condition (PTA) 
holds for it, this topology coincides with the Bamboo-Shoot topology Tifs con
structed explicitly in [TSH]. 

In the category of topological groups, the problem similar to Problem A is 

affirmatively solved as follows. Let { (Go., TaJ; a EA} and { (Ha, TH0 ); a EA} 
be inductive systems of topological groups. Let G = I~ Go. and H = I~ Ha be 
their inductive limit groups, and the canonical homomorphisms be </>0 : G0 • G 
and 1/Jo. : H0 • H. 

Then, we have the direct product of inductive systems as { (Go. x H 0 , Ta0 xH.l; 
a E A} with Ta.xH. = Ta0 x T80 . Its inductive limit is canonically identified 
with the direct product G x H. 

Theorem 3.1. (i) Let G = Jim G0 , H = Jim Ho., and G x H = Jim (G0 x H0 ) 

be as above. Then the extended Bamboo-Sha; topologies Tifs, T/fs, :nd Tg58 on 

G, H, and G x H respectively satisfy 

on G x H. 

(ii) In the case of countable inductive systems, if { (Gn, Ta.); n E N} and 

{ (Hn, Tn.) ; n E N} satisfy the condition (PTA), then so does their direct prod

uct { (Gn x Hn, TG.xHJ; n EN}. 

3.4. Direct product of locally convex vector topology. 

Let { (Xo., Tx. ); a E A} and { (Yo., Ty.); a E A} be inductive systems of LCTVSs, 
and put X = I~ Xo., Y = I~ Yo.. The direct product of these systems is defined 
as {(X0 x Yo., Tx0 xy.); a EA} with rx.xYa := Tx0 x Ty0 • Then its inductive limit 
is isomorphic to the direct product X x Y as vector spaces. For topologies on 

this space, we already know that T/[v X T1~v ~ rr}.XY := lcv-1~ Tx. X l'o. 

On the other hand, we can translate the proof of Theorem 3.1 appropriately 
in the category of LCTVSs, and see that the condition (DPA) holds in general 

for the 'lcv-limit functor' T1~~ as follows. 
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Theorem 3.2. Let X = l~X.,, Y = 1~1 Y., be inductive limits in the 
category of LCTVSs. The direct product space X x Y is identified with the 
inductive limit of the direct product of inductive systems. Then, as locally convex 
vector topologies on X x Y, there holds the equivalence 

§4. Sufficient conditions for Problem A 

For sufficient conditions for Problem A or B, the local compactness and the 
local sequential compactness play important roles. Here we study them for Prob
lem A. 

4.1. A sufficient condition for r[~d x T;~d ~ r;!iy. 
As in 1.4, take two inductive systems of topological spaces and put X 

1~ Xa, Y = 1~ Y.,. First let us give a simple sufficient condition for the 'com
mutativity' of (1) taking inductive limits and (2) taking direct products, for 
inductive limits of topologies, that is, the condition (DPA) for rtJ. 

Theorem 4.1. Assume that A has a cofinal sub-directed-set isomrphic to 
N. For two inductive systems of topological spaces, assume that every Xa and 
Y., are locally compact Hausdorff spaces. Then, as topologies on X x Y with 

X = 1~ X.,, Y = 1~ Y.,, identified with 1~ (Xa x Y.,), the product topology 

rfnd x T;~d and the inductive limit topology r;!iy := Jim (rx0 x ryJ are mutually 
• 

equivalent: r/;,d x r;~d ~ r/;,;Y, that is, the condition (DPA) holds. 

4.2. Other sufficient conditions. 
We give other sufficient conditions assuming on Xn and Yn a stronger condition 

(SC) than the local sequential compactness. 

Definition 4.1. For a subset D of a topological space Z, its sequential closure, 
denoted by scl(D), is defined as 

scl(D) := { z E Z; 3zn E D such that limn• oo Zn = z }, 
and D is called sequentially compact if every sequence in it has a subsequence 
converging to a point in D, and further Z is called locally sequentially compact if 
every point in it has an open neighbourhood U for which scl(U) is sequentially 
compact. 

Our condition (SC) on Z is defined as follows. 
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(SC) For every sequentially compact subset I< and an open set O containing it, 

there exists an open set G such that [( C G C scl(G) c O and that scl(G) is 

seq·uentially compact. 

Under this condition (SC), we can give two kinds of sufficient conditions for 
Problem A as follows. For an inductive system, assume that A = N, and that 

X1 C · · · C Xn C Xn+I C · · · C X canonically by the identification through the 
canonical maps rf>n• 

Theorem 4.2. Let A = N for an inductive system of topological spaces, and 

assume that every (X,., TxJ and (Yn, Ty.) satisfies the condition (SC). Then, in 

the case where they all satisfy the first countability axiom, the condition (DPA) 

holds, i.e., for X = I~ Xn and Y = I~ Yn, there holds the equivalence T/!,d x 
Y ~ XxY ·- 1· ( ) X y Tind = Tind .- ~ Tx" X T}'n on X . 

Theorem 4.3. Let A= N, and assume the condition (SC) for every (Xn, TxJ 
and (Yn, Ty.). Then, in the case where the system satisfies rx.+1 Ix. = Tx., 
Tyn+I 1i,. = T\'n for n 2". 1, and the condition 

(Go) Xn is a G.-set of Xn+I, and Yn is a G.-set of Yn+I, for n 2". 1, 

there holds for Xx Y the equivalence TC,d x T;~d ~ T;!dy := li:!,n (Tx. x TyJ. 

§5. The case of a fixed Y and Problem B 

In the following, we study in detail Problems A and B, especially necessary 
conditions for converses of theorems in §4. In this section, we study the case 
where Y is fixed, or the case where (Yn, Ty.) = (Y, Ty) for any n 2". 1. This is our 
Problem B. 

5.1. Comments to converses of Theorems 4.1, 4.2 and 4.3. 

Statements for direct converses of these theorems contain necessarily a global 
characterization such as "Xn is a locally compact space". However, this kind 
of global characterization of spaces Xn and Yn are not possible in its nature of 
inductive sequences of topological spaces, and so, possible converses should be 
at first stated in languages of local characterizations of these spaces. This can 
be seen from the following examples. 

Example 5.1. Let X = R and Xn = (-n, n) U Q with an open interval 
(-n, n), where X is equipped with a usual topology TR of R, and Xn with its 
relative topology Tx. = TR Ix.. Then, no Xn is locally compact, whereas so is 
the inductive limit space X (cf. Theorems 5.2 and 5.3). Note that the space 
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(Q,Tq = Talq) is totally disconnected and normal. 

Example 5.2. Let Y = n~>l Rk with Rk = R be the restricted direct 

product ofR. Put Yn = m=l Rk-= Rn, y~ = (m:} Rk) X Q C Yn, and imbed 
Yn into Yn+I as Yn 3 y >-+ (y, 0) E Yn+l· The space Yn is equipped with the usual 

Euclidean metric, and the space Y~ with its relative topology. Then, Yn is locally 

compact, whereas no point of Y~ has a compact neighbourhood. However the 

topological space Y considered as the inductive limit of (Yn, Ty0 ), n 2 1, is also 

equal to the inductive limit of (Y~, Ty~), n 2 1, since there is a mixed inductive 

system given by Y2~+ 1 := Yn, Y2~ := Y~, (n 2 1), which converges to (Y, Ti~d). 
Now let { Xn ; n E N} be an inductive system of separable locally compact 

spaces and put X = l~ Xn. Consider two inductive systems of direct product 

type as { Xn x Ym; (n, m) E N x N}, and { Xn x Y,:.; (n, m) E N x N}, where 
(n,m) ::s (n',m') in N x N if and only if n :Sn', m :Sm'. Then we get as 

their inductive limits the same space X X Y. Denote by T;!:,r and T[~:.{ the 
inductive limit topologies on X x Y corresponding to the first and the second 

system respectively. We assert that T;!:,r ~ T;!:,r ~ T;!d X T;~d-
In fact, the first equivalence is affirmed by considering a mixed inductive system 

(Zn,Tz.), n > l, with (Z2n+1,Tz,.+ 1 ) := (Xn X Yn,Tx. X Ty.), (Z2n,Tz,.) := 

(Xn X Y~, Tx. X Ty~)- Another equivalence Tt,:,r ~ T;!d X T;~d is guaranteed by 
Theorem 4.1 thanks to the local compactness of Xn's and Yn's. 

Furthermore, in the case the index mis fixed, as for the topologies on J!,~ (Xn x Ym) 

=Xx Ym and on J!.~(Xn x Y,:,) =Xx Y,:,, we get the equivalence Tf}d x Tym = 
X Y X Xx~ T;nI m by Theorem 4.1, but the inequivalence T;nd x Ty,:_ -< T;nd m by Theorem 

5.2 below. 

5.2. A sufficient condition for T,!d x Ty ~ T;!IY 
Let us now begin to treat Problem B. Fix a topological space (Y, Ty). Put 

Zn = Xn x Y, Tz. = Tx. x Ty, and Z = lim Zn, T;~d = Jim Tz •. We identify Z 
-t -t 

with X x Y and T;~d with T;!IY. We know in general Tj;,d x Ty ::s T;!IY, and 
the problem is to guarantee the converse relation. A simple sufficient condition 
is given as follows. 

Proposition 5.1. Assume for the inductive system { (Xn, Tx.)} that Xn is 

imbedded homeomprphically into Xn+I for n 2 1, and for the counter part (Y, Ty) 
that Y is locally compact Hausdorff. Then there holds the equivalence T;!d x Ty ~ 
T;~:y 

5.3. Normalization of situations. 
To simplify the situations we put some natural assumptions from the begin-
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ning. 
First we assume for simplicity that the index set A contains a cofinal subset 

isomorphic to N as directed set, and so we take A = N later on except when the 
contrary is announced. It may be assumed without essential loss of generality 
that 

(00-X) each canonical map ¢>n+I,n : Xn -+ Xn+I (n 2:: 1) is injective, 

and so considering as Xn C Xn+I and X = Un~! Xn, we can omit the notations 
¢>m,n and ¢>n rather freely, and then, 

(01-X) each ¢>n+l,n is a homeomorphism, or Tx.+i Ix. 9:! Tx •. 

For (01-X), we remark that the topologies Tx. can be replaced by T;";idlx. to get 
the same inductive limit topology T/;,d, and then (01-X) holds for new topologies 
on Xn's. From now on, we assume (00-X) and (01-X) for { Xn }. 

Taking an appropriate cofinal sequence if necessary, we may put the following 
assumption for { Xn } from the beginning: 

(1-X) for any n, Xn as a subset of X,.+1 has no Tx.+1 -inner point of Xn+I· 

5.4. Necessary conditions for T;!d x Ty 9:! T;!;Y. 
We follow the discussion of A. Yamasaki in [Ya] to get the following necessary 

condition. 

Theorem 5.2. Let A = N and Y be fixed. Assume the condition (1-X) and 

the fallowing: 

(2-x0) for n ~ l, xo E Xn has a countable fundamental system of Tx. -
neighbouhoods; 

(3-y0) y0 E Y has a countable fundamental system of neighbourhoods consisting 

of closed ones; 

( 4-y0) y0 E Y does not have a sequentially compact neighbourhood. 

Then, T;~d x Ty-< T;!;Y := 1~ (Tx. x Ty) at (xo,Yo) EX x Y. 

Reformulating the above result in a global form, we get a kind of converse, in 
the case of a fixed Y, of affirmative assertions in theorems in §4 as follows. 

Theorem 5.3. Assume (1-X) and the following: 

(2-X) each (Xn, TxJ satisfies the first countability axiom; 

(3-Y) Y is regular and satisfies the first countability axiom. 

Then, T;!d x Ty -< T(~;Y at any point (x, y) E X x Y for which y E Y has 11.0 
sequentially compact neighbourhood. 
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§6. Necessary conditions for T;~d x T;~d ~ T/[,iY and Problem A 

Let A = N. Let us consider two inductive systems { Xn} and { Yn }, and 
put Zn = Xn X Yn and identify Z = Jim Zn with X X Y, then T;';,d = T,~;1' 

• 
Assume (00-X) and (01-X) for { Xn} and similarly (00-Y) and (01-Y) for { Yn }, 
for simplicity. 

6.1. Conditions for T;~d x T;~d--< T/;,;Y at a point. 
We study when the above two inductive limit topologies on Z = X x Y are 

different from each other at a point z0 = (x0 , y0 ) E Z. 

Theorem 6.1. Assume the following: 
(1-X) Xn has no Tx•+• -inner point of Xn+l for n ~ 1; 
(2-X) Xn satisfies the first countability a1,-iom for n ~ 1; 
(3-Yn0 ) Yno is regular and satisfies the first countability axiom; 
(4-Yn0-yo) Yo E Yn0 has no sequentially compact neighbourhood; 
(5-Yn0 ) Yno is Ty. -closed in Yn for all n > no. 

Then, T;!d x T;~d --< T;!iy at (xo, Yo) E X x Y for any Xo E Xno• 

Reformulating the above result in a global form, we get a converse of Theorem 
4.1 as follows. 

Theorem 6.2. Assume (1-X) and (2-X)and further assume the following: 
(3'-Y) each (Yn, Ti,J is regular and satisfies the first contab-ility axiom; 
( 5'-Y) Yn is closed in (Yn+l, TYn+I), for n ~ 1. 

Then, if Yo E Y has no sequentially compact neighbourhood in any (Yn, Ty.), there 
holds T/f,d x T;~d --< T;~d at (xo, Yo) E Z for any Xo E X. 

To get much faithful converses to Theorems 4.1, 4.2 and 4.3, we should get rid 
of the first countability axiom. 

Theorem 6.3. Let Xn and Yn be all regular Hausdorff spaces satisfying the 
first countability axiom. Assume the conditions (1-X) and (5'-X) for { Xn} and 
s·imilarly (1-Y) and (5'-Y) for { Yn }. Then T[~d x T;~d ~ T;!iy if and only if 
Xn and Yn are all locally sequentially-compact. 

6.2. Case of metrizable spaces. 
In the case of metrizable spaces, they are automatically regular and satisfy the 

first countability axiom, and furthermore sequential compactness is equivalent 
to compactness. Therefore, in that case, we get from Theorems 4.1 and 6.2 
the following simple necessary and sufficient condition for the commutativity of 
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"inductive limit" and "direct product"· T;< x Ty ~ TXxY ·= Jim (T x T ) · ind ind md · • Xn Yn · 

Theorem 6.4. Assume the conditions (00-X), (01-X), (1-X) and (5'-X) for 

{Xn}, andsimilarly(00-Y), (01-Y). (1-Y) and(5'-Y)for{Yn}- LetXn andYn 

be all metrizable spaces. Then, T;~d x T;~d ~ T;!JY if and only if Xn and Yn are 

locally compact. 
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Scaling Limit of the Spectral Distributions of 
the Laplacians on Large Graphs 

Akihito HORA 

Okayama University (Okayama, JAPAN) 

Abstract 

We examine several scaling limits of the spectral distributions of Laplacians ( or 
equivalently adjacency operators) on regular graphs and their second quantization 
on Fock spaces as the graphs grow infinitely in certain manners. 

1 Introduction 

The present note reports our recent development in asymptotic spectral theory for Lapla
cians on certain graphs. Main references are (10], (11] and (12], while the material in §5 

first appears in published form in this note. 

Let us begin with an abstract setting. A regular graph r = (V, E), V and E being 

its vertex set and edge set respectively, has by definition the same degree at every vertex 

x : 1,, := j{y E Vjx ~ y }j. Here x ~ y denotes that x and y are adjacent vertices. The 
Laplacian operator I:,. on r acts on f : V --+ C as 

(!:,.f)(x) := L f(y) - 1,,f(x) , 
v~:r 

which is a formal expression when r is an infinite graph. 

Taking a state <P on the algebra generated by I:,. and I {the identity), one considers 

the spectral distribution of I:,. for which the distribution function is determined by values 

of <P at the projectors in the spectral decomposition of /:,.. In this note, we will deal with 

vacuum states and analogs of Gibbs states. We are interested in asymptotic behaviour 

of the spectral distribution along a growing family of graphs, especially in the case where 

1,, • oo. We try to read a statistical property of the spectral distribution through a 

scaling limit. The scaling agrees with that of the central limit theorem (CLT, for short). 

Actually, our problem is closely related to the CLT in algebraic probability theory which 

was initiated by von Waldenfels et al. (e.g. [7], [15]). 
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It is convenient to refer to Cayley graphs to see the way CLT comes out. Let G be a 

group generated by !1 = {w1 , • • • ,w"} 1 e, assuming that n-1 = !1 as a set. Two vertices 

x, y E G are defined to be adjacent if yx-1 E !1. The Laplacian on this Cayley graph is 
expressed as 

" b. = L irL(w;) - 1,,J (1) 
j=l 

where 1TL denotes the left regular representation of G. Let us take vacuum state </J := 

(o., • o.)t,(G)· According to the formulation of CLT, our problem is to discuss weak con
vergence of the spectral distribution of 

b. - </J(b.) 1 " 
J</J((b. _ </J(b.))2) = VK, ~ 1TL(w;) 

(2) 

with respect to </J as G grows in a certain manner with 1,, -+ oo. Noncommuting summands 
1TL(w;) have a sort of (in)dependence reflecting the structure of G. It may reveal a new 
convolution structure of the limit distribution, yielding Gauss and Wigner as the extremal 

ones (see [8], [5]). Furthermore, replacing 1TL and </J by other representations and states 
will be also interesting. 

2 Preliminaries 

2.1 Symmetric group and Young diagram 

Let Sn denote the symmetric group of degree n and S00 := U::"=1 Sn their inductive limit. 
We follow the convention that a Young diagram is expressed as a finite array of left-aligned 
nonincreasing rows. Let Y denote the set of Young diagrams and V the subset of Y whose 
element has no rows consisting of a single box. If .X E Y contains kUl rows of length j, 
we use the notation .X = (1k<•>2k<'l • • • l<;J • • •). The number of boxes contained in .X is 

I.XI := "£.; jkUl. The conjugacy classes in S00 except the trivial one { e} are parametrized 
by the diagrams in V. Let C>. be the conjugacy class in S00 corresponding to .X E V and 
set ct> := Sn n C>. for n ~ I.XI. ct) is also a conjugacy class in Sn. One sees 

1ct) I = n~ I IT /(j) k(j) ! 
j?:;2 

for .X = (2k<'l3k<3> • • •) with nr. := n(n - 1) • • • (n - r + 1). 1TL denoting the left regular 

representation of S00 , we set 

A~n) := L irL(x) and formally A>.:= L irL(x) (3) 
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for.>. EV. The representation matrix of A\nllt'(S.) with respect to the basis {8,,lx E Sn} 
is an adjacency matrix of the group association scheme of Sn. The complex linear hull 
of these adjacency matrices is closed under multiplication and hence becomes an algebra. 
(See [l].) We call A,\ also an adjacency operator on S 00 • 

Regarding Y as a vertex set and joining two Young diagrams if one diagram is made 
by adding a box to the other, one obtains the Young graph (or Young lattice). Later in 
§5, we will mention the Young graph equipped with multiplicity (or colour) on each edge. 

2.2 Distance-regular graph 

Let S be av-set (i.e. ISi = v) and set V := {x C Sllxl = d} as a vertex set. (Assume 
2d::; v without loss of generality.) x, y E V are defined to be adjacent if Ix n YI = d - I. 
Obviously, IVI =(~)and K = d(v - d) (degree). This graph J(v,d) is called a Johnson 
graph. The Laplacian on J( v, d) describes the classical Bernoulli-Laplace model imitating 
a kind of diffusion of sparse gases. 

We give a quick review on distance-regular graphs (DRG, for short), among which 
J(v, d) plays a central role in this note. See [1] for details. Let r = (V, E) be a finite 
connected graph. 8(x,y) denotes the distance (i.e. minimal length) between x,y EV and 
diamr := max:z:,uev8(x, y) the diameter of r. r is called a DRG with diameter d if, for 
Vh, i,j E {O, 1, • • •, d}, l{z E Vl8(x, z) = i, 8(z, y) = j}J =: P;~ does not depend on the 
choice of x, y whenever 8(x, y) = h. In particular, pf1 = K (degree of r). Set K; := P;~
The ith adjacency operator A; (i = 0, 1, • • •, d) is defined as 

(Ad)(x) := L f(y) for I: v ~ c. 
8(:z:,y)=i 

In particular, Ao = I, A1 = A (adjacency operator) and I).. = A - Kl. The condition of 
distance-regularity is translated into a linearizing formula for adjacency operators : 

d 

A;A; = LPbAh. 
h=O 

The commutative algebra .A(r) generated by A and I is called the adjacency algebra of 
r. Clearly, {Ao, A1, • • •, A4 } is a linear basis of .A(r). Then one sees that diamr + 1 = 
dim.A(r) = the number of distinct eigenvalues of A. (For a general graph, the former 
'=' should be replaced by•::;•. A DRG has high symmetry and its eigenvalues are thus 
degenerated.) Letting 00 (= K) > 01 > • • • > 0d be distinct eigenvalues of A and E; the 
orthogonal projector on £2(V) corresponding to 0;, one has 

d d 

A= L0;E;, A;= L, v;(0;)E; (i = 0, 1, · · ·, d) . 
j=O j=O 

194 



Here v; is shown to be a polynomial of degree i such that v;(A) = A;. {E0 , E1, ···,Ea} 
also forms a linear basis of A(r). 

3 Central Limit Theorem for Adjacency Operators 
on S00 

It is quite interesting to seek out statistical properties of large symmetric groups as is 

seen in [13], [2], [3] etc. In this section, we report the main result in (10] which extends 

the result in [13]. We follow the notations in §§2.1. 

Let ¢ := (o., · o.)t'(S=) be the vacuum state. For each A E 'D, one sees 

as the mean and the variance of A\n) with respect to ¢ respectively. Hence we consider 

an asymptotic spectral behaviour of A\n) ;J1c1n)I as n---+ oo from the viewpoint of CLT. 

Let Hr(x) denote the Hermite polynomial of degree r obeying the recurrence formula : 

H,+1(x) = xHr(x) - rHr-1(x) , Ho(x) = 1 , H1(x) = X. 

Theorem 1 ([10]) For all A1, · · · , Am E 'D and for all P1, · · · , Pm E N, we have 

A(n) A(n) 
I" ¢(( >.1 )P' ( Am )Pm) 
n~~ ✓1ct)1 ... ✓1c1~1 

= IT 100 e-z'/2 (Hk[;i(x)r ... (Hk!.{>(x)rm dx' 

j~2 - 00 ./27r Mi /iJF! (4) 

( k(') k(>) ·k(j) ) ( · ) where A;= 2 ; 3 ; • • • J , • • • i = 1, • • •, m . 

From ( 4) we can read how adjacency operators A>.,,· · · , A>.m are correlated with respect 

to ¢. The strucure of the right hand side of ( 4) tells that rows of different length among 

At, · · · , Am essentially play independent roles while there remain some interfering effects 

among rows of the same length and in different diagrams. In our computation, this 

asymptotic independence along length j is attributed to disjoint union structure of a 

certain graph. The left hand side of (4) can be expressed in terms of the irreducible 

characters of Sn and the Plancherel measure on Sn. Under this formulation, Kerov showed 

in [13] the corresponding result to (4) for one-row Young diagrams. 
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4 Central Limit Theorems on Distance-Regular Graphs 

Since the Laplacian /J. on a DRG does not yield such a canonical decomposition as (1) or 

(3), the original feature of CLT which describes a macroscopic effect of sums of small 'in

dependent' fluctuations through appropriate scaling may seem to go somewhat backward. 

However it has a good meaning to consider 

(!J.-if!(!J.))/Jit!((!J. - if!(/J.))2) (5) 

with respect to some state if! on adjacency algebra A(f) in the situation that DRG r 
grows in some manner. Then the (in)dependence of summands should be transformed 

into topological structure of the graph. In this section, we survey our results concerning 

the Johnson graph as examples of such CLT on a DRG as (5). We follow the notations 
in §§2.2. 

4.1 Vacuum state 

For DRG r, we define vacuum state if!0 on A(r) as 

if!o(X) 
1 .- WT trX (X e A(r)) 

(o,,,Xo,,)l'(V) (XE A(r)) for all x EV. 

Theorem 2 ([11]) Let r = J(2d,d) (Johnson graph} and if!= if!0 (vacuum state} in 

(5). Then the spectral distribution of (5) with respect to if!0 converges weakly to 

e-({+l) I[-1,oo)(~)d~ 

as d • oo. Here I. denotes an indicator function. 

4.2 Gibbs state 

We announce the main result in [12]. For DRG r with diameter d, we define linear 

functional if!9 on A(f) by 

(h = 0, 1, · · ·, d) 

where q is a parameter. It is shown that, for r = J( 11, d) and O ::; q ::; 1, if!q is actually a 

state (namely, enjoys positivity) on A(J(v, d)). if!9 is regarded as analogue of the Gibbs 

state with inverse temperature parameter /3 = - log q (q = 0 ~ vacuum state if!0). 

Theorem 3 ([12]) Let r = J(2d, d) and if! = if!9 in (5) where O :S q :S 1. Then the 

spectral distribution of {5} with respect to if!9 converges weakly to the following as d • oo: 
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(Case 1) if q = r/d0 where r 2: 0 and et> 1 are constants, 

e-(e+il l[-l,oo)(€)d€ ; 

(Case 2) if q = r/d where r 2: 0 is a constant, 

(6) 

✓2r + le-({../'irTT+2r+llJ0 (i2Jr(€✓2r + 1 + r + l))I[-(r+l)/../'irTT,oo)(€)d€. (7) 

Here 
co (-z2/4)k 

Jo(z) := E (k!)2 (z EC) 

is the 0th Bessel function. 

In both cases, d • oo and q • 0 hence "temperature of the graph" tends to 0. 

Remark (communicated to the author by P.Biane) Checking the characteristic function 
of (7), one sees that (7) is expressed as 

°-(r+l)/,/'irTT * µr * llr where µr(d€) := ✓2r + le-e../'irTT I[o,oo)d€ 

and vr is the infinitely divisible distribution whose characteristic function is given by 

exp /400 
( e;,e - 1 )r✓2r + le-e,/2i'+T d€ . 

Note that 

°-(r+l)/,/'irTT * µr --+ (6) and llr --+ Oo as r • 0 . 

5 Second Quantization and Central Limit Theorem 

In this section, we give some observations on CLT for the second quantizations of discrete 
Laplacians. 

5.1 Second quantization 

Let F(1-l) be the Boson Fock space over Hilbert space 1-l: 
00 

F(1-l) := E£l 1-l°n ' 1-loO := Cl 
n=O 

where o denotes the symmetric tensor product and 1 the vacuum vector. The creator 

a*(€) and annihilator a(€) on F(1-l) are defined by 

a*(€)6 o .. · o €n := ✓n + 1€ o fa o .. · o €n , a'(€)1 := € 
1 n • 

a(€)6 o .. · o €n := ;;;;- L(€,€J)'N6 o .. · o €i o .. · o €n, a(€)1 := 0 
vn i=l 
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(€, €1 , • · ·, €n E 7-l). Here· indicates the conventional notation for removal of a component. 
The exponential vector defined as 

00 1 
e(€l := L -en satisfies (e(€l, e(11));r('1£) = e<{,q)" 

n=ov'nf 

(C 1) E 7-l). The (differential) second quantization of operator A on 1l is 

00 n 

dr(A) := L LI® ... ®I® A® 1 ® ... ® 1 , 
n=lj=l 

where A sits on the jth component in the product of the right hand side. 

Let us work on Cayley graph (G,n), i.e. n is a generator set of group G such that 

n-1 = n ~ e. Assume that n is an infinite set. For each n E N, take finite subset On of 

n such that n;;- 1 = nn and nn /' n (as a set) as n • oo. (Recall the discussion in §3 on 
the conjugacy classes in S00 .) We consider adjacency operators on £2(G): 

A:= L 7rL(w) (formally) and An := L ,rL(w) . (8) 
wen wenn 

The second quantizations of them on .r(£2(G)) are expressed in terms of creators and 
annihilators as 

dr(A) = L L a:,,a,, (formally) and dr(An) = L L a:,,a,, , 

where we set a,, := a(o,,) and a; := a•(o,,) (x E G) for simplicity. These operators describe 

the (nearest neighbour) random walk on G from the viewpoint of quantum fields. Setting 

coherent state 

(sorry for confusing usage of several 'e's), we have 

Hence our problem of CLT is to discuss weak convergence of the spectral distribution of 

the operator: 

dr(An/ y'in,J) = ~ L L a:,,a,, 
V inn I wEOn ,:EG 

with respect to cp as n • co. This can be solved by relating the moments of an operator 

on 7-l to those of its second quantization. 
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5.2 Moments with respect to coherent state 

In general, let 1-l be a Hilbert space, ~ E 1-l a unit vector, and A a self-adjoint operator 

on 1-l. Set 

<P := (~, · ~}11 and 4> := (e-112e(~}, • e-1!2e(~))F(1l) . 

The relation between the moments of A and dr(A) are as follows. 

Proposition 1 Set mr := ¢(Ar) and Mr:= 4>(df(A)') for r EN. Then we have 

Mr = L d(>.)mr mt•> ... m:<") 
l,\l=r,,\E)I 

where>.= (lk(ll2k<•> • • • rk<•l) in each tenn and 

r! 
d(>.) := l!k<•> 2!k<•> ... r!k<•> k(l)!k(2)! ... k(r)! · 

(9) 

(10) 

(11) 

(10) is the same relation as that between moments of a probability measure and its 

cumulants. Note that one has 

(Vt ER). 

Combined with the following elementary formula, this yields Proposition 1. 

Lemma 1 
:r ef(t) = ef(t) L d(>.)f'(tt'> f"(tl<•> · · · /(r)(tt•> 

l,\l=r,,\E)I 

where>.= (1k<•>2k1•> • • • rk1'>) and d(>.) is given by {11). 

Lemma 1 is easily shown by induction on r. 

Coming back to Cayley graph ( G, n), we set ~ = 80 in ( 9): 

<P = (8., -8.)l•(G) ' q, = (e-112e(8.), . e-112e(8.))F(l'(G)) ' 

and consider An in (8). The limits of moments of An/ v'in.J with respect to ¢ are, if they 

exist, majorized by the Gaussian ones, i.e. 

lim ¢((A I 1jn1)2P) < (2p)! 
n• oo n V l"nl - 2Pp! (Vp EN) 

(see [8]) where the right hand side is the 2pth moment of the standard normal distribution. 

Applying Proposition 1 to the Gaussian case, in which m 2p = (2p)!/(2Pp!) and the odd 

moments vanish, we have 

M = (2p)!B( ) 
2P 2Pp! p (12) 
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by using the pth Bell number B(p) i.e. the number of classification of p objects. Taking 

into account the asymptotic of B(p) asp • oo, we can majorize (12) and hence limiting 

moments of dr(A,.)/ /fnJ with respect to <I>. 

Proposition 2 If for \/r E N 

Jim <!>(( ~)r) =: m, exists, then 
n • oo V l11nl 

Jim <I>((dr(A,.))') =: M, 
n • oo /fnJ 

also exists for all r E N and satisfies 

I. M l/2p/2 1m 2P p<oo. 
p • oo 

(13) 

( 13) is a modification of Carleman 's condition. It ensures the unique existence of a 

probability whose rth moment is M, (see e.g. [6]). 

5.3 Branching, q-deformation 

We end the section with two remarks. 

Let the Young graph be equipped with multiplicity function 11:(A, µ) on each edge with 

A,µ E Y such that jµI = IAI + 1. Then the Young graph is simply called a branching. We 
refer to [14] for terminology and examples of branchings. Ao E Y denotes the diagram 

consisting of a single box. To each path u = (A0 ,A1, ···,A,.), in which jA;+1I = IAd + 1, 

going from Ao to A= A,., one assigns the weight Wu:= nr;l 11:(A;, A;+1), Then 

d(A) := L Wu (14) 
u=(.l.o, .. ·,.l.nPn=.I. 

is called the combinatorial dimension function on the branching. If the multiplicity func

tion is trivial i.e. 11:(A, µ) = 1, d(A) agrees with the number of standard tableaux in A and 

hence with the dimension of the irreducible representation of Sl>,I associated with A. We 

see that d(A) in (11) is the combinatorial dimension function on the branching determined 

by the following multiplicity function. Let A,µ E Y such that lµI = IAI + 1. 

(i) Ifµ is made by adding a box to a row (say, of length j) in A and A contains r rows of 

length j, then set 11:( A, µ) := r. 

(ii) Ifµ is made by adding a box to A as the new bottom row, then set 11:(A, µ) := 1. 

This observation helps recurrent computation of d(A) in (11). 

A parallel discussion to the preceding subsections can proceed if one considers the sec

ond quantization on a q-Fock space (0 < q < 1). See e.g. [4] for the structure of the inner 

product, the creators and the annihilators on a q-Fock space. An exponential vector and 
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a coherent state in (9) are naturally q-deformed. Then it is shown that Proposition 1 and 
the branching in the last paragraph yield their 'q-analogue'. Namely, the combinatorial 

dimension function d(>.) is given by (14), but the rule assigning the multiplicity function 

11:(>., µ) should be slightly modified depending on q. 
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Over the past few years the interest has been increasing in white noise approach to both 
classical and quantum stochastic differential equations. It is the fundamental idea of white 
noise theory, or also called Hida calculus [7), [8), that randomness is reduced to its elemental 
components represented by deterministic vectors in an infinite dimensional space and that 
stochastic analysis is translated into an infinite dimensional calculus. This approach has 
been discussed along with classical stochastic calculus, see e.g., [9), (10), [14), and references 
cited therein, and has created a completely new idea of nonlinear extension of stochastic 
calculus via quantum domain [1), [2). Namely, by means of white noise theory a traditional 
quantum stochastic differential equation introduced by Hudson and Parthasarathy [11] is 
brought into a normal-ordered white noise differential equation: 

d'::. L -dt = 1•=, =lt=O = I, 

where {Lt} is a quantum stochastic process involving lower powers (at most one) of quantum 
white noises. This observation led us naturally to construct a general scheme of normal
ordered white noise differential equations. In fact, in the series of papers [3], (4), [19), [20], 
we have established unique existence of a solution in the space of white noise operators and a 
method of examining its regularity properties in terms of weighted Fock spaces. However, the 
results were obtained only for linear equations as above though such equations are already 
far beyond the traditional Ito theory in the sense that the coefficients { L1} may involve very 
singular noises such as higher powers or higher order derivatives of quantum white noises. 

This paper aims at a small step towards a systematic study of nonlinear white noise 
differential equations. We shall focus on an initial value problem of the form: 

d=. F( -) dt = t,=' 0::; t::; T. 
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For technical reason it seems reasonable to start with the case that F : [O, T] x .C(W, w•) • 
.C(W. W*) is a continuous function, where .C(W, w•) stands for the space of white noise 
operators. A difficulty is caused by the fact that .C(W, W*) is not a Banach space but a 
nuclear Frechet space. For example, it seems very hard to obtain efficient norm estimates for 
a formal solution constructed by successive approximations. We shall surmount this obstacle 
b~· exploiting symbol calculus, which is a peculiar tool in white noise theory with a useful 
theorem of characterization [16], see also [2]. The main result is stated in Theorem 10 in 
Section 5. 

1 White Noise Distributions 

As usual, let us start with the Gaussian space (E*, µ), that is, E* = S'(R) is the space 
of tempered distributions and µ is the Gaussian measure on E• defined by 

e-l{l~/2 = [ ei(x,{) µ(dx), 
le-

f;,E E, 

where If;, lo stands for the norm off;, E H = L2(R) and (·, •) for the canonical bilinear form 
on E* x E = S'(R) x S(R). The probability space (E•, µ) is called the Gaussian space and 
plays a key role in white noise theory. For example, a Gaussian random variable 

Bi(x) = (x, 110,11), x EE·, t 2:: 0, (1) 

is defined in the sense of L2 (E*,µ) and {B1} becomes a realization of a Brownian motion. 
However, the time derivative of the Brownian motion, called the white noise, is not well
defined in L2(E*, µ). In fact, we obtain from (1) a rather formal representation: 

XE E*, t 2:: o. 
The above ill-definedness will be easily conquered by introducing a particular Gelfand triple: 

WC L2(E•,µ) Cw•, (2) 

where the white noise process becomes a smooth map ti-+ H11 E w•, and moreover, nonlinear 
functions of {Wt} are managed in w•. 

As for the construction of (2), we adopt a general framework due to Cochran, Kuo and 
Sengupta [5]. We first take a sequence of positive numbers a: = {a:(n)};;"=o satisfying the 
following fiye conditions: 

(Al) n(O) = 1 ~ u(l) ~ a:(2) ~ · · ·; 

(A2) the generating function G0 (t) = f 0:(7) tn has an infinite radius of convergence; 
n. 

(A3) 

(A4) 

n=O 

the power series G0 (t) = ~ 1n
2(n ) {inf Go(s)} tn has a positive radius of conver

L n.a: n s>O sn 
n=O gence; 

there exists a constant C10 > 0 such that a:(n)a:(m) ~ c;:;-ma:(n + m) for any n, m; 

(A5) there exists a constant C20 > 0 such that a:(n + m) ~ c;:ma:(n)a:(m) for any n, m. 
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Given such a positiYe sequence, we define a weighted Fock space: 

where 
2 cP 

A= 1 + t - dt2· 

We then define 
rQ(E) = projlimrQ(Ep), 

p• oo 

which bears a resemblance to S(R) = E = proj limp• oo Ep. The constant numbers 

1 11 A-1 llor = 2, 

with the simple inequality: 

II A-q ll~s = ~ (2i: 2)29 , 

( E E, p E R, q ?: 0, 

will be used in various norm estimates below. 

(4) 

(5) 

We denote by Wet the complexification of r 0 (E) defined in ( 4). It is easily proved that 
Wo is a nuclear space whose topology is given by the family of norms {11 · IIP,+ ; p E R} 
defined in (3). Taking the celebrated Wiener-Ito-Segal isomorphism L2(E*,µ) ~ r(Hc) 
into account, where r(Hc) is the usual Fock space, i.e., the weighted Fock space with weight 
one, we obtain a Gelfand triple: 

Wa C r(Hc) ~ L2(E*,µ) Cw;. (6) 

This is called the Cochran-Kuo-Sengupta space (or CKS-space shortly) associated with Cl'.. 

If there is no danger of confusion, we simply set W = W0 • The canonical bilinear form on 
W* x Wis denoted by ((·, •}}. Then 

00 

((<I>, ¢}} = L n! (Fn, fn}, qi~ (Fn) E w·, </J ~ Un) E W, 
n=O 

and it holds that 

2 ~ n! 2 
II cl> l\_p,- = ~ a(n) I Fn 1-p • 

As is easily verified, the Brownian motion t 1--t Bt is differentiable in w• and the white noise 
process t 1--t lVi E w• is defined. 

Here we mention some special cases. The Hida-Kubo-Takenaka space [13] is the CKS
space with a(n) = l and is denoted by W = (E). The Kondratiev-Streit space [12] is also 
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thP CKS-space with a(n) = (n!)l3, 0 :S: .B < 1, and is denoted by W = (E)p. Another 
interesting example is given by the k-th order Bell numbers {Bk(n)} defined by 

k-times 
___.,,._.___ 00 

G () exp(exp(· · · (expt) · · ·)) L Bk(n) n 
Bell(k) f = ( = -- t . 

exp(exp(··· expO)···)) n=O n! 
(7) 

\\'e record some properties of the generating function G0 (t) defined in (A2), whose proofs 
are straightforward. 

Lemma 1 Let a= {a(n)} be a positive sequence satisfying (Al} and (A2), and G0 (t) the 
generating function defined therein. Then, 

(1) G0 (0) = 1 and G0 (s) '.S G0 (t) for 0 '.S s :S: t; 
(2) e'Ga(t) :S: G0 (s + t) and et '.S G0 (t) for s, t 2: 0; 

(3) c[G0 (t) - 1] :S: G0 (ct) - 1 for any c 2: 1 and t 2: 0. 

Lemma 2 Let a= { a(n)} be a positive sequence and G0 (t) the generating function defined 
therein. If a satisfies conditions ( Al), { A2} and { A4), then 

s, t 2: 0. 

If conditions {Al}, {A2) and (A5) are fulfilled, then 

Ga{S + t) '.S G0 {C2as)Ga(C2atl, s, t 2: 0. 

2 White Noise Operators 

A continuous linear operator from W into W* is called a white noise operator. The space 
of such operators is denoted by .C(W, W*) and is equipped with the topology of uniform 
convergence on every bounded subset. In other words, the topology of .C(W, W*) is defined 
by the seminorms: 

II= 11B,B' = sup {l((=IP, ef,})I; IP E B, 1P EB'}, 

where B, B' run over all bounded subsets of W. Similarly, the topology of .C(W, W) is 
defined by 

II= lla,p = sup {II =IP IIP ; IP E B}, 
wlH're B runs OV<'r all bounded subsets of W and p 2: 0. Note that the canonical inclusion 
.C(W. W) • .C(W, W*) is continuous. 

A useful tool for anal~·zing white noise operators is the operator symbol. With each 
:: E .C(W, W') we associat<> a C-valued function on Ee x Ee defined by 

~' 7/ E Ee, 

where ¢{ is the exponential vector defined by 

( l ~ ~®2 • • • ~®n •• ·) 
' ' 2!' : n!' · 
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The above §: is called the symbol of'.:::. Every operator in .C(W, W') is uniquely specified by 
its symbols since the exponential vectors { <l>t; I; E Ee} span a dense subspace of W = W0 

for any a. The following analytic characterization theorem for operator symbol is a peculiar 
consequence of white noise theory. 

Theorem 3 [2] A function e : Ee x Ee -+ C is the symbol of a white noise operator 

'.::: E .C(W. W'), i.e., 0 = §:, if and only if the following two conditions are satisfied: 

(01) for any(l;i,1/,1/i E Ee the function (z,w) >-+ 8(z1;+1;1,w71+71i) is entire holomorphic 
on C x C; 

(02) there exist constant numbers C ~ 0 and p ~ 0 such that 

I;, 1J E Ee. 

In that case 
11 =<I> ll~(p+q),- ~ CG!(II A-q lits) II <I> ll!+q,+, 

where q > 1/2 is taken in such a way that Ga(II A-q lits) < oo. 

</>EW, 

Among white noise operators the most fundamental are the annihilation and creation 
operators at a point t E R. Let us now recall the definitions. For any </> E W the limit 

</>( ) r <t>(x + Obi) -1(x) 
at X = o1!:ti O , xEE', tER, 

always exists and a1 becomes a continuous operator from W into itself, i.e., a1 E .C(W, W). 
Hence by duality a; E .C(W•, W*). These operators a1 and a; are called the annihilation 
operator and the creation operator at a time point t, respectively. 

3 Stochastic Processes as Continuous Flows 

Following [17] we introduce some notions. A continuous map t >-+ <l?1 E W' defined on 
an interval is reasonably called a classical stochastic process (in the sense of white noise 
theory). Basic examples are the Brownian motion {Bi} and the white noise process {H't}. 
Similarly, a continuous map t >-+ '.=:1 E .C(W, W') defined on an interval is called a quantum 
stochastic process (in the sense of white noise theory). The annihilation operators {at} and 
the creation operators { a;} form quantum stochastic processes. In some literature the pair 
{ Ot, a;} is called the quantum white noise process. Moreover, we have 

Proposition 4 Both maps t >-+ a1 E .C(W, W) and t >-+ a; E .C(W', W') are infinitely many 
times differentiable. 

The proof is easy with the help of the norm estimates of derivatives of the delta function, 
see [18, Appendix]. We next mention a criterion of the continuity of t >-+ =, in terms 
of operator symbols. The proof is a straightforward modification of the argument for the 
Kondratie,·--Streit space [20, Theorem 1.8]. 
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Lemma 5 Let T be a locally compact space. Then a function t t--t 2 1 E .C(W, W*), t E T, is 
continuous if and only if for any to E T there exist I{ 2:: 0, p 2:: 0 and an open neighborhood 
Uu of to such that 

(,ryEEe, tEUo, 

and 
(,7) E Ee. 

Although an immediate consequence from the above, the next result is also useful. 

Lemma 6 Let 2n, 2 E .C(W, W*), n = 1, 2, • • •. Then 2n converges to 2 in .C(W, W*) if 
and only if there exist I{ 2:: 0, p 2:: 0 such that 

(, 7] E Ee, n = 1, 2, • • •, 

and 
(,1/ E Ee. 

We are now in a position to clarify the classical-quantum correspondence in white noise 
theory. It can be verified that the pointwise multiplication in W gives rise to a continuous 
bilinear map: W x W • W. Hence by duality, for <I> E w• and </> E W there exists a unique 
element denoted by <I></> E w• such that 

((<I>, </>1/J)) = ((<I></>, 1/J)), I/JEW. 

;\foreover, the map ;j; <I> t--t <I></> becomes a white noise operator, i.e., ;j; E .C(W, W*). 
Thus, every <I> E w• gives rise to a white noise operator by multiplication and we obtain 
a continuous inclusion w• '-+ .C(W, W*). In this sense, every classical stochastic process 
{ <1>1} is identified with a quantum stochastic process. Conversely, given a quantum stochastic 
process {2t} and a white noise function <I> E W, {<1>1 = 2 1</>} becomes a classical stochastic 
process. In particular, a classical stochastic process { <1>1} is recovered from the corresponding 
quantum stochastic process {;j:;1} as <I>1 = ;j;t<l>o, where </>o is the vacuum vector. We often 
ident.ify ~t wit.h <I>1 and denote them by the common symbol for simplicity. 

4 Integration of Quantum Stochastic Processes 

Let Lfoc(R) be the space of all C-valued locally integrable functions on R. We begin 
with the following 

Lemma 7 Let { L1} be a quantum stochastic process defined on an interval I C R. Then 
for any a, t E / and f E L/0c(R) there exists a unique operator 2a,tU) E .C(W, W*) such 
that 

((2 •. tU)</>, 1/J)) = [ f(s)((L,</>, 1/J})ds, </>,1/JEW. (8) 

Moreover. t t--t 2a.1(/) E .C(W, W*) is continuous. 
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PROOF. Let [a, b] C I be a closed finite interval. Since s H L, is continuous, the 
interval [a, b] is mapped to a compact subset I( C .C{W, W*) ~ {W ® W)*. Hence there 
exists some p ;::,: 0 such that 

Then for any s E [a. b] we have 

C = sup II L, 11-P < oo. 
a'.5s~b 

l((L,¢, ¢))I= l((L., <ti® 1/J))I s II L, 11-p 11 <ti® 1/! lips c 11 <ti lip II 1/J lip, 

and 

I[ f(s)((L,<t,, 1/J))dsl SC II <P lip II 1/J IIP [ IJ(s)jds, <t,, 1/! E W, a '.S t S b. 

Namely, the right hand side of (8) is a continuous bilinear form on Wand, therefore, a white 
noise operator =-a,tU) E .C(W, W*) is specified as in (8). Moreover, we obtain 

l(((=-a,tU)- =-a,sU))</>, 1/!))I S Cli</>liplli/!IIP [ lf(u)jdu, </>,1/J E W, a S s < t Sb. 

Then for bounded subsets B1, B2 CW we have 

II =-a.1U) - =-a,,U) 11B,,B2 S C II B1 lip II B2 IIP [ if(s)j ds, a '.S s < t :S b, (9) 

where II B IIP = sup{II <P lip ; </> E B} < oo for any bounded subset B CW. The continuity of 
t H =-n,t then follows from (9) immediately. I 

The white noise operator =.0 ,t(J) defined in (8) is denoted by 

=-a,tU) = [ J(s)L, ds. 

\Ve can now mention an analogue of the fundamental theorem of calculus. 

Theorem 8 Assume that two quantum stochastic processes {Lt} and {=-t} are related as 

=-t = 1t L, ds. 

Then, the mcip t H =-t E .C(W, W*) is differentiable and 

d - L dt =-t = t 

holds in .C(W, W'). 

PROOF. For the differentiability at t it is sufficient to show that given bounded subsets 

(IO) 
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It follows from definition that 

<P, 1P E W. 

Since s >-t L., is continuous, given€> 0 there exists some o > 0 such that II L, - Lt 11 8 ,,8 , < E 

for Is - ti < o. Then, for O < lhl <owe have 

II ::::t+h - ::::t II 1 lt+h h - Lt :S h II Ls - Lt 11 8 ,,8 , ds < E, 
81 1B2 t 

which proves (10). I 

Lemma 9 If {Lt} is a quantum stochastic process, so are both {L1a1} and {a;L1}. 

PROOF. We only prove that t >-t Ltat E L'.(W, W*) is continuous, for the rest is obtained 
by duality. To this end we fix t E Rand a finite interval [a, b] containing t inside, and choose 
p 2'. 0 and C :2: 0 as in the proof of Lemma 7. Let B1, B2 CW be bounded subsets. Then 
we have 

II L,a, - L1at 11 81 ,82 :S II L,(a, - at) 11 8 ,,8 , + II (L, - L1)a111 81 ,82 

:S II L, 11-P II a, - a1 11B,,p II B2 IIP + II L, - Lt lla,B,,B, 
:S C II a, - a1 lla,,p II B2 IIP + II L, - Lt lla,B,,B,, (11) 

where II B2 IIP < oc and atB1 C W is bounded. Then the continuity oft >-t L1a1 E L'.(W, W*) 
follows immediately from (11). I 

In Hudson-Parthasarathy calculus (see also [15], [21]) a fundamental role is played by 
the following three quantum stochastic processes: 

r Ai= Jo a,ds, A;= l a;ds, 

which are called the annihilation process, the creation process, and the number (gauge) 
process, respectively. It follows from Proposition 4, Theorem 8 and Lemma 9 that 

d 
dtAt = llt, 

hold in L'.(W, W), L'.(W*, W*) and L'.(W, W*), respectively. These relations play a key role 
to go beyond the traditional Ito theory by means of white noise theory. 

5 Initial Value Problem 

\Ye now study the initial value problem: 

d:::: F( -) -d = t,::.' t 
0 :St :ST, (12) 
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where F: [0, T] x .C(W, W') • .C(W, W') is a continuous function and =o is a white noise 
operator. A solution of (12) must be a C1-map defined on (0, T] with values in .C(W, W'), 
hence by Theorem 8, the initial value problem (12) is equivalent to 

=1 = =o + 11 
F(s, ='.,) ds. (13) 

Since the solution depends on the "regularity property" of the initial value '.:::0, we need to 
rnnsider two weight sequences a= {a(n)} and w = {w(n)} with conditions (Al)-(A5), the 
generating functions of which are related in such a way that 

G0 (t) = exp -y{Gw(t) -1}, 

where -y > 0 is a certain constant. In that case, we have continuous inclusions: 

W0 C Ww C L2(E',µ) ~ f(Hc) Cw; Cw; 

and 
.C(Ww, W;) C .C(W0 , w;). 

(14) 

Such a situation is abstracted from the case of Bell numbers, see (7) for definition. In fact, 
we have a simple recurrence formula: 

Geell(k+I)(t) = exp 'Yk { Geell(k)(t) - 1}, k :C:: 1; Geel1(1)(t) = e1, 

where 'Yk+1 = exp 'Yk for k :C:: 1 and -y1 = 1. 

Theorem 10 Let a = {a(n)} and w = {w(n)} be two weight sequences with conditions 
(Al)-(AS) such that their generating functions are related as in {14}. Let F : (O,T] x 
.C(Wn, W~) • .C(W0 , w;) be a continuous function and assume that there exist p :C:: 0 and 
a nonnegative function I( E L1 [0, T] such that 

and 
(16) 

for all(, T/ E Ee, = E .C(Ww, W;), ands E (0, T]. Then, for any =o E .C(Ww, W;) the initial 
value problem {12) has a unique solution in .C(W0 , w;). 

PROOF. In principle, the proof is based on the standard Picard-Lindelof method of 
successive approximations (see e.g., [6]) applied to the operator symbols. We define 

=(O) _-= 
-t --o, 

=(n) - = + 1t F( -=(n-1)) d -t - -o s,-s s, 
0 

We first prove that =in> E .C(W..,, W;) for n = 1, 2, · · ·. Since =o E .C(Ww, W;) by assump
tion. we may choose 1(0 :C:: 0 and p0 :C:: 0 such that 

(17) 
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Hence by (16) we have 

IF(s, 3o)(~, 11)12 S K(s)Gw(I ~ l!)Gw(l 11 I!) ( 1 + KoGw(I ~ l!0)G.,(l 11 l!0 )) • (18) 

By Lemma 2 we see that 

Gw(l~l!)G.,(l~I!.) S Gw(C1w(l~I!+ l~I!.)) S Gw(l~I~,), 

where P1 2: max{p,JJo} is chosen in such a way that 2C1wll A-1 ll~imax(p,po} S 1, see also (5). 

Then (18) becomes 

IF(s, =o)((, 11)1 2 s K(s) { Gw(I ~ l!)Gw(l 7/ I!)+ KoGw(I ~ l!JGw(l 11 I!,)} 

S (1 + Ko)K(s)Gw(I ~ l!,)Gw(l 77 I!,), (19) 

and by integration, 

I~(~. 71)12 S 2120(~, 11)1 2 + 2 il F(s, =o)(~, 11) d{ 

S 2120({, 71)12 + 2T.K(l + Ko)Gw(I ~ l!JGw(l 7/ I!,), (20) 

where 

K = 1T K(s) ds. 

Combining (17) and (20), we come to 

0 $ t ST, ~. 11 E Ee, (21) 

where K1 = 2/(0 + 2T.K{l + Ko) is a constant. It then follows from the characterization 

theorem for operator symbols (Theorem 3) that ::::\1> E .C(Ww, w;). Comparing (21) with 

{17), we see that the above argument can be repeated to conclude that ::::\nl E .C(Ww, W;) 

for all n. 
For simplicity we put 

6n(t;(,1/) = ~{~,77) = ((?:)n)<P(, t/Jij)), 

We shall prove that the limit 

exists. Since 

~. 17 E Ee, 0 S t $ T. 

6n(t; ~. 77) = 2o(~, 71) + l F(s, =~n-l))(~, 71) ds 

by definition, in view of assumption (15) we have 

l811(t:~,11)- 6n-1(t;~,77)J2 = ll {F(s,=t- 1>)(~,71)-F(s,=i"-2>)({,17)} d{ 

(22) 

S TG,.i(I ~ l!)Gw(l 11 I!) l K(s) 16n-l (s; ~. 77) - 6n-2{s; E, 17)12 ds, (23) 
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an<l morpover, repeating this argument yields 

\0n(t; ( 1)) - 8n-1(t; ~' 1/)\2 

::; { TGw(\ ~ l!)Gw(\ 1) \!)} n-l l dt1 l' dt2 · · · l•- 2 dtn-l 

X K(t1)l((t2) · · · K(tn-1)\81(tn-1i ~' 77) - 0o(tn-Ii ~' 1))\2 • (24) 

As for the last quantity. we see from (19) that 

\01 (t; ~' 17) - 0o(t; ~. 1))\2 ll F(s, '.::o)(~, 1J) dsl 2 

::; T 1T \F(s, =o)(~, 17)\2ds 

::; T K(l + Ko)Gw(I ~ l!,)Gw(\ 11 I!) = H(~, 1)). 

Thus (24) becomes 

{25) 

Let O < r < l. Then we have 

00 

L \0n(t; ~' 1J) - 8n-1(t; ~' 17)\ 
n=l 

(26) 

This proves that 

00 

01{(, TJ) = }~~ 8n(t; (, 1)) = ~o(( TJ) + L { 8n(t; (, TJ) - 8n-l (t; (, 1))} (27) 
n=l 

converges uniformly int for any fixed~' 77 E Ee. 
We next prove that that there exists a white noise operator ::1 E C(Wa, W~) such that 

81 = ~t for O ::; t ::; T. Condition (01) in Theorem 3 is easily checked from (26) since the 
convergence (27) is also uniform in (~, TJ) running over any compact subset of W x W. As 
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for condition (02) we shall estimate J81(E, 17)12. First by (26) and (27) we have 

l8M,11)12 S 21§o(E,11)12+2lt{en(t;E,11)-8n-I(t;E,11)}j2 

::: 2 2H(C11) {Ti< 2 2 } s 21=-o(E, 11)! +~exp 7 Gw(I E lp)Gw(l 11 Ip) . (28) 

Using an elementary inequality: t e>.t s e<»+I)t for t :C:: 0, the second term of (28) becomes 

where IE IP S IE IP, is used and 

Al = 2TK(l + Ko) 
I 1 - r2 ' 

TR 
AI2 = - 2 + l. 

r 

(29) 

\\'e choose 0 < r < 1 in such a way that Md, :C:: 1, where I is the constant defined in (14). 
Then by Lemmas 1 and 2 we have 

Al2Gw(IEl;,)Gw(l11l;J s M2Gw(C1w(IEI;, +1111;,)) 

= ,{ ~2 [aw ( C1w(l€I;, + 111 l;J) -1]} + M2 

S 'Y { Gw ( ~ 2 C1w(I EI;,+ I 11 I;,)) - 1} + M2, (30) 

We then take q :C:: 0 in such a way that (Md,) C1wll A-1 ll~P s l. Then (30) becomes 

M2Gw(I E l;,)Gw(! 11 l;J S 'Y { Gw(I E l;,+q + I 11 l;,+q) - 1} + M2, 

and, in view of (14) we obtain 

exp { M2Gw(I e l;,)Gw(I TJ I;,)} s eM2 Go(I € l;,+q + I 11 l!,+ql• 

Consequently, combining (28), (29) and (31), we have 

l81(E, 11)12 S 2J§o(E, TJ)l2 + 1vl1eM'Go(I E l;,+q + I 11 l;,+q) 

S 2KoGw(I E l;0 )Gw(J 71 l;J + M1eM2 Go(C20 I€ l;,+q)Ga(C20 IT/ l;,+q), 

(31) 

where (17) and Lemma 2 are used. Taking q1 > p1 +q > Po such that C20 II A-1 11~~•-Pi-q) s 1 
and noting that Gw(s) s ,-1e'i'- 1G0(s) for s :C:: 0, we come to 

(32) 

In other words, 8t satisfies condition (02) in Theorem 3, and hence there exists a unique 
:=::, E .C(W0 , W;) such that 

E,T/ E Ee, t E [0,T]. (33) 
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We now prove that {:::t} is a solution of {12). As is already obvious, 8n(t) also satisfies 

(32) commonly, and therefore by Lemma 6 we see that =t> • :::'.t in .C(Wa, W~) uniformly 
in t. Hence, letting n • oo in {22), we conclude that 

81((, 17) = So{(, 17) + l F(s, :::'.,){(, 17) ds, 

which means that {:::'.t} is a solution of {13), and hence of {12). 
For the uniqueness we suppose that two quantum stochastic processes {:::'.1} and {Xt} 

satisfy the same integral equation (13). A similar argument as in the derivation of {23) 
yields 

from which St = .Yt follows by a standard argument with the Gronwall inequality. I 
We remind that Theorem 10 covers a simple example: Let {Lt}, {Mt} C .C(Ww, w;) be 

two quantum stochastic processes, where t runs over [O, T]. Then the initial value problem 

ft :::'.t = Lt o :::'.t + Mt, :::'.lt=O = :='.a E .C(Ww, w;), {34) 

has a unique solution in .C(W0 , W~)- Note that equation {34) is a considerable generalization 
of a traditional quantum stochastic differential equation. 
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ON THE REGULARITY OF THE BERGMAN KERNEL 
ON THE BOUNDARY 

.JOE KAMIMOTO 

l. INTRODUCTION 

In this article, we study the regularity of the Bergman kernel and the Szego kernel 
on the boundary of weakly pseudoconvex tube domains off the diagonal. 

Let n be a domain in IC". The Bergman space B(i1) is the closed subspace of 
L2(H) consisting of holomorphic· £2-functions 011 n. The Bergman projection is t.l1e 
orthogonal projection IR: L2(!1) ---+ B(i1). It. is known that the projection IR eau be 
represented by using some integral kernel: 

IR/(z) = i B(z, w)f (w)dV(w) for f E L2 (!1), 

where B : n x n --> IC is called the Bergman kernel of the domain n and dV is the 
Lebesgue measure on n. 

The regularity of the Bergman kernel on the boundary off the diagonal is deeply 
munect.ed with many other subjects in the rJ-Neumann problem. In 1972 Kerzman 
[15] proved the Bergman kernel of a C'""-smoothly bounded strictly pseudoconvex 
domain n in IC" is C'"'-smooth up to the boundary off the diagonal: i.e. 

(1.1) BE C'"'(!1 x l1 \ ~), 

where~={(::, z); z E an}. His proof is based on a certain pseudolocal estimatP. of 
the 8-Neumann problem. Later Bell [l] m1d Boas [3] independently showed (1.1) in 
the case of domains of finite type (in the sense of Kohn or D'Angelo) by generalizing 
the argument of Kerzman. 

Let us consider this kind of question in the real analytic category. For a set I( in 
IC", C"'(J<) means the set of real analytic fuuetions in some open neighborhood of 
I<. In the case of C"' -smoothly hounded strictly pseudocouvex domains in IC". the 
Bergman kernel is known in [20],[21],[22],[2] to satisfy 

(1.2) B E C'"'(l1 x O \ ~). 

In weakly pseudoconvex and of finite type case, it. had also been expected that ( l .2) 
always holds. Surprisingly Christ and Geller [7], in 1992, showed that the Bergman 
kernel does not satisfy (1.2) for t.he domain n,,, = {(::1 , ::2 ); '.)'(::2 ) > [R(::1)]2"'} 
(m. = 2, 3, ... ), which is a very simple weakly pseudoconvex domain of finite type. 
In general, necessary and sufficient. conditions for ( 1.2) are yet. to bci known until now. 
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The follo\\'ing question is the first- step for this problem: Find 1wu1y perturbations 
of ll,,, whose Bergman kernels do not have the real analytic: property ( 1.2). The 
fnllml'ing theorem partially answers this question. 

Theorem 1.1. For a.ny -wrn.kly ps1:1ulocon-ur::1: t-ube domnin n in IC2 -with rcnl analytic 
brnwdm·y, tlwn-: (~Ci,<t points on an X an \ fl -where llu: Bcr:gmnn 1.:crnd i.s not rml 
11. 11.a.lyti<:. 

In more detail. we r:an detenuinr, the set of (.he failure of the real analyticity an<l 
the best order of the Gevrey dass (see Sed.ion 4). \Ve remark that our theorem is 
established for both cases of bounded and unbounded bases of n. 

Next let us consider an analogous problem about the Szego kernel. Suppose that 
n has G'"°-srnooth boundary equipped with a surfac:e element dcr. The Hanly spar,e 
I-f2(f!) is the subspace of L2 (8f!) consisting L 2-boundary values of holornorphic 
functions. The Szeg6 projection is the orthogonal projection§: L2(Dfl) -> I-f2(n). 
The projection § can be represented by using some integral kernel: 

§/(:;) = f S(:;.w)f(w)dcr(w) for/ E £2(i'Jn), 
lnn 

where S: n x f! _. IC is called the Szc.1Jii l.:crru:l of the domain n (with respect to 
dcr). 

There are many analogous studies about the Szego kernel (refer to the lntrodu<,
tion in [7]). Christ. and Geller [7] also showed the failure of the real analyticity of 
the Szego kernel off!,,. (m = 2, 3, ... ). We also give a similar result about the Szeg6 
kernel. 

Theorem 1.2. For nny -weakly pseudocon-vex t-ube drnnnin n in IC2 with renl nnnlytic 
brmndnry, there c:1:ist points on an X an \ fl -when: the SZF . .IJO kernel (with respect to 
,<mru: .smfa.cc clcuu:.nt) i.5 not rml 1wnlytir:. 

Note that the above Szeg6 kernel is C'""-smooth Oil f2 x f2 \ fl by [17]. The real 
analyticity of the Szego kernel is deeply connected with the analytic hypoelliptitity 
of the tangential Cauchy-Riemann operator tJ,, on the boundary. It was shown in 
(7] tha.t the CR manifold an,,. (m = 2, 3, ... ) is a counterexample to the analytic 
hypoellipticity of Db by regarding the Szego kernel as a singular solution of Dbu = 0. 
i\:Iore generally Christ (4] directly construeted singular solutions for t)btJi,11. = 0 and 
i),:u <le C'"' in the case of weakly pseudoconvex domain flp = { z E IC2 ; ~(z2) > 
P(R(:;i))} where P is real analytic. (In [4] he mainly treated the case of bounded 
Reinhardt domains.) The singularity of his solutions closely resembles that of the 
Bergman kernel in our analysis. 

Let us explain our analysis. In this nriticle we only consider the case of the 
Bergman kernel. Our analysis is hnsed on integral representations of the Bergman 
kernel which were obtained in t.he case of general tube domains in [8],(l!J], etc. 
(~fod.ion 2). Christ and Geller [7] also used these representations, but their proof 
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n<'<'<led some kind of homogem;it_y of the dornain n,,,. 111 the e·ase of gcennnl l:ulw 
elornains, this homogeneity rnnnot always he <>xpe('ted, so it see111s <liflic:ult to apply 
t.lteir method directly. On the other ham! the author [12] (see also [SJ) e·ornpute,d 
some asyrnptot.ic expansiou of t.hc, the Bergrnan kernel to see the situation of these, 
singularities direc:\.ly. This analysis is valiel for our c-ase. In orcler to appl,v the, nunl
ysis of [5],[12]. some appropriate loe·alizatimt of the singularity is nec·ess,u-_v (See·tiem 
:J). This propert.y of loc·alizntion implie,s that the failure of the) real analyticity is 
elctcnnineel hy the-) loe·al georne-,try of the hounclary. After localizing integral n,pre
sentation, we compute some asymptotic- expansion by the residue formula. In this 
f,xp,msiou it c:an be directly understood that each term fails to be real analytic: 
and the first term has the strongest singularity. Thus we can obtain Theorem 1.1 
(Section 4). In the case of tlu, Szego kernel. similar integral representations "·en, 
obtained in [16],[10],[19], etc .. so Theorem 1.2 can be shown in a similar fashion. 

Last. we remark that Franc·sies and Hanges [n] obtained a very similar result. to 
Theorem l.l. They explain the regularity problem for the Berg.man kernel by using 
symplP.ctic geometry. 

2. lNTEGIUL REPRESENTATIONS 

First let us recall an integral representation of the Bergman kernel for general 
tube domains. \-Ve set :: = (::1 .... , :,,) E IC", :i = ,ri + iyi (,rj, !Ji E IR), ,r = 
(:r1, .. , ,,r,.), y = (!11, ... ,y,.). 'ii:= ('11'1 ... - ,ii•,,) E IC", I.= (t.1, ... ,t,.) E IR" and 
(::. t) = L-7=1 :;I;. 

Let n C IC" be a tube domain whose b,1se is w C IR"; that is 

n =IR"+ iw. 

From [8],[19], the Bergman kernel B(:,w) of n can be expressed as follows: 

(2.1) B =,'W = -- ci--u. --. ( ) l 1 '(• -, t) dt 
(2,,)" A· D(t). 

with 

D(t) = 1 e-2(1.v>dy, 

where A'= {t E IR": D(t) < oo}. 
Next in order to prove the theorem. we will rewrite the above representation hy 

using appropriate t.ransformations. From nm\· on ,w, assume that n is a p,;e-,nclor-011-
vex tube domain in C2 with rr,al ,malvtie· houndarv. Then it is well known that th<' 
base w is convex in IR2. Let : 0 = (::Y, ~~) be a honn<lary point of n. By a t ranslatio11 
of rnordinate axes, we may assume that ~1'(:Y) = \s(::g) = 0. Then t.hi, mo:i:iuw111 
cone A of w C IR2 is defined by 

A= {y E IR2: (,s!/1• s112) E w for any s > O}. 
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and the-, set A* bec01nes the d-u.nl <:on,: of A. i.e. 

i\' = {l E IR2: (t. !J) 2'. 0 for a11y !/EA}. 

First 1n' C"onsidcr the ('ase \\"lwn, the base ;;J is unhouwl<ed. By a linear \.nmsfor-
1wtt.ion in IR2 • ,J can be transformed int.o ,JJ, 1rhid1 has the following prnperlies: ,JI 

is expressed as 

;;JJ = {!IE IR2: !/2 > f (yi) }. 

where f E G'"'(((l._,(l+ll, with -x ~ a._ < 0 <a+~ oo, satisfying that .f(O) = 
.f'(O) = 0 and J(x) -> oo as :r -> a±: moreover the maximum cone of u..,'J is Au = 
{!I E IR2: y2 2: R[yil > O} for R 2'. 0 or Ax := { (0. !/2): !/2 > 0}. The dual cone of 
Au is Aj-1 = {t E IR2 : f2 2: R- 1 jtd > O} and A;_,= {I. E IR2 ; t2 2: 0}. Fro111 (2.1). the 
Bergman kernel of n1 := IR2 + i,)1 can be expressed as 

where 

D1(t1, t2) = ("+ ,,-2t2JW-2t,{d~ . 
.fu_ 

Next we consider the case where w is bounded. In a similar fashion, w can be 
lrnnsfonned into w1I which has the following properties: WJ.j is expressed as 

WJJ = {y E IR2;f(111) < Y2 < j(11t)}, 

where J,.i E C'"((a-,a.+)l, with -oo < a_ < 0 <a+< -::,o, satisfy that J(O) 
.f'(O) = 0 and f (a±) = .i(a.±), respe<.:tively. Here the maximum cone is Au= © and 
the dual cone of Ao is A0 = lR.2 . From (2.1), the Bergman kernel of nJJ := IR.2 +iw1J 
nm be expressed as 

B( ~ ) 1 fl i(,-ff,.t) l-2 dt dt 
-.W =- e (· ·) ··1··2, 

. 21r2 • ·"' D1t1,l-2 -Dj(t1,t2) 

where D1,Dj are as above. 
Sinee linear transformations have no essential influence on the argument. of reg

ularity of the Bergman kernel, it suffices to investigate the real analyticity in the 
above two eases. 

:.l. LOCALIZATION 

In this seC"tion we show thnt. the singularity of the Bergman kernel at the boundary 
,·nu he lornlly detennined. 

W,, set ( = ((1.(2 ) \\"here(; = (.::_; - 'ii.!_;)/2·i and 6(() = B(:::,w). Let p,o± 

he-, ,·emst,mts such that O < /! ~ R and <'- ~ {,_ < 0 < ii+ ~ a+ \Ve set {, = 
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111i11{-L, O+} and J = max{-L. O+}- For /J· 0±. clc,fine Liu; func-tion B((: p. o±) hy 

. . - I 1"" /.,,,, ,-2<(.t.) f2 
(:J. I) B((, fl,()±) - ')-2 I. V ( .. ///1dl2. 

_,. u . _,,,, / l.1. 12. 0± 

where 1,h 

V1U1.f:2:<I±)(:= V1(<I±)) = e-2i,/lo- 211 (d~. 
L 

Note t.hat B((; R, U±) = B(() in the cases of ;,JI· 
Now the singularity of the Bergman kernel B(<) at K0 := { (0. 0)} + ilR.2 is locally 

described as follows. 

Proposition 3.1. For any 0±, thr:rr: r:;i:ists n positive constnnt (Ju .<w:h tluil. if O < 
/J :S /lo, then B(() - B((; p. <I±) is ·real ana.lytir: in ( in scnnc neighbo·rhood of 1{0 • 

The proof of this proposition is sefm in [ 11 ]. 

4. PROOF OF THEOREM 1. 1. 

4.1. Preliminaries. Sinc:e w is convex and f(x) is real analytic in (a_, a+) with 
f(0) = f'(0) = 0, there exist a natural number m. and a real analytic function g(x) 
suc:h that g(0) > 0 and f(x) = x2"'g(,r) in (a_, a+)- Note that z0 is of type 2m (in 
the sense of D'Angelo). (If /(k)(o) = 0 for any I,; E N, then the real analyticity of 
f(x) implies that n/ = {z E C2: ':l'(z2) > O} whose Bergman space is {0}.) 

We set 
I<(z, t) = B((z. f + i/(11)); (0, 0)). 

Suppose t.Jiat .:0 is a weakly pseudornnvex point of type 2m (m 2: 2). Now fix 
0± = ±00 with O < Oo :S min{-<L.11+} and set+= TI/(2"'>. For To,Po > 0, define 
the function I< (:; ,t; To, Po) by 

( 4.1) 

(4.2) 
. jpo+'.!m-1 eiz.fv 

F(z;T,fJo) = ;---( , . . )dv 
-pof'.?T,.-1 '{) l,, T 

( ·) Joor -2y(w/r)w'''"-?uw J cp V: T = e - c·w. 
-Jo'T" 

Recalling the definitions of B(() and B((; fi. II±) in Section :3, we lrnve 

I<(z, t) = B(z/2i, (t + if(y))/2i), 

K(z. t; 0, p) = B(:;/2i, (t + if (y) )/2i: p. ±o0). 

By Proposition :3.1. there exists p0 > 0 such t.hat. if p :S p0 • then I<(·,•; O,p)-K(·, •) 
is real analytic around (O, 0). !\foreover it is easy to eher-k the real analytidt.y of 
K(·, ·; To,Po) - I<(·,·; 0, Po) for any To 2: 0. 
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l11 n srnall 11<·\ighhod1oo<l of (0. 0). if I\"(-.·) is rc,al allalyt.it- mrny from (0. 0). thell 
so is I<(·.·: Tu.f!u)- Our goal i, to show t.hc, folkmfog tlH!orern. 

Theorem 4.1. Thr:n: r~i:isl po.<ilil'r: n:11:m./Jr:·rs .r0, (Jo, To .rnr:h llw/, /{(z. /.; (!u- Tu) is no/, 
·real analytir: in (z,t.) on thr: set :C::(;ro) = {(:r + iO. 0): 0 < l:rl ::; :ru}, m.cn·co·l'r:r ii, 
belongs t,o s-th order Gcvn:y clas.s for s ~ 2m. /mt no lu:Ucr, rm :C::(:r0 ). 

Rr:,rw:rk. If the boundary an is locnlly regarded as IC x IR as above. the Bergman 
kernel B((:r + iy. t + if(y)): (u. +ii•,.~+ if(-r•))) fails to be real analytic 011 the set 

{(:r + ·iy, t: 11 + h•. s): !/ = 1· = 0. / = s} U {diagonnl} 

ill sollm small neighborhood or (0. 0). 

4.2. Analysis of rp(-1·, 7). 111 order to prove t.lte theorems, it is llecessnry to allnlyze 
t.he funetio11 ,p(v, T). Note that a similar mmlysis is done in [4]. We express some 
posit.ive const.ants depending on X by C(X) or C;(X). The proofs of the le11m1>1s 
blow are seen in [11]. 

When Tis sufficiently large, the function :p(-1•, T) can be well approximated by the 
entire function: 

:p(v) = 1"" c-29"''"'- 2'""dw (m = 2, a .... ) .. 
-x 

where .r; := g(O). Indeed the LenmH\S 4.2.4.:J. below, show this nature. There are 
many studies of the propert.ies of ,p(v) (refer to the Introduction in [Ia]). 

First let. us consider the zeros of ,p( ·, T). It is known that all zeros of <p exist on 
the imaginary iDds ([18]) and are simple ([14]). The set of the zeros of 'Pis denoted 
by {±iaj; 0 < aj < a.;+ 1 (j E 1\1)} (Note that rp is an even function). For 1/, rr > 0, set 
R(-17, rr) = {11 E IC; IR(v)I < 17, 1~1'(11)1 < u}. Let {±ia.±;i O ::; R(a±;) ::; R(a.±u+1))} be 
the set of zeros of ,p(·, T) in R(17, u). Note that the values of a±; depend on T. 

Lemma 4.2. For cm.y q > 0 and N E 1\1, there exists To > 0 such that if f > To, 
then in R(1J, IT,v) with rr,v = (aN + a.N+i)/2 

(i) thr: nwnbr:1· of zeros of :p(-, i-) is 2N, 
(ii) In±; - a.jl < G'1(11, N)/T for j = 1, ... , N, 

(iii) 11.ll zeros of :p(·. i-) rm: sim.p/1:, 
(iv) j,p,.(ia±j, T) - :p'(-ia.j)I < C2(11, N)ji- for j = 1 ..... N, w/1(:rr: :p,.(r, f) is the 

partial dcri·11ativr; of :p(v. i-) in 'l'. 

Next let us consider the behavior of ,p(·. i-) at infinity in the directions argv = 0, ir. 
The following lennna shows that. this behavior is similar to that of ,p(-11) in these 
din,ctions (see Theorem :3.1 in [12]). 

Lemma 4.3. The-rr: 11.n; posil.i·11c r:onsta.nts 1.r0, p0 , R such tlwt if lvl/i :S Po, lvl > R 
11.nd I nrg ·ul < no or I arg J' - irl < no, then 

Ci < ii'l'""-J)/(2"'-llr:-"lvl'"'m"'-1). j,p(v. f)I < G'2, 
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wlu:rc o, C,. C2 an: po.,ili1//: rnnslnnls inrlr:pr:ndr:nl. of T. ·,•. 

4.:.l. Analysis of F(11: i-, ri0). Fix ally positive integc~r N ,md set cr,v = (all,+o\+ 1)/2 
(±ia_;'s are zeros of <p(-P)). Fnr tlw c·0111putntinll below. we prepare integrnl c-urv,~s 

r~V) as follows. r~V) consist three pnrts I'~i). r~;i. r~~). First r~i) follow the line 

{c•: R(-c•) = -p0i-2"'- 1} from -p0i-2"'- 1 + iO to -poi-2"'- 1 ± ·icr,v. Second r~il follow 
the lines {v; '.}('(•) = ±cr,v} frotn -p0 i-2"'- 1 ±icr,v lo p0 i-2"'- 1 ±icr,v. Third r~l folio"· 
the line {·1•; R(,•) = poi-2"'- 1} from poi-2"'- 1 ± icr,v to poi-2"'- 1 + iO. (See Figure I.) 

Im 

Re 

r'."' 

FIGURE 1. Integrnl contours r~Vl_ 

Define the functions 1rl (:;: i-. p0 ) by 

~ 

J (N)( · ) ~J(N)( · ) ± :;:T,/Jo = L.. H· ::;T.flo' 
k=l 

where 
(N) . l (Joi-r 

IH (::: T,flo) = -( -.)dl• fork= 1.2.:3. 
r~.i-.; r. r 
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First II"<' collsicl<>r the 1·ns<' 1dwre :r = :R(.::) > 0. For N E N. ll'e s<'t 1/,v = 
11111x{2R, 2c,,v / tall nu}. ll'here His as ill Lelllllla 4.:.l. By Le11uw1 -!.2. for a11y N E N, 
there 1ixists i-,v > 0 sul'h that if i- > i-,v, the11 i11 the regio11 H(11. CT,v ), t.he 11111uh1~r of 
zeros of :p(·. i-) is 2N. la+,; - a; I < 10-1 min{ a; - a:i-1. a.:+1 - aj }. Hll zeros of :p( ·' i-) 
are simple and J:p,.(-ia+i• i-) - :p'(-iai)I < 10- 1J:p'(iaj)I for j = l. ... , N. 

Suppose that i- > i-,v. By deforming t.he origi11al integral curve in (4.2) iHto !'~vi, 
the residue formula implies 

( 1.:.l) F(.::: i-. Pu) = 2,ri t .. r!(~"+;zt .:.) + If\.::: i-. /lo)-
.i= I yr Ul+.i· I 

!11 fact. the function e;"t ''/,:;(r. i-) ill I' has simple poles with residue 2,rie-"·•·i07 /v:vUa+.i· i-) 
at ·u = -ia-+j · Hereafter we use C',v for various c:onstants depellding 011 N. 

First. I~~l U = I, a, :r > 0) can be estimated as follows. 

l<TN e-xiq 

JI~\r+iO:i-,po)I ~ I ( -2 1 · •)ldq • o !{) -f)oT m- + ·1.q. T 

~ G'i-"'-lc-c,fioT f"N c-.r.+,,dq 
Jo 

::; C'N,;-m.-1e-n,>oT ~ 

hy using Lemma 4.:J. Second It~) (:r > 0) can be estimated as follows. 

pof2"'- 1 d-
Jit~\r + iO; i-, po)J ~ e-""N+j I ( -~ .)I 

-pof2m-1 'P p + tCT,v. T 

:::; C'Ne-_:rCTNf_ 

In the case where :r. < 0, we can obtain the same inequality by deforming t.he 
integral eurve into r~vJ. 

Therefore if :r. ,fa 0, then we have 

(4.4) II(N)( '() · )j<C' -lxl,,~+ ,,t,-J ,,, + 1. : ,. /lo _ ,ve · ' , 

where c,(:r) is the sign of :r. 

4.4. Proof of Theorem 1.1. Fix any N E N and suppose that :r = R(.::) > 0. 
Substit.ut.ing (4.:3) into (4.1), we have 

(4.fi) 
N 

[((.::. t: TN, flu) = LI<_;(:;. t: T,v) + R,v(.::, t; ,,v, po)
.i= I 

IC(•/·-)=_ f',tr 1,-J(!f)Tr,-"+i>T_-:---,.dT 
i lx . . . rl+l/m. 

1 ..,. ·: 1 N II. •x · _, ·· ({Jt,(ia+:i1 +) · 
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forj=l. .... Naml 

. ["' , . _ _ 1· ,,Ir ,-f(y)r (N) , . .;. _l+l/n, _ R,v(_.f.,,,v.po)-= ,. ,. I+ (--'•/iu), d,. 
11 • TS 

!11 the c-ase where :r < 0, if 11·e repine,~ a+J· 1fl with -rLj, !~Vi r<!spedil'<'ly. then 
the equation ( 4.5) holds, :'im1· 11·c~ show the following proposition. 

Proposition 4.4, For any NE N. tlu:ri: 1::1:ist :r0 > 0, ko EN such llrnl if()< j,rj :S 
:r0 a.nd k 2: ku, then 

( ) c:(I) f(2mk + 4m + 2) I D1" y (· ·o )· _ ) I c:(2) r(2mk + 4m + 2) 
4.G j (j:rla;)2m!·+4m+2 :S ()/.!- \ J .r + ,. ' ( ' , ,v :S j (l:rlo;)2"'k+4m+2 

for j = l, ... , N, where cf>, Cj2> > 0 arc constants depending on j, rind 

(4.7) I f)k . I , r(2mk + 4m + 2) 
8tl·R,v(x+i0,0;r,v.po) :S C,v (jrj<1,v)2mk+4m+2. 

w/u:n: C,v > 0 is a constant di:pr:ndin_q on N. 

If we admit the above proposition. each K.; does not satisfy the Cauc-hy inequality 
011 the set '.=:(:ru) = { (:r + iO, 0): 0 < l:rl :S :ro} and the singularity of J(i bec-omes 
wr:ukcr as j increases. Thus we c-an obtain Theorem 4.1, that is, ]( foils to he real 
analytic and moreover it belongs to s-th order Gevrey class for s 2: 2m. but no 
better, on '.=:(xo)-

Proof of Proposition 4.4. We only consider the case where :r > 0. There is a 
function fi(i-) (j = L,., , N) and a constant c,v > 0 such that o+ii- = aji- + fi(i-) 
and 1/i(i-)I < c,v for i- > i,v. We take :i:o > 0 sueh that c,v:r0 < 1/100. Then 
jc-f;(f).r - lj < 1/10. If O < :r < .ru. then 

I e-f;(f).r I I 
<p,,(ia+i• i) :p'(ia;) 

Je-f;(+l\;'(iaj) - 'P,,(ia+i• i-)I 
< ---.---~-..-----,---
- j<p,,(ia+J• i-)11-;'(ia;)I 

10 ie-f;(f)r - I jj:;'(iaj)I + j:p'(iaj) - 'Pv(irt+J· i-)1 
< - n i'P'(iaj)l2 

2 I <----
- 9 l,;'(irtj)I 
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:\ol<' lli,1t we took i,v ns in Snhs<><-lio11 ,1.:.1. By nsiug th,i nhove iueqnnlit.y. if O < 
:r < :r0 • then 

I 
if , . . -1 l 11.•:,C !·+ 1+1/m _,,,.,.;- e-f;(+).r I 
-;--)kl\_;(.r+1.0.0:,N) == T r. ,· ,(· -'-)d, 
r./. 11 ·•s Ye Ul+j·' 

> .!_ __ I __ lx ,1.·+1+1/m.c-uj.rf-dr 
- !Jr. l=/(ia;)I .•. ,· 

7 I { l'(2mk + 4m + 2) } 
= Drr ]:p'(-ioj)I (.ra_.j)Zmk+lm+2 - 11,i.N.k . 

Hen-) it is en8y lo obtnin 

I 
.~·,, ... , I !•+2+1; ... 

IJJ.·N1.•I = 1' 1 2mk+:lm+l(~-uj:rrdT < 7,v . 
1 · · o - 2mk + 4m + 2 

Therefore if k is sufficiently large, we c:an obtain the left inequality in (4.6) in the 
proposition. On the other hand. the right inequality in (4.Ci) cnn be shown ns follows. 

I _°\_ K;(:r + iO, 0: T,v) I ~ ~ lx ,J.-+1+1/•nc-"i·'+ I" <~~-J;(+)x. Id, 
c)t " . r.v ..-v(I.U.+j· r) 

< ~--1 __ lx 7 2mk+,1ru+l<_.-r1j.rrd'T 

- \hr l:P'(in;)I o . 

11 1 r(2mk + 4m + 2) 
9r. l:p'(iaj)I (:raj)2mk+Im+2 . 

Next by (4.4), we have 

~ c.l_~ ,k+l+l/ml1~V)(:r.+iO;r.f)u)jd, 

~ C' 1"" _i-+1+1/m,,-cru.v+c1-,,N I l• ,/ 

u 

~ C r(2mk + 4m. + 2) 
N (:r:O"N )2ml.·+4m.+2 · 

We have completed the proof of Proposition 4.4. 
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SPECTRAL SYNTHESIS FOR £ 1-ALGEBRAS AND FOURIER 
ALGEBRAS OF LOCALLY COMPACT GROUPS 

EBERHARD KANIUTH 

1. INTRODUCTION 

The purpose of these notes is to report on progress that has been achieved 
during the past twenty years in spectral synthesis for L1- and Fourier algebras 
of {non-abelian) locally compact groups. However, some of these results, in 
particular for Fourier algebras, are very recent. 

To start with, let G be a locally compact abelian group and L 1 ( G) the con
volution algebra of integrable functions on G. Then the spectrum (or Gelfand 
space) of L1 ( G) can be identified with the dual group G of G by means of the 
mapping o: -> <f!o., where <f!aU) = J(o:) = fo f(x)o:(x)dx for f E L1(G) and 
x E G. Spectral synthesis problems concern the extent to which a closed ideal 
I of L1(G) is determined by its hull h(I) = {o: E G: J(o:) = 0 for all f EI} 
in G. We refer the reader to [3] or to Section 2 for the notion of spectral set 
and Ditkin set for L 1(G). 

Since Malliavin's [20] famous discovery that, given any non-compact locally 
compact abelian group G (equivalently, G is non-discrete), there exists a closed 
subset of G which fails to be a spectral set for L1 ( G), there has been much effort 
in producing spectral sets and Ditkin sets. Specifically, so-called injection and 
projection theorems for spectral sets and Ditkin sets (see [3], [23] and [24]) as 
well as results about unions of such sets have been established (see [3]). As 
general references to spectral synthesis we mention [3], [10] and [24]. One of 
the major unsettled problems (even for G = Z) is whether every spectral is 
actually a Ditkin set. In Sections 2 and 3 we discuss analogous problems for 
Fourier algebras and for £ 1-algebras of (non-abelian) locally compact groups. 

2. FOURIER ALGEBRAS 

For a locally compact group G, let A(G) and B(G) denote the Fourier alge
bra and the Fourier-Stieltjes algebra of G as introduced and first systematically 
studied by Eymard [5]. Recall that B(G) is the linear span of all continuous 
positive definite functions on G and therefore is the Banach space dual of 
c•(G), the group c•-algebra of G. Then A(G) is the closed ideal of B(G) 
generated by the functions in B{G) with compact support. It turns out that 
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A( G) consists precisely of all coefficient functions of the left regular represen
tation,\ of G on L 2( G), and A( G) can be identified with the predual of the von 
Neumann algebra VN(G) generated by,\. When G is abelian and G denotes 
the dual group of G, then A(G) and B(G) are isomorphic (by means of the 
Fourier transform) to L1(G) and M(G). 

A(G) is a regular semisimple commutative Banach algebra with spectrum 
Ci.(A(G)) = G [5, Theoreme 3.34 and Lemme 3.2]. In fact, the mapping 
x -> 'Px, where 'Px(u) = u(x) for u E A(G), provides a homeomorphism 
between G and Ci.(A(G)). Thus, associated to every closed subset E of G, is 
a largest and a smallest ideal, I(E) and J(E), of A(G) with zero set equal to 
E. More precisely, 

I(E) = {u E A(G): u(x) = 0 for all x EE} 

and 

J(E) = {u E A(G) n Cc(G) : u vanishes on a neighbourhood of E}. 

E is called a spectral set or set of synthesis if I(E) = J(E), and E is said 
to be a Ditkin set if u E uJ(E) for every u E I(E). Obviously, each Ditkin 
set is a spectral set. In addition, there are local variants of these notions 
(see [3, 4, 9, 16]). They are obtained by replacing I(E) with I(E) n Cc(G). 
When G is abelian, the local notions agree with the former ones. For any 
regular semisimple commutative Banach algebra A it is customary to say that 
spectral synthesis (respectively, local spectral synthesis) holds for A whenever 
every closed subset of Ci.(A) is a spectral set (respectively, local spectral set). 

Proposition 2.1. Let G be an arbitrary locally compact group. Then 
(i) Local spectral synthesis holds for A(G) if and only if G is discrete. 
(ii) Spectral synthesis holds for A(G) if and only if G is discrete and u E 

uA(G) for every u E A(G). 

The additional condition in (ii) is of course satisfied if A( G) has an ap
proximate identity in the weakest possible sense. It is not unlikely that this 
condition is fulfilled for most groups. In contrast, by a result of Leptin [15], 
A( G) has a norm bounded approximate identity precisely when G is amenable. 

The above proposition can be found in (13]. We indicate the proof of (i). 
Thus, suppose that local spectral synthesis holds for A(G). Using the fact that 
this property is inherited by quotient groups and by closed subgroups, it was 
shown earlier (see [16] and [7]) that G must be totally disconnected (indeed, 
a connected Lie group is generated by its one-parameter subgroups). Fix a 
compact open subgroup K of G and suppose that K is infinite. Then, by a deep 
theorem of Zelmanov [27, Theorem 2], K contains an infinite abelian (closed) 
subgroup H. Now, local spectral synthesis, and hence spectral synthesis, holds 
for A(H), contradicting Malliavin's theorem. Thus K is finite, whence G is 
discrete. 

Proposition 2.1 and the results that have been established for L1(H), H 
abelian, suggest a study of (local) spectral sets and (local) Ditkin sets for 
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Fourier algebras. In this context, the desire to not having to treat the lo
cal variants separately, lead to the following generalization of the notions of 
spectral set and Ditkin set [13]. 

Recall that A(G)• = VN(G) and that there is natural action of B(G) on 
VN(G) given by 

(u • T, v) = (T, uv), 

TE V N(G), u E B(G), v E A(G). Let X be an A(G)-invariant linear subspace 
of V N ( G). A closed subset E of G is called an X-spectral set or set of X -
synthesis for A( G) if each T E X with support (in the sense of [5]) in E belongs 
to I(E).L, the annihiltator of I(E) in VN(G). Eis called an X-Ditkin set if 
for every T E X and u E I(E) there exists a net (ua)a in J(E) such that 
(T, uua) -+ (T, u). These notions reduce to the previous ones when taking 
for X all of V N ( G) and the subspace of operators with compact support in 
V N( G), respectively. 

Returning to locally compact abelian groups, it is worthwhile to mention 
that while the union of two Ditkin sets is Ditkin, it is an open question whether 
the union of two spectral sets is again spectral. In a more general context, 
however, Atzmon [1] has given an example of a regular semisimple commutative 
Banach algebra with unit and of two sets of synthesis in t.(A) the union of 
which fails to be of synthesis. 

Regarding unions of spectral sets and Ditkin sets for Fourier algebras, we 
now have the following results [13, Theorems 2.9 amd 2.10]. 

Theorem 2.2. Let G be a locally compact group and X an A(G)-invariant 
linear subspace of VN(G). Suppose that E1 and E2 are closed subsets of G 
such that E1 n E2 is X -Ditkin. Then E 1 U E2 is an X -spectral set if and only 
if both E1 and E2 are X -spectral sets. 

Theorem 2.3. Let G and X be as in Theorem 2.2, and let E and F be closed 
subsets of G such that En F is an X-Ditkin set. Then EU F is X -Ditkin if 
and only if both E and F are X-Ditkin sets. 

The preceding two theorems have been known before in the special case 
where X = V N(G) (26, Theorems 1 and 4]. Such results can be used in both 
directions. In particular, it follows that, if A(G) has an approximate identity, 
then each open and closed subset of G is a Ditkin set. Moreover, under the 
same hypothesis, it follows that finite subsets of G are spectral sets, since 
singletons are known to be sets of synthesis [5, Corollaire 4.10]. 

As pointed out in the introduction, when A is a locally compact abelian 
group, a second possibility to produce new sets of synthesis or Ditkin sets for 
L 1 (A) is to apply injection and projection theorems for such sets. To establish 
similar results for Fourier algebras turns out to be considerably more difficult 
and so far, as we shall outline in the sequel, there are only partial analogues 
due to Lohoue (16], Derighetti [4] and Kaniuth and Lau [13, 14]. 

We start with projection theorems. Thus, let G be a locally compact group, 
N a closed normal subgroup and q : G -+ G / N the quotient homomorphism. 
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The problem is whether, for a closed subset E of G / N, Eis a (local) spectral set 
or (local) Ditkin set for A(G/N) if and only if q-1(E) is a (local) spectral set or 
(local) Ditkin set for A(G). The main difficulty in relating A(G) and A(G/N) 
is that, except when N is compact, there is no homomorphism from A(G) onto 
A( G / N). However, there is a natural homomorphism from A( G) n 0 0 ( G) onto 
A(G/N) n Cc(G/N) given by u-> TNu, where TNu(xN) = JNu(xn)dn, x E 
G. This homomorphism has been exploited by Lohoue to prove the following 
projection theorem for local spectral sets [16, Theoreme]. 

Theorem 2.4. Let G be a locally compact group, N a closed normal subgroup 
of G and q : G -> G / N the quotient homomorphism. Then, for any closed 
subset E of G / N, E is a local spectral set for A( G / N) if and only if q-1 (E) is 
a local spectral set for A( G). 

To prepare for the setting of injection theorems, let H be a closed subgroup 
of the locally compact group G, and let 

r: A(G)-, A(H), u-, ujH 

be the restriction map. r is norm decreasing and surjective. More precisely, 
given v E A(H), there exists u E A(G) such that r(u) = v and llullA(G) = 
llvllA(H) [9, Theorem lb; 21, Theorem 4.21]. Thus the adjoint map 

r*: VN(H)-, VN(G), (r*(S),u) = (S,r(u)}, 

u E A(G),S E VN(H), is injective. The range ofr* equals VNH(G), the 
weak-*-closure of the linear span of all operators >.(h),h E H, in VN(G). 
Moreover, r* maps the subspace of operators with compact support in V N(H) 
onto the subspace of operators with compact support in V NH( G). 

For any A(G)-invariant subspace X of VN(G), let 

XH = r•-' (X), 

an A(H)-invariant subspace of V N(H). Now we are ready to formulate the 
injection theorem for X-spectral sets [13, Theorem 3.4]. 

Theorem 2.5. Let X be an A(G)-invariant linear subspace ofVN(G). Let H 
be a closed subgroup of G and E a closed subset of H. Then E is an X -spectral 
set for A( G) if and only if E is an Xu-spectral set for A(H}. 

The proof exploits properties of the map r* as well as the fact that the 
subgroup His a set of synthesis for A(G) [25, Theorem 3]. Thus, as special 
cases, we obtain injection theorems for spectral sets and for local spectral sets. 
The latter has previously been shown by Derighetti [4, Proposition 8]. 

An injection theorem for local Ditkin sets has been proved by Derighetti 
[4, Theoreme 12] whenever the subgroup H is normal in G. Recently, this 
theorem was generalized to the effect that the hypothesis that H be normal is 
weakened and that X-Ditkin sets, for arbitrary X, are considered. 

To elaborate the condition on H, we have to introduce some more notation. 
Let P(G) denote the set of all continuous positive definite functions on G, and, 
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for a closed subgroup H of G, let 

PH(G) = {u E P(G): u(h) = lfor allh EH}. 

We say that G has the H-separation property if for every x E G, x r/. H, 
there exists u E PH(G) such that u(x) =f 1. When G has the H-separation 
property for every closed subgroup H of G, we refer to G as a group with the 
separation property. If H is either normal, or compact, or open in G, then 
G has the H-separation property. Such subgroups H subsume in the class of 
neutral subgroups which are defined as follows. A closed subgroup H of G 
is called neutral in G if there exists a neighbourhood basis V of the identity 
of G such that V H = HV for all V E V. Now, if G is any locally compact 
group and Ha neutral subgroup of G, then G has the fl-separation property 
[14, Proposition 2.2]. On the other hand, for connected groups the separation 
property to hold is a very restrictive condition. Indeed, by Theorem 1.1 of [14], 
an almost connected locally compact group G has the separation property if 
and only if G contains an open normal subgroup N of finite index such that 
N is a direct product of a compact group and a vector group. 

Returning to A(G), the following injection theorem for X-Ditkin sets has 
been proved in (14, Theorem 3.5]. 

Theorem 2.6. Let G be a locally compact group and let X be an A(G)
invariant linear subspace of VN(G). Let H be a closed subgroup of G and 
E a closed subset of H. 

(i) If Eis X-Ditkin for A(G), then Eis XwDitkin for A(H). 
(ii) Suppose that G has the fl -separation property and that u E uA( G) for 

every u E I(H). Then, if Eis XwDitkin for A(fl), then it is also X-Ditkin 
for A(G). 

Since, due to the regularity of A(G), for each compactly supported function 
u E A(G) there exists v E A(G) such that u = uv, Theorem 2.6 includes 
Derighetti's injection theorem for local Ditkin sets alluded to above. 

In establishing Theorem 2.6, rather than the separation property itself the 
following equivalent property is used. There exists a projection P from V N ( G) 
onto VNH(G) such that, in the weak+operator topology on B(VN(G)), Pis 
the limit of operators T-+ u • T, where u E PH(G). 

We finish this section by pointing out that the H-separation property of 
a locally compact group G deserves further investigation since it appears to 
play an important role in the ideal theory of Fourier algebras. For instance, it 
has been shown in (14, Theorem 3.4] that if G has the fl-separation property, 
then the ideal /(fl) has an approximate identity with norm bound 2, the best 
possible bound whenever G / H is infinite. 

3. £ 1-ALGEBRAS 

In this section we turn to £I-algebras of (non-abelian) locally compact 
groups and discuss analogous issues as in the previous section for Fourier 
algebras. To start with, however, let A be an arbitrary semisimple Banach 
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*-algebra, and let A denote the set of equivalence classes of irreducible *
representations of A. The primitive ideal space of A, Prim. A, consists of all 
kernels, kenr, 1r E A, and carries the hull-kernel topology. For each closed 
subset E of Prim. A, let 

k(E) = n{P: PEE}, 

the largest ideal of A with hull equal to E. Whenever k(E) is the only closed 
ideal of A with hull E, then E is called a spectral set (or set of synthesis) for 
A. Also, we say that sepctral synthesis holds for A if every closed subset of 
Prim. A is a spectral set. 

Now, let G be a locally compact group and recall that there is a one-to-one 
correspondence between G, the set of equivalence classes of irreducible unitary 
representations of G, and V(G). When G is type I and L1{G) is *-regular, 
the map 1r-+ ker1r from G onto Prim. L 1(G) is a homeomorphism and G and 
Prim. L 1(G) are usually identified. 

It is easy to see that if G is compact, and hence Prim. L1 ( G) is discrete, then 
spectral synthesis synthesis holds for L 1(G). However, it is worth mentioning 
that spectral synthesis may fail for a semisimple Banach *-algebra with discrete 
primitive ideal space. An example has been presented in [22]. The obvious 
question is whether spectral synthesis for L1 ( G) forces the locally compact 
group G to be compact. Somewhat surprising, the answer is negative. In [6] 
the following example was given of a non-compact locally compact group for 
which spectral synthesis holds. 

Example 3.1. Let p be a prime and let N be the field of p-adic numbers. Let 
K denote the subset of elements of N of valuation 1. Then K is a compact 
group under multiplication. Form the semi-direct product G =Kt>< N, where 
K acts on the additive group N by multiplication. The group G is often 
referred to as Fell's example of a non-compact group with countable dual. In 
fact, 

G =Ru {1rj: j E Z}, 
where each 'lrj is induced from some character of N. Both Kand {1ri: j E Z} 
are discrete, K is closed and a sequence (1rj.)k converges to some (and hence 
all) a E .K if and only if jk -+ -oo. 

Using this description of the topology of G, the projection theorem for spec
tral sets (see Theorem 3.5 below) and the fact that L 1(G) has the so-called 
Wiener property ( compare [17]), it is not difficult to show that every closed 
subset of G = Prim. L1 ( G) is a spectral set. 

When looking carefully at the preceding example, an interesting problem 
arises. Suppose that L1(G) contains a closed ideal I such that Prim. I and 
Prim. L1(G)/ I are both discrete. Does then spectral synthesis hold for L1(G)? 
An affirmative answer would cover Example 3.1. 

Notice that the group G of Example 3.1 has an abelian normal subgroup with 
compact abelian quotient group. In contrast, for nilpotent locally compact 
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groups it can be deduced from Malliavin's theorem that spectral synthesis 
fails for £1 ( G) whenever G is non-compact (12]. In the course of investigations 
to relate spectral synthesis to properties of certain topologies on the space 
of all closed ideals of the enveloping C*-algebra C*(G), this latter result was 
recently generalized as follows (6, Theorem 3.7]. 

Theorem 3.2. Let G be a locally compact group and suppose that G contains a 
compact normal subgroup K such that N / K is a finite extension of a nilpotent 
group. If spectral synthesis holds for L1(G), G must be compact. 

Apart from nilpotent groups this comprises, for instance, the class of Moore 
groups (that is, groups with finite dimensional irreducible representations). 

An apparently very difficult problem for £!-algebras of locally compact 
groups G is the existence of a smallest (closed) ideal j(E) for a given hull 
E <;;; Prim. L1(G). The next theorem is due to Ludwig (18]. 

Theorem 3.3. Let G be a locally compact group of polynomial growth, and 
suppose that L1(G) is symmetric. Then, given a closed subset E of Prim. L1(G), 
there exists a smallest closed ideal whose hull is equal to E. 

We remind the reader that a locally compact group G is polynomially grow
ing if for every compact subset K of G, the Haar measure of powers Kn, n E N, 
grows at most polynomially in n. Moreover, a Banach *-algebra A is called 
symmetric if every selfadjoint element of A has a real spectrum. Several classes 
of locally compact groups, among them nilpotent groups and motion groups, 
satisfy both of these hypotheses (see (17]). A main tool in proving Theorem 
3.3 is Dixmier's functional calculus for groups of polynomial growth. Unfor
tunately, the ideal j(E) is only described in terms of a generating set. This 
fact seems to be responsable for that, so far, there are no results on unions of 
spectral sets. 

On the other hand, the existence of such smallest closed ideals turned out 
to be very useful in establishing injection and projection theorems for spectral 
sets. Naturally, for £!-algebras of non-abelian locally compact groups, the 
setting is much more complicated than for Fourier algebras, and this is what 
we are now going to describe. 

Let N be a closed normal subgroup of G, and let q : G -> G/N denote 
the quotient homomorphism and T : L1(G) -> L1(G/N) the corresponding 
homomorphism of £ 1-algebras. Then there is a canonical embedding 

i: Prim. L1(G/N)-> Prim. L1(G) 

given by i(ker1r) = ker(1r o q) = r-1(ker1r). Then i(Prim. L1(G/N)) is closed 
in Prim. L1(G) and i is a homeomorphism onto its range. In this situation, 
Hauenschild and Ludwig have proved the following injection theorem for spec
tral sets (8, Theorem 3.2]. 

Theorem 3.4. Let N be a closed normal aubgroup of the locally compact 
group G, and let F be a closed subset of Prim. L1(G/N) and E = i(F) <;;; 

Prim. L 1(G). 
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(i) If E is a spectral set, then so is F. 
(ii) Let F be a spectral set and suppose that G has polynomial growth and 

L1 ( G) is symmetric. Then E is a spectral set. 

In (ii), the condition that L 1(G) is symmetric and G has polynomial growth 
can be replaced by the hypothesis that i(Prim. L1(G/N)), the hull of the 
kernel of T, is a spectral set for L 1(G) [8]. However, the only case where 
i(Prim. L1(G/N)) is known to be a spectral set seems to be the indicated one. 

Let us now turn to projection theorems. As before, let N be a closed normal 
subgroup of G. The action of G on N by inner automorphisms gives rise to 
actions of G on L1(N) and hence on the primitive ideal space Prim. L1(N). 
Now, if 1r is a representation of G, then the £ 1-kernel of 1rlN is a G-invariant 
ideal of L 1(N). In particular, relating spectral sets for L 1(G) to spectral sets 
for L1(N) leads to consider G-invariant subsets of Prim. L1(N). 

Hauenschild and Ludwig have been the first to accomplish a projection the
orem for spectral sets for non-abelian locally compact groups [8, Theorem 2.6]. 
Their result was subsequently improved by Bekka [2] as follows. 

Theorem 3.5. Let G be a locally compact group and N a closed normal sub
group of G. Let F be a closed G-invariant subset of Prim. L1(N) and 

E = {kern: 1r E G such that 1rlN(k(F)) = O}. 

(i) Suppose that N has polynomial growth and L1(N) is symmetric. If E is 
a spectral set, then so is F. 

(ii) Suppose that G has polynomial growth and L1(G) is symmetric. If F is 
a spectral set, then E is a spectral set. 

Part (i) is entirely due to Hauenschild and Ludwig. For the more sophisti
cated part (ii), they needed an additional hypothesis which Bekka was able to 
remove. 

To indicate the difficulty, consider a G-invariant closed ideal J of L 1(N). 
Regarding L1(N) as a subspace of M(G), naturally associated to J is a closed 
ideal e(J) of L1(G), the extension ideal. Indeed, e(J) is defined to be the 
closed linear span of Cc(G) *Jin L 1(G). Retaining the notation of Theorem 
3.5, if F = h(J) then E = h(e(J)). The main problem now is to show 
that e(j(F)) = j(E). In [8] this equality was proved when G/N is solvable, 
and in some other less important cases. Taking into account that groups 
with polynomial growth are amenable, the essential missing step was to deal 
with compact quotients G/N. Bekka managed this by extending Dixmier's 
functional calculus to matrix valued functions. 

Neither part (i) nor part (ii) of the theorem holds for arbitrary G or N (see 
[2] and [8]). 

In Example 3.1, we have already given a sample of possible applications 
of the projection theorem. To conclude, we mention three further examples 
concerning singletons in Prim. L 1(G). In treating two of them, (ii) and (iii), 
the projection theorem is substantial. 
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Example 3.6. (i) If G is a finitely generated nilpotent discrete group, then 
singletons in Prim. £ 1 ( G) are Ditkin sets. In fact, more generally, the so-called 
Helson-Reiter theorem holds for L1(G) [11]. 

(ii) In contrast, when G is a connected and simply connected nilpotent Lie 
group of nilpotence class 2:: 3, then singletons in Prim. £ 1 ( G) need not be 
spectral sets [19]. 

(iii) Let Gn = SO(n) I>< lRn, n 2:: 2, be the Euclidean motion group in 

dimension n. Using the two facts that the non-trivial orbits in iif.i = ]Rn are 
spheres and that sn-l ~ ]Rn is a set of synthesis precisely when n = 2, it can 
be shown (see [2]) that all singletons in Prim. L1(G2) are sets of synthesis, 

whereas, for n 2:: 3, { 1r} ~ C:. is spectral only if 1r E ~). 
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KA-wavelets on semisimple Lie groups 
and quasi-orthogonality of matrix coefficients 

§1 Introduction. 
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Keio University at Fujisawa 

5322 Endo, Fujisawa, 252-8520 Japan 
kawazoe@sfc.keio.ac.jp 

First we brief the history of continuous wavelet transforms. Originally the 
(continuous) wavelet transform, introduced by Morlet around 1980, was the 
following one. We denote by H 2 (R) the closed subspace of L2 (R) consisting 
of all £2 functions f on R with supp(!) C [0, oo), and we fix 7/; E H 2(R) 
satisfying the so-called admissible condition 

c,p = f" l7fa~)l2 d>- < oo. 

Then the wavelet transform W,i, associated to 7/; is defined on H2 (R) as 

W,i,J(u, v) = 1_: f(x)e-uf 2-rfa(e-ux + v)dx (u, v ER). 

Theorem 1.1. W,i, is an isometric isomorphism from H2 (R) onto L2(R2): 

For any f E H2 (R) 

11111 2 = _!_IIW,i,/11 2 -
C,i, 

Furthermore, for any f E H2 (R) and x ER at which f is continuous, 

1 100100 -J(x) = - (W,i,f) (u, v)e-u/21/;(e-ux + v)dudv. 
c,p -oo -oo 

In [GMP] Grossmann-Mor!et-Paul pointed out the group-theoretical in
terpretation of the wavelet transform W.,. Let G be the affine group R2 with 
multiplication law: 

(u,v)(u',v') = (u+u',e-u'v+v'), 
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and let (T, H2(R)) be an irreducible unitary representation of G defined by 

(T(u, v)J)(x) = e-u/2 f(e-ux + v) (f E H2(R)). 

In this scheme W,,; can be rewritten as 

W,,;f(u,v) = (f,T(u,v)'ljJ), 

where (·, •) is the inner product of H2(R). Furthermore, since dudv is a left 
invariant Haar measure on G, Theorem 1.1 yields the square-integrability 
and the orthogonality of the matrix coefficients (/, T(u, v)'ljJ) of Ton G. In 
this sense the theory of the continuous wavelet transform W,,; on H2 (R) is 
nothing but the one of the square-integrable representation (T, H2(R)) of G. 

General theory of square-integrable representations of locally compact 
groups has been investigated by various mathematicians; Wey! (W] for com
pact groups, Godement (G] for unimodular locally compact groups, and 
Duflo-Moore (DM] for general locally compact groups. Explicit theory based 
on the construction of the square-integrable representations was obtained by 
Harish-Chandra (HC] for semisimple Lie groups and by Moore-Wolf (MW] 
for nilpotent groups. 

How to extend the theory of square-integrable representations of locally 
compact groups G ? One of the ways is to replace the square-integrability on 
G by the one on a quotient space G / H for a closed subgroup H of G. More 
generally, find a representation (T, 1i) of G, a measurable subset (S, ds) of 
G, and 'ljJ E 1i for which, for any f E 1i 

11/112 = -1 r IU, T(s)'ljJ)l 2ds. 
cs,,,; ls 

Then, it is easy to see that the transform defined by(/, T(s)'ljJ) is an isometric 
isomorphism from 1i onto L2 (S, ds), and each f E 1i has an £2 decomposition 
in the weak sense: 

f = - 1 f (!, T(s)'ljJ)T(s)'ljJds. 
cs,,,; ls 

For the last decade researches has been done in this scheme and many wavelet 
transforms has been constructed on locally compact groups, for example, on 
R~ x SO(n) by Murenzi (M], on R~ x S0(1, n) by A-J. Unterberger (U], on 
R~ x S0(1, n) x Rn+! by Bhonke (B], on S x V, Vis a vector space and Sis 
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a subgroup of GL(V), by De Bievre [DB), on SO(2, 1) x R3 by Ali, Antoine, 
Gazeau [AAG), on R~ x SO(n) x Hn by Kalisa-Toressani (KT), Toressani 
(Tl,2), on GL(n, R) by Bernier-Taylor (BT), on SO(2, 1) by Wu-Zhong (WZ), 
and on Iwasawa AN groups by Kawazoe (K3] and Liu (L). 

In this paper we shall consider the case that G is a sernisirnple Lie group 
and S = KA, where K and A are respectively the maximal compact and 
abelian subgroups of G. More precisely, let G be a semisirnple Lie group with 
finite center and G = K AK the Cartan decomposition of G. dg denotes a 
Haar measure on G and dg = D(a)dkdadk the corresponding decomposition 
of dg. Then we take S = KA and ds = D(a)dkda in the above scheme, 
and we try to find a representation (T, 1£) of G and 'if; E 1l satisfying (*). 
Unfortunately, the condition (*) is very strong, so I feel that we have no 
answer for T and 'if;. Therefore, we shall consider a weak condition; there 
exist constants 0 < C1, C2 < oo such that 

and we shall obtain a sufficient condition on 'if; for which (f, T(s)'if.,} satisfies 
(**) (see Theorem 3.1). In §4 we shall treat the case of G = SU(l, 1) and 
(T1; 2 , 1£1; 2) the limit of the holomorphic discrete series of G. We note that 
T1; 2 is not square-integrable on G. Then we shall find a 'if., E 1£1; 2 satisfy
ing (**). Moreover, we shall deduce that, if we ignore a finite dimensional 
subspace of 1£1;2, then we can find a 'if., E 1£1;2 satisfying (*) (see Theorem 
4.4). In this process we use the facts that some differences of the matrix 
coefficients of T1; 2 are square-integrable on R with respect to D(a)da and 
moreover, they satisfy a quasi-orthogonality. These facts are summarized in 
Lemmas 4.1, 4.2, and 4.3. 

After the lecture, the author noticed that J.-P. Antoine and P. Van
dergheynst (AVl,2) had the same idea and they obtained an example in the 
case of SO(3, 1). 

§2. Notation. 

Let G be a semisimple Lie group with finite center and G = KAN the 
lwasawa decomposition of G. Let I: be the set of roots for ( G, A) and r::+ the 
one of positive roots corresponding to N. Let A+ denote the closed positive 
Wey I chamber in A and G = I< A+ I< the Cartan decomposition of G. Let 
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dg denote a Haar measure on G, and dk, da, and dn ones for I<, A, and, N 
respectively. We normalize dk as JK dk = l. According to the lwasawa and 
Cartan decompositions of G, there are decompositions of dg such that 

dg = eP(logu)dkdadn = D(a)dkdadk', 

where p = ½ LaEE+ maa and 

D(a) = IT (sinha(loga)yn°, 
oer:+ 

m0 stands for the multiplicity of a. 

§3. I< A-wavelets. 

Let (T, 1-l) be a unitary representation of G and 

the I<-type decomposition of 1-l. In the following argument we assume that 

[T,r] s; 1, 

and we denote by kT the set of all r E k such that [T, r] = 1. Then, as 
a representation of I<, (TII<, 1-l-r) is equivalent with r for each r E KT. We 
choose a complete orthonormal basis of 1-l such that 

and we denote by J the set of the indexes {(r, n); 1 s; n s; dim r, r E KT}. 
For each f E 1-l the Fourier expansion of f is given by 

t= L t;e~, 
(-r,n)El(f} 

where f~ = (f, e~)1l and J(f) the subset of I consisting of all ( r, n) such that 
J,: =f. 0. Here we put 

JA(J) = {(r, n); (T(-)f);, = (T(-)f, e~) is not identically O on A}. 
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We say that 'if; E 1i is admissible if there exist constants O < C1 , C2 < oo 
such that, if (r,n) E IA("P), 

C1 :'.S c,,,,T,n = i \(T(a)'if;, e:)\2 D(a)da :'.S C2. 

We put 
1-i,,, = {f E 1-i;l(f) C JA('if;)}. 

Then, by using the bounded constants c,,,,7 ,,. we shall define a Fourier multi

plier M,,, on 1-i,,, as follows. For each f = L(T,n)EI(f) f,~e;. in 1-i,:, 

M f _ " -1/2JT T 
t/J - L.,,, cl/J,1",n n en. 

(T,n)El(f) 

Theorem 3.1. Let 'if; be admissible in 1-i. Then for any f E 7-i,,, 
(1) 

(2) 

(3) 

C1\IJ\\2 :'.S / ( \(!, T(ka)'if;)\ 2 D(a)dkda :'.S C21\fl\2, 
}KA 

\\f\\ 2 = I r \(!, M,,,T(ka)'if;}\2 D(a)dkda, 
jI<A 

f = j JI<A (f, M.,T(ka)'if;)M,,,T(ka)'if; D(a)dkda. 

Proof. We note that 

T(k-1)! = L f~T(k- 1)e~ = L /~(T(k- 1)e~,e::)e~:. 
(T,n)EI(f) (T,n)El(f),(T',n')El 

Then the orthogonality of the matrix coefficients of T\I< yields that 

I ( \(f,T(ka)'if;}\2 D(a)dkda 
}KA 

j L \J~\2 \(T(a)1µ, e~)\2 D(a)da 
A (T,n)El(f) 

L \J~\2 (£ l(T(a)'if;, e~)\2 D(a)da) 
(T,n)El(J) 
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Since 

llfll2 = L u;12 and /(f) C JA('ifJ), 
(~,n}El(/} 

(1) easily follows from the definition of the admissible vector '1/J. We replace 
f by M,;,J in the above calculation. Then lgj2 in the last equation turns to 
IJ,:!2c;.~,n and then, c;,~,n cancels the integral over A. Thereby (2) follows. 
As for (3) we put 1-l(f) = Span{e~; (T,n) E /(f)} and define an opertor Q 
on 1-l(f) by 

h ,-, j ( (!, M,;,T(ka)'I/J)(h, M,;,T(ka))'I/J D(a)dkda. 
}KA 

Then (2) and the Schwarz inequality yield that Q is bounded and IIQII S 
11/112, and thereby, there exists / 0 E 1-l(f) such that Q(h) = (h, Jo) and 
II/oil = IIQII. Since Q(f) = (/, /o) = 11/112 by (2), it easily follows that 
f = Jo (cf. [Kl). Clearly, Q(h) = (h,/) means (3). 

Remark 3.2. When (T, 1-l) is an irreducible square-integrable representation 
of G, it is well-known that each '1/J E 1-£ is admissible and satisfies 

where er is the formal degree of T (cf.[V]). Furthermore, applying the or
thogonality of the matrix coefficients on G, we can replace the integrals over 
KA in Theorem 3.1 by the ones over G. 

§4. Example in SU(l, 1). 

Let G be SU(l, 1). Then 

( 
e;B/2 0 ) 

K={ko= 0 e-;o;2 ;0$0<41r}, 

A= {a = ( cosht/2 sinht/2) ·t ER} 
1 sinh t/2 cosh t/2 ' ' 

and A+ = { a1; t > O}. In what follows we put 

x = tanht. 
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Let (Th, 1li.) (h E Z/2, h ~ 1) be the holomorphic discrete series of G 
realized on the weighted Bergman space 1lh on the unit disk D = G /I<: 

1l1, = {f : D • C; f is holomorphic on D and 

11/llr. = r(2h- w 1 k lJ(z}l2(1- lzl2 ) 2(h-!)dz < oo}, 

and (T112, 1£112) the limit of holomorphic discrete series of G realized on the 
Hardy space 1£112 on D: 

1£112 = {f : D • C; f is holomorphic on D and 

ll/lli12 = lim 11/11;. < oo }. 
h• l/2 

For h E Z/2, h ~ 1/2 we denote by (·, ·)i. the inner product of 1li. and we 
put 

h ( r(2h+n) ) 112 n 
en(z) = r(Zh)r(n + l) z (n EN). 

Then { e~; n E N} is an orthonormal basis of 1lh, For simplicity we denote 

(·, ·) = (·, ·h12 and en(z) = e~2(z) = Zn. 

According to this basis the matrix coefficients of Th are given as follows (see 
(Sal): 

(T,,(g)e~, e:_),. = ei(nB+mB')(Th(a1)e~, e:_)h (g = koatko,) 
= ei(nB+mB')M(h;n,m;x), 

where for n ~ m, 

M(h;n,m;x) = C!,m(l - x2)h(-xt-mF(-m,n + 2h,n - m+ l;x2), 

C" -(r(n+l)r(n+2h)) 112 1 
n,m - r(m + l)r(m + 2h) r(n - m + 1) 

and F(a. b, c; x) is the hypergeometric function, and form> n we change n 
and m by m and n respectively. Since 

D(a1)dt = sinh(2t)dt = (l ~:2 ) 2 dx, 
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M(h;n,m;x) (n,m EN) are square-integrable on G if and only if h > 1/2. 
Here we note that for n 2'. m, 

lim(l -x2t,.M(h;n,m;x) 
x• l 

C,. (-l)"f{l-m+n)f{m+2h) 
n,m r(2h)f{n + 1) 

,. 1 (r(n+2h)f(m+2h)) 112 

(-l) f{2h) r(n+l)r(m+l) 

= (-l)"D~,m 

and form> n, limx• 1(l - x2t,.M(h;n,m;x) = (-l)"'D!:.,,. = (-1rn~,m 
Then we shall define the normalized matrix coefficients NM ( h; n, m, x) as 

NM(h;n,m;x) = (D~,m)- 1M(h;n,m;x) 

and the differences of the normalized matrix coefficients D M ( h; n, m; x) as 

DM(h;n,m;x) = NM(h;n,m;x)- NM(h;n + 2,m;x). 

The key lemmas are the following. 

Lemma 4.1. Let notations be as above. Then 

{l _ x2)1/2 
DM(h;n,m;x) = ---

x 

( m m+2h ) x 2h N M(h + 1/2; n, m - l; x) - ---;;:;;-NM(h + 1/2; n + l, m; x) . 

Proof We realize T,, on the circle and let z = ei9 (0 $ 0 < 271") (see [Sal). 
We first note that 

(Dh )-!eh= (r(2h)f(m + 1)) 1/2 z" 
n,m n f(m+2h) ' 

(Dh )-1 h - (r(2h)f(m + 1)) 1/2 n+2 
n+2,m en+2 - f(ni + 2h) Z , 
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and moreover, 

T,,(at)(zn - z"+2) 

1 ( zcosht/2-sinht/2 )n 
{-z sinh t/2 + cosh t/2)2h -z sinh t/2 + cosh t/2 

( l ( zcosht/2 - sinht/2 ) 2) 

x - -zsinht/2+cosht/2 

1 ( zcosht/2-sinht/2 )" 
(-zsinh t/2 + cosh t/2)2h -zsinh t/2 + cosh t/2 

1- z2 

x (-z sinh t/2 + cosh t/2) 2 

1 1 (zcosht/2-sinht/2)n 
sinh t/2 (-zsinht/2 + cosh t/2)2h+l -zsinh t/2 + cosh t/2 

( ( zcosht/2-sinht/2 ) ) 
x - -zsinht/2+cosht/2 +z · 

On the other hand, we easily see that 

(( r{2h)r(m+ 1)) 112 n+l h) 
r(m + 2h) z 'em h 

= ((D~!~:!)-le~!f2, e~/lf2)h 

= m + 2h((Dh+1/2 )-1 i.+1/2 1,+1/2) 
~ n+l,m en+! , em h+l/2 

and 

(( r{2h)r(m+ 1)) 112 n h ) 
r(m + 2h) z 'em-I ,. 

= ((D~~~;)-1e~+1/2, e~":.1{2)h 

= m ((Dh+l/2 )-1 i.+1/2 h+l/2) 2h n,rn-1 e,. 'em-I h+l/2• 

Then the desired result follows. 

Lemma 4.2. Let notations be as above. Then for each n, m EN, 

(1 2x 
0 < lo DM(h; n, m; x)2 (l _ x2 ) 2 dx < oo, 
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and especially, for m > n 

fl o 2X 
Jo DM(h;n,m;x)· (l - x2 ) 2 dx 

2 f{m + 1) f{n + 1) 
= r(2h) 2{n + h + l)r{m + 2h) f(n + 2h + 2) 

Proof The case of m > n: We note that 

(1 - x2)1/2 m 
NM(h+ 1/2·n m- l·x) 

x 2h ' ' ' 

and 
(1 - x 2 ) 112 m + 2h 

x 2h NM(h+ 1/2;n+ 1,m;x) 

m + 2h Axm-n-2(1 - x2)h+la (m - n + 2h m - n- x2). 
n + 2h + 1 n+l ' ' · 

where 
A = r{2h)f(m + 1) 

f(n + 2h + l)f(m - n) 

and Gn(x) = Gn(a, 'Y, x) (a= m-n+2h, 'Y = m-n) is the Jacobi polynomial. 
Hence, 

I 

We here consider the case of m > n + 1. Then, -y - 2 = m - n - 2 2: 0. 
We note that G~ = (Gn - l)Gn + Gn and (Gn - 1)/x is the polynomial of 
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degree n - 1. So the orthogonality relations for the Jacobi polynomials and 
the definition of G,.(x); 

yield that 

(1 x7-1(l - x)"-7Gn(x)2dx 
.fo X 

11 dx = x7 - 1(1 - x)°-7Gn(x)-
o X 

= f(m _ n)2 r(n + l)r(n + 2h + 1) m 
r(m+l)f(m+2h) m-n-1 

= B, 

and similarly, 

Therefore, 

= 1-2--+ I A2 B ( n + 1 n + 1 m + 2h ) 
m m n+2h+l 

= A2B2(m-n-l)(n+h+l) 
m(n+2h+ 1) 

and hence, the desired result follows. 
In the case of m = n+l we note that (Gn(x)-Gn+i(x))/x is a polynomial 

of degree n and thus, the integral / is well-defined. Then the analytic con
tinuation on 'Y, letting 'Y • 1 in the previous case, yields the desired formula 
form=n+l. 

11 
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The case ofm :Sn: Since M(h+ l/2;n,m- l;x) and M(h+ 1/2;n+ 
1, m; x) have the term xn-m+I and n - m + 1 2': 1, it easily follows from 
Lemma 4.1 that the desired integral is positive and finite. 

This completes the proof of the lemma. 

Lemma 4.3. Let notations be as above and suppose that 

n, m E 2N or n, m E 2N + 1. 

Then, for p > n, m 

fl 2X 
Jo DM(h; n,p, x)DM(h; m,p, x) (l - x 2) 2 dx 

2 f(p + 1) r(n + 1) 
= 8nmf(2h) 2(n + h + 1) r(p + 2h) f(n + 2h + 2) 

Proof. When n = m, it follows from Lemma 4.2. We may suppose that 
n > m and hence, n - m 2': 2 and even. Then, applying the same argument 
used in the proof of Lemma 4.2, we see that the desired integral equals to 

fol Xp-n-l+(n-m)/2(l - x)2h 

( p + 2h ) ( p + 2h ) dx 
X G,.(x)- n+ 2h+lGn+1(x) Gm(x)- m+ 2h+lGm+1(x) --;;-· 

Since (n - m)/2 is integer, 0 :S (n - m)/2 - 1 :Sn - 1, and 

( p+ 2h ) 
Gm(x) - m + 2h + 1 Gm+1{x) 

is a polynomial of degree m+l < n, the orthogonality relations for the Jacobi 
polynomials yield that the integral equals to 0. 

We here note that, if h = 1/2, then D~,m = 1 and hence, 

DM(l/2;n,m;x) M(l/2; n, m; x) - M(l/2; n + 2, m; x) 

249 



Therefore, Lemma 4.2 implies that 

0 < L l(T1;2(a1)(en - en+2), em}l2 D(a1)dt < oo 

and for m > n this integral equals to 

(2n + 3) 
(n+l)(n+2)' 

Furthermore, these differences (T1;2(a1)(en - en+2), em) satisfy the quasi
orthogonality relations stated in Lemma 4.3 with h = 1/2. Thereby, as 
an application of Theorem 3.1, we see the following. 

Theorem 4.4. Let G = SU(l, 1) and (T1; 2 , 1-£1;2) the limit of the discrete 
series of G. 
(1) Let '1/J be a finite linear combination of en+2 - en, Then there exist 
constants O < C1, C2 < oo such that for any/ in 1£1;2 

(2) Let 

C1ll/ll2 ~ / r IU, T1;2(ka1)'!/J)l2sinh2t dkdt ~ C2ll/ll2• 
}KA 

( (2n + 3) )-l/2 
'1/J = L Cn (n + l)(n + 2) (en+2 - en), 

where the sum is taken over O ~ n ~ N,n E 2N or O ~ n ~ N,n E 2N + 1, 
and let 111115 = E lenl2. Then for any/ in the £2-span of {ep,P ~ N + 1}, 

f(x) = 11; 110 //KA(/, T1;2(ka1)1/J)T1;2(ka1)'l/J sinh2t dkdt. 
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Triple Systems of Hecke 

Type and Hypergroups 

I Introduction 

by 

Aloys Krieg 

One of the most important classes of hypergroups is given by double coset spaces 
(cf. Ill). In this note we will consider double coset spaces with different subgroups 
on the left and right hand side (cf. 141) as they already appeared in the description 
of all normal subhypergroups arising from Hecke algebras (cf. 16], Theorem 4 c). 
This construction does not any longer yield an algebra in general. But we obtain 
an associative triple system as its algebraic structure in a natural way (cf. 17], IS]). 
This triple system can be embedded into a usual double coset hypergroup ( cf. 
Theorem 2). For the sake of simplicity we only deal with discrete hypergroups 
arising from Hecke algebras as in 16]. 

2 Associative triple systems of Hecke type 

We start with a multiplicative group G with unit element e. The set 

CIG] := {,p: G • IC; support(,p) finite} 

= { L ,p(g )69 ; r.p(g) E IC non-zero for finitely many g E a} , 
9EG 

where 69 stands for the Kronecker delta, is a IC-vector space. Extending the 
product 

to CIG] by linearity, we obtain an associative IC-algebra with unit element 6,, the 
so-called group algebra or group ring of G (cf. 191). 

Now let us consider two subgroups U and V of G and double cosets 

UgV := {ugv; u E U,v EV}, g E G. 
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Two double cosets are either disjoint or equal. Let 

K := U\G/V := {UgV; g E G} 

stand for the space of (U, V)-double cosets in G equipped with the discrete topol
ogy. 

1-l(U\G/V) := {ip: U\G/V • C; support(ip) finite} 

= { L cp(UgV)ou9v; <p(UgV) EC non-zero for finitely many UgV Ca} 
U9VCG 

is a Cvector space. If V = U we use the abbreviation 1-l(G/IU) = 1-l(U\G/U) 
just as in [6j. 

For the introduction of a product we need the so-called Hecke condition: 
(G, U) is a Hecke pair if (U : Un g- 1Ug) < oo for every g E G. Now assume 
additionally that V and Ware subgroups of G, which are commensurable with 
U, i.e. the intersection of any two of the subgroups has finite index in both. Then 
(G, V) and (G, iv) as well as (G,UnVnW) are Hecke pairs, too. Given a,b E G 
we obtain finite disjoint decompositions of the double cosets 

UaV = um Uaj, m = induUaV, VbW = Un Vbk, n = indvVbW. 
;=! k=I 

Then define 

(1) Ouav · OvbW := L µ(c) Oucw, 
UcWCG 

µ(c) := ff{(j,k); Ua;bk = Uc} E No, 

It can be shown that the definition of µ(c) does not depend on the choice of the 
representatives c, a;, bk. This product is extended linearly. Moreover we observe 

(2) induUaV · indvVbW = L µ(c)induUcW. 
UcWCG 

If X is another subgroup of G, which is commensurable with U, we obtain 

(3) (cp1 · 'P2) · <p3 = 'P1 · (rp2 · rp3) E 7-l(U\G/X.) 

for all rp1 E 7-l(U\G/V), 'P2 E 1-l(V\G/W), <p3 E 7-l(W\G/X) (cf. [41, [101). 

If V = U we have the Hecke algebra 7-l(G/IU) of the Hecke pair (G, U) just 
as in [51, [10]. 

In the general case again, there is a linear isomorphism 

J = Ju.v: 7-l(U\G/V) -t 1-l(V\G/U), Ouav >--+ ov0 -,u, 
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satisfying 

(4) 

(cf. [41). 

This becomes the foundation of our algebraic structure. A C-vector space A 
equipped with a trilinear triple product 

Ax Ax A • A, (x, y, z) ,-+ < x, y, z >, 

is called an associative triple system ( of the second kind) if 

<< u,v,w >,x,y > = < u, < x,w,v >,y > = < u,v, < w,x,y >> 

holds for all u, v, w, x, y E A (cf. [7], [81). The notions of homomorphisms and 
sub-triple systems are then defined in the obvious way. Now (3) and (4) imply 

Theorem 1 ([41). Let U and V be commensurable subgroups of a group G such 
that (G, U) is a Hecke pair. Then 1i(U\G/V) is an associative triple system by 

< 'Pl, 'P2, cp3 > := 'Pl. J(r.p2). cp3. 

The notion of associative triple systems comes from the following idea: Start 
with an associative IC-algebra A with an involution j on A, i.e. j : A -+ A is 
linear and satisfies j(xy) = j(y)j(x) as well as j(j(x)) = x for all x, y E A. Then 
(A, j) becomes an associative triple system by 

< x, y, z > := xj(y)z. 

On the other hand Loos [7] showed that each associative triple system can be 
obtained as a sub-triple system of (A, j) for suitable A and j. In the case of 
Hecke triple systems we can simplify his construction considerably. 

Theorem 2. Let U and V be commensurable subgroups of a group G and r := 

J[U: Un VJ· [V: Un VJ. Assume that (G, U) is a Hecke pair. Then 

<b: (H(U\G/V), J) • (1i(Gl/(U n V)), J) 

'P = L cp(UgV)c5u9v ,-, ;: L cp(UgV)c5(UnV)g(UnV), 
UgVCG (UnV)g(UnV)cG 

is an injective homomorphism of the associative triple systems. 

Proof. Obviously ¢> is well-defined, linear and injective. It suffices to show that 

(5) ¢>(c5u.v) · J(,f>(c5uw)) · ¢>(c5ucv) = ¢>(c5u.v · J(c5uw) · c5ucv) 
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holds for all a, b, c E G. Assume that 

UaV = Uc, Uaj, UbV = U13 bkV, UcV = U1 Uc1 J=l k=l l=l 

u = u:=l (Un V)uv, V = u~=l Vµ(U n F) 

are disjoint coset decompositions. Then 

UaV = U<> U' (Un V)uvaj, J=l v=l 
/3 t 

vb- 1U = U U (Un F)v-1b-1 
k=l µ=l I' k 

u cW = u~=l u:=l (Un V)upct 

are disjoint decompositions, too. In view of (1) the coefficient of (Un V)g(U n V) 
on the left hand side of (5) is 

1 
3 H(v,j, µ, k, p, l); (Un V)uvaiv; 1bj; 1upct =(Un V)g} 
T 

1 =3 ·HU,µ, k, P, l); Uaiv; 1b;1upc1 = Ug} 
T 

=~ • ff{(j', k', l); Uai,b;,1c1 = U g}. 
T 

By virtue of st= r 2 and (1) this is also the coefficient of (Un V)g(U n V) on the 
right hand side of (5). Thus the claim follows. • 

3 Associative Banach triple systems of Hecke type 

Consider the data of section 2. Given an arbitrary mapping cp : U\G /V • IC 
define its norm by 

(6) ll'PII := L cp(UaV) E [O; oo]. 
(UnV)acG 

Then 

il(U\G/V) := {cp: U\G/V-+ IC; ll'PII < oo} 

equipped with II· II is obviously a Banach space containing rl(U\G /V) as a dense 
subset. Extending the product form rl(U\G/V) we conclude 

II < 'Pl, 'P2, 'P3 > II ::; ll'P1ll · ll'P2ll · ll'P311 
for all 'Pl, 'P2, <p3 E il(U\G/V) from Theorem 1, Theorem 2 and [6], Theorem 2. 

A Banach space A, which is an associative triple system and satisfies 

II < x, Y, z > II $ llxll · IIYII · llzll for all x, y, z EA 

is called an associative Banach triple system (cf. [21). Thus we have 
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Corollary 1. Let U and V be commensurable subgroups of a group G such that 
(G, U) is a Hecke pair. Then it.(U\G/V) is an associative Banach triple system 
containing 1i(U\G /V) as a dense subset. 

4 Hypergroups 

Consider again the data of section 2. Let e stand for the point measure. Given 
a, b E G use (1) in order to define 

(-,·) ~ µ(c) • indu(UcW) 
cuai· * c'VbW := ~ indu(UaV) · indv(Vbff) c'Uc\V• 

UcWCG 

It follows from (2) that the right hand side of (7) is a probability measure again. 

Recall the definition of a hypergroup and in particular of the discrete dou
ble coset hypergroup (GI/ (U n V), *) from [1], Chapter 1. 1. Thus Theorem 2, 
Corollary 1 and [6], Theorem 3, lead to 

Theorem 3. Let U and V be commensurable subgroups of a group G and r := 
✓IU: Un VJ• [V: Un VJ. Assume that (G, U) is a Hecke pair. Then 

<l>:it.(U\G/V)-+(Gl/(UnV),*), <p>-+~ L <p(UaV)c(Uni')a(UnV), 
(UnV)aCG 

is an injective homomorphism of the associative triple systems. 

Note that a hypergroup with the attached involution naturally defines an asso
ciative triple system. Thus we can view (U\G /V, *) as an associative hypergroup 
triple system. 

5 Examples 

The notion of Hecke algebras originates from the theory of modular forms. It 
should be noted that the consideration of (U, V)-double cosets there also plays 
an essential role when dealing with congruence subgroups (cf. [3], III.7.3, [10], 
section 3.4). 

Next consider a Hecke pair (G, U) and a subgroup UC H CG such that H/IU 
is normal in G 1/U. This means H gH = H gU for all g E G due to [6], Theorem 4. 
In this case one can easily sharpen Theorem 2. The associative hypergroup triple 
systems (H\G/U,*) and (GI/H,*) are then isomorphic. An explicit example of 
this type is 
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(cf. [61, section 3). 

Now we consider finite subgroups U and V of a group G. It follows from (1) 
and (7) that 

The elements 

1 _ 1 t5 1 t5 
. d u V ouav .. d Vb-lU Vb-lU . . d u ,,. UcV 
Ill U a Ill V Ill U C1· 

1 1 
= ··u "V L , d U b-1 V t5uavb- 1ucF, 

~ · ~ ueU,vEV lfi U av UC 

1 
Euav * cvb-lU * cucv = ttU. nv L cuavb- 1 ucV· 

uEU,vEV 

are idempotents in C[G]. We consider the associative triple system (C[G], J) with 
J(t59 ) = tSg-1. In view of J(cu) = cu and J(cv) = cv we observe that cu· C[G] · cv 
becomes a sub-triple system of (C[G], J). Thus a verification (cf. [51, 1(6.6), [61, 
Theorem 5) yields 

Theorem 4. Let U and V be finite subgroups of a group G. Then 

1-l(U\G/V) -+cu· C[G] · cv, <pi--+~ L\O(UgV)t59 , 

' gEG 

is an isomorphism of the associative triple systems. 
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Irreducible Bounded Representations 

of Exponential Solvable Lie Groups 

Jean Ludwig 

Introduction 

In this survey we present the theory of irreducible bounded representations of exponential 
solvable Lie groups. For these groups the exponential mapping from the Lie algebra g of 
G into G is a diffeomorphism and the unitary dual is explicitly known thanks to the work 
of Mackey, Dixmier, Kirillov, Bernat, Pukanszky and Vergne in the years 1950 to 1970. 
In the first part of the paper we recall the structure of exponential solvable Lie groups 
G and in the second part we explain Kirillov's theory, i.e. we give the description of 
the irreducible unitary representations of G using the orbit method. In the last part the 
algebraically irreducible (or simple) modules of the group algebra L1(G) are presented 
together with what is known about topologically irreducible bounded representations of 
G. The theory of the simple L1 (G) modules, (G exponential), has been developed by 
Leptin and Poguntke from 1975 to 1981 and Poguntke published a classification of these 
modules in 1983. It turns out that irreducible unitary and simple modules can be realized 
in the framework of induced representations. This is no longer true for general bounded 
irreducible representations on Banach spaces. 
In recent years, the method of Poguntke has been used to study these representations. 
For so called non-*-regular exponential groups, more complicated representations appear, 
which are not subrepresentations of induced representations and which are constructed by 
using irreducible non bounded representations of vector groups on Banach spaces. 
Many interesting problems remain to be solved. For instance: Is it possible to characterize 
the separable Banach spaces, on which exponential solvable groups act irreducibly? This 
problem is closely related to the invariant subspace problem. Is it possible to give explicit 
descriptions of some of these strange representations for lower dimensional groups? 
No proofs will be given in this survey article, they can be found in the literature or they 
will be published elsewhere. 

1. The Structure of Exponential Solvable Lie Groups. 

1.1 Let g be a real finite dimensional Lie algebra. We let g1 = g and we define the central 
descending series g;, j = 1, 2, • • •, of g by gH1 = [g, g;], We say that g is nilpotent of step 
k if there exists k E N such that gk+l = (0) and gk =I- (0). 

1.2. We say that g is solvable if the descending series .s1 = g, .sH1 = [~, .s;], j = 1, 2, .. •, 
stops with .sl+1 = (0) for some l E N. 
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1.3. A sequence of ideals of g 

g = n1 ::, • · • ::, ai ::, · · · ::, Clm+i = (0) 

is called a Jordan-Holder series or J.H. series, if for every j = 1, • • •, m, the g-module 
ai/ai+1 is irreducible. A theorem of Lie says that for solvable Lie algebras every irreducible 
complex finite dimensional Lie algebra module is of dimension 1 (see [Di.3]). Hence for 
every J.H.-series (aj)j of a real solvable Lie algebra the dimension of n;/ai+1 is equal to 
1 or 2 for every j. We call these irreducible modules the roots of g. Let us denote by A 
the set of all the roots of g. If ai/ai+1 is one dimensional, then the corresponding root Aj 
is just a real character of g. If ai/ai+ 1 is two dimensional then we can describe the root 
>.i =>.in the following way. There exist two real linear functionals l>. and P>. of g and two 
vectors X = Xj and Y = Yj in nj, such that {X, Y} is a basis of ai mod ni+1 and such 
that 

[U,X +iV] = (l>.(U) +iP>.(U))(X +iY)mod (ai+ 1)c,U E g, 

(where Ve indicates the complexification of a real vector space V). In this way we may 
consider the roots >. of g as linear functionals (a real one in the one dimensional case and 
as complex valued one>. c:= I>.+ ip>. in the two dimensional case). 

1.4. In particular g2 = [g, g] is contained in the kernel of every root. Since the algebra 
g/[g, g] is non trivial if g =f (0) and abelian we have that at least one of the roots of g is O. 
The roots of g give us also the spectrum u(ad(X)) of ad(X)(X E g) considered as linear 
operator on gc, In fact u(ad(X)) = {>.(X),>. EA}. 

1.5. The nilradical n of g is the largest nilpotent ideal of g. In the solvable case, the 
nilradical is given by 

n = n ker(>.) ::, [g, g]. 
>.EA 

From now on we will only consider solvable Lie algebras. 

1.6. Let us describe the Jordan decomposition of such an algebra. If g is not nilpotent, 
we can choose an element T of g which is in general position with respect to the roots of 
g, i.e. for every pair >. and µ of roots, considered as complex linear functionals, we always 
have that 

>.(T) - µ(T) =f 0. 

We take now the Jordan decomposition of ad(T) on gc: 

9c = 1)oc)>., 
>.EA 

where 
(gc)>. = {U E 9c, (ad(T) - >.(T)t(U) = 0 for some k > 0}. 

We have the classical relations 

[(och, (oc),.] c (och+,., >., µ E A. 
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Since T is in general position with respect to the roots of g, it follows that (gc)o is a 
nilpotent subalgebra of gc, Let now 9o = (gc)o n g and for a root >. # 0, let 

9.>. = ( (gc).>. + (gc).>.) n g = ((gc).>. + (sch·) n g. 

Let m = I:.>.iO 9.>.· Then [go, m] = m and so m is contained in [g, g] whence g = {Jo + m = 
90 + [g,g]. 

If g is nilpotent, then of course every root is 0 and g = {Jo- If not, let for j = 1, · · · , m, 
u; be a one or two-dimensional subspace of a;, such that a; = ll; El, a;+1• Then 

1.7. Let us now study simply connected solvable Lie groups. We say that a real finite 
dimensional connected Lie group G is nilpotent if its Lie algebra g = Lie( G) is nilpotent. 
We can provide a nilpotent Lie algebra with a group structure using the Campbell-Baker
Hausdorff multiplication: 

1 1 1 
X · Y = CBH(X, Y) = X + Y + 2[X, Y] + 12 [X, [X, Y]] + 12 [Y, [Y,X]] + · · ·, X, YE g. 

This multiplication is a polynoinial expression in X and Y, since g is nilpotent. Hence 
(g, CBH) becomes a Lie group, whose Lie algebra is (g, [, ]). It is obvious that that for 
every X E g, the mapping 

Ex: JR -t g;t ~ tX, 

is a group homomorphism from (JR, +) to (g, CB H). Hence the exponential mapping 
exp : g-+ (g, CBH) is the identity mapping in this case and every simply connected Lie 
group whose Lie algebra is isomorphic to (g, [,]) is itself isomorphic to (g, CBH). 

1.8. If G is a simply connected solvable Lie group, we know (see [Di.3]), that the exponential 
mapping is a diffeomorphism if and only if all the roots of g = Lie(G) are of the form 
h + iw.>.h, for some real constant W>, and a real valued character h of g. More precisely, 
Dixinier has shown in ([Di. 3]) that for a simply connected solvable Lie group G the 
following conditions are equivalent: 

i) The exponential mapping exp : g • G is injective. 
ii) The exponential mapping exp : g • G is surjective. 

iii) The exponential mapping exp : g • G is a diffeomorphism. 
iv) Every root >. of g is of the form >. = (1 + iw)l for some real linear form l E g• and 

some w E JR. 
v) For every X E g the spectrum of the operator ad(X) acting on gc does not contain a 

number of the form iT, TE JR\ (0). 
We call the solvable groups, which satisfy these conditions, (solvable) exponential. 

Such an exponential group G can be realized on its Lie algebra g. The Cambell
Baker-Hausdorff multiplication, which converges on a neighbourhood of 0, extends to a 
unique analytic map on g x g and in this way G is isomorphic to the group (g, CBH), the 
exponential mapping for the latter group being the identity. 
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1.9. A general solvable simply connected Lie group is a.s a variety always diffeomorphic to 
a vector space. Indeed, let us take a Jordan-decomposition g = {Jo + m = g0 + n, for some 
nilpotent ideal n of g containing (g, g]. Choose a subspace t of 9o, such that 

g = tEB n. 

For S, T E t, we write 

CBH(S, T) = CBH(S + T, Q(S, T)), 

where Q(S, T) = CBH(-S-T, CBH(S,T)) E (go, .00] is a polynomial expression of brack
ets in S and T. For a vector U in n and T E t, let 

00 ad(-T)i 
Tu= exp (ad(-T))U = L ., (U) 

j=O J. 

We obtain a group multiplication on s = t EB n by the following rule: 

(T,U) · (T',U') = (T+T',CBH(Q(T,T'),CBH(T'u,U'));T,T' E t,U,U' En. 

The Lie algebra of (s, •) is of course isomorphic to g and so every simply connected Lie 
group G with a Lie algebra isomorphic tog is itself isomorphic to (s, •). In particular 

G = exp(t)exp(n) 

and 

exp(T)exp(U)exp(T')exp(U') = exp(T + T')exp(Q(T, T'))exp(T'u)exp(U') 

(T, T' Et, U, U' En) (see [Le.Lu.]). 

1.10. Let us now consider closed connected subgroups H = exp(ry) of the simply connected 
solvable Lie group G. The quotient space G/H is then diffeomorphic to the space g/ry. We 
obtain coordinates on G / H in the following way: 

Consider a J.H.-sequence S = (a;); of g, which passes through n, i.e. such that a;0 = n 
for some io- For every j, we take a subspace to; of a;, such that a;+ ry = (a;+i + ry) EB to;. 
The mapping Ef/H: to= I:; to; • G/H 

is then a diffeomorphism. In particular if ry = (0), then E<j : to = I:; to; • G is a 
diffeomorphism (see [Le.Lu.]). 
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1.11. We can use the mapping E'j to describe the left Haar measure on G. Indeed the left 
Haar measure dx is given by 

l cp(x)dx = l cp(E'j(w))dw 

for cp in the space Cc(G) of the continuous functions with compact support on G. As
sociated to the Haar measure is the modular function Aa of G. The uniqueness of the 
Haar measure implies that for any s E G the left invariant measure cp f-t fa cp(xs-1 )dx is 
a positive multiple, denoted by Aa(s), of our Haar measure and so 

l cp(xs- 1)dx = Aa(s) l cp(x)dx,cp E Cc(G) 

The function Ao is easy to compute. In fact Aa(exp(U)) = e-trad(U),U E g, where 
tr ad(U) denotes the trace of the operator ad(U) on g. 

1.12. We realize many of our representations on function spaces, for instance on spaces of 
functions which satisfy certain covariance conditions. 

Let H = exp@ be a closed connected subgroup of G and let 

e(G, H) = {e: G • C; e continuous with compact support modulo H, 

AH(h) 
e(xh) = Aa(h) e(x), x E G, h EH}. 

This space is left translation invariant and the linear mapping 

is surjective. The space e(G,H) admits a left invariant linear form, namely 

l,H du: e(G,H) • C, e f-t l e(Ef1H(w))dw. 

Hence the linear form 

Cc(G) • C, ,µ H f PGJH(,µ)(u)du 
laJH 

is left translation invariant and positive and so is a multiple of our Haar measure. The 
uniqueness of the Haar measure implies that the positive linear form §GI H du is unique 
(up to a positive multiple) and so it does not depend on the choice of the J.H. sequence 
and not on the complementary spaces n:,;, 
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1.13. The convolution algebra L1{G) of the integrable functions on G with respect to Haar 
measure plays a fundamental role in the theory of representations of G. The convolution 
of two functions cp and 1/; is defined by 

cp * 1/;(x) = l cp(u)1/;(u-1x)du, x E G. 

The L1-norm on L1(G) is given by 

ll'Pll1 = l lcp(x)ldx, cp E L1(G). 

There exists an isometric involution• on L1(G): 

cp*(x) = ~a(x)-1cp(x- 1 ), x E G, cp E L1 (G). 

The connection between left translation >. and convolution is the following: 

>.(x)(,P*1P) = (>.(x)cp) *1P,X E G,cp,1/; E L 1(G). 

2. The Dual Space of Exponential Solvable Lie Groups 

2.1. We begin with the definitions of the different types of irreducible bounded represen
tations. 

Let G be a locally compact group. A representation (T, V) of G on a Banach space 
V is a strongly continuous homomorphism T : G -+ Gl (V) of the group G into the group 
Gl(V) of the bounded invertible linear operators on V. Strongly continuous means that 
the mappings 

G-+ V, x 1-t T(x)v, 

are continuous for every v E V. 
We say that the representation (T, V) is bounded, if 

CT= sup IIT(x)llop < oo. 
:i:EG 

Here llallop denotes the operator norm of a bounded operator a on V. Since a solvable 
group G is amenable, every bounded representation (T, V) on a Banach space (V, 11 · llv) is 
in fact isometric, there exists another norm II· II' on V, which is equivalent to 11 · llv, such 
that IIT(x)vll' = llvll' for every v E V and x E G (see [Pi.]). 

2.2. Bounded representations can be integrated to bounded representations of the Banach 
algebra L1(G). Indeed, for cp E L1(G), the operator 

T(cp) = l cp(x)T(x)dx 
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on Vis bounded and IIT(v)llop::; CTll'Pll1- We have the relations 

T(<p * ¢) = T(rp) o T('f/!), T(,\(x)rp) = T(x) o T(rp), x E G, <p, 'I/; E L1(G). 

Conversely, given a bounded representation (T, V) of the algebra L1 ( G) on a Banach space 
V, we have at the same time a bounded representation (T, V) of G, such that 

T(x) o T(rp) = T(,\(x)rp) 

for every x E G and <p E L1 (G) (see (Di.4]). 

2.3. A closed subspace W of V is said to be G-invariant, if for every x E G, w E W, 
T(x)w E W. The same type of definitions is valid for representations of the Banach 
algebra L1(G). If Tis bounded, a closed subspace W of V is G-invariant if and only if it 
is L1(G)-invariant. 

2.4. We say that a representation (T, V) is (topologically) irreducible, if the two trivial 
spaces (0) and V are the only closed G- invariant subspaces of V. 

A Banach module (T, V) of L1(G) is said to be simple or algebraically irreducible if 
the trivial spaces (0) and V are the only L1(G)-invariant subspaces of V. 

2.5. We say that a representation (ir, 11,) is unitary if the Banach space 1i is in fact a 
Hilbert space (with scalar product (, )) and if ir(x) is a unitary operator for any x E G. 
A unitary operator being isometric, every unitary representation of G is bounded and 
the corresponding representation of L1(G) has the property that ir(cp)* = ir(rp*) for any 
cp E L 1(G). 

2.6. Two representations (T, V) and (T', V') are called equivalent if there exists a bounded 
linear bijection u : V • V', which intertwines T and T', i.e. such that 

T'(x) ou = uoT(x),'v'x E G. 

We write T ~ T' for two equivalent representations. In particular if T ~ T', then T is 
irreducible if and only T' is. 

2.7. By Schur's lemma, we know that a unitary representation (ir, 11,) is irreducible if 
and only if every bounded operator a E L(1i), which commutes with ir, i.e. for which 
ir(x) o a= a o ir(x) for every x E G, is a multiple of the identity operator I1t. Hence for 
two equivalent irreducible unitary representations (ir, 11,) and (ir', 11,') there exists a unique 
(up to scalar multiple) interwining operator u: 1{, • 1i', which is even unitary. 

We write (ir] for the equivalence class of the representation ,r, i.e. for the set 
{{ir', 1i'), ,r ~ ir'}. 

We denote by G the family of all the equivalence classes of irreducible unitary repre
sentations of G. 

By the theorem of Gelfand-Naimark, the irreducible unitary representations separate 
the points of G (see (Di.4]). 

2.8. In 1931 Stone and von Neumann determined the unitary dual of the Heisenberg 
group. In the late fourties Mackey proved his imprimitivity theorem, the fundamental 
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tool to compute irreducible unitary representations in the solvable case. Dixmier proved 
in 1957 (see [Di.5]), that every irreducible unitary representation of a connected nilpotent 
Lie group is monomial, i.e. is induced from a unitary character. The breakthrough came 
with Kirillov's orbit picture of the dual space of nilpotent Lie groups in 1962 (see [Ki.]). 
Kirillov's orbit method also works for exponential groups. Bernat, Pukanszky and Vergne 
determined the dual space of these groups in the years 1965-1970 with the orbit method 
(see [Ber.], [Puk.1,2], [Ve.1,2,3]). 

2.9. The irreducible representations of exponential groups are induced from characters. 
Let us describe briefly induced representations. Let H be a closed subgroup of the group 
G and let (p, F) be a unitary representation of H. We realize the induced representation 
r = Tp of p by left translation on a space of mappings e(p) from G into 1£. The space e(p) 
is the space 

e(p) = {{: G • :F;{ continuous with compact support modulo H, 

{(xh) = (!:~~? )112p(h)-1{(x), x E G, h EH}. 

This space of mappings is left translation invariant and we observe that for { E e(p), the 
function x • ll{(x)ll2 is contained in e(G,H). Hence the scalar product 

({, 1/) • ({, 1/)11. = i ({(x), 1/(X)}:FdX 
G/H 

is G-invariant, positive and hermitian and so left translation is isometric on the prehilbert 
space (e(p), (,) ). The completion 1£ of the space e(p) with respect to the norm II • 1111. is a 
Hilbert space on which the group G acts by left translation, i.e. 

r(x){(s) = e(x- 1s), x, s E G, e E 1£. 

We take now the special case where p is a unitary character of H. Then 1£ is a space 
of complex valued functions and we see that the operators r(cp),cp E Cc(G), are kernel 
operators with continuous kernels. Indeed, for { E e(p), 

r(cp){(s) = fc r,o(x)e(x- 1s)dx = l r,o(sx- 1)ila(x)-1e(x)dx 

= j { r,o(sh- 1x- 1)t.a(xh)-1 ilc(h) (ilH(h) )112x(h)e(x)dhdx 
la;H J H ilH(h) ilc(h) 

= £/H Lla(x)- 1 (l r,o(shx- 1 )( t:~~~ )112x(h)dh) e(x)dx. 

Hence the kernel \OH,x. of the operator r(r,o) is the function 
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2.10. Let H = exp(Q) be a closed connected subgroup of G. Every unitary character x of 
H is of the form 

x(exp(T)) = x1(exp(T)) = e-if(T), TE Q, 

where f is a real linear functional on g, such that 

f([Q, Qj) = (0). 

We remark that for every t E G, the representations TH,x and TtHt-•,•x are equivalent. Here 
tX is the unitary character of the group tHt- 1 defined by tx(p) = x(t- 1pt),p E tHt- 1• An 
intertwining operator u between these two representations is given by right translation: 

u(e)(s) = e(st), e E e(x), s E G. 

We define the coadjoint representation Ad• of G on the dual vector space g• of g by: 

Ad*(x)f(U) = f(Ad(x- 1)U), U E g, x E G,f E g•. 

Hence the induced representations TH,x, and TtHt-•,xA•·<•>t are equivalent, since 
XAd•(t)f =tX, t E G. 

2.11. A subalgebra p of g is called a polarisation at f E g•, if p is subordinated to f 
(i.e. if f ([p, pl) = (0)), and if p has maximal dimension with this property. This maximal 
dimension is equal to ½(dimg + dimg(f)). Here g(f) denotes the stabilizer offing, i.e. 
g(f) = {U E g; f ([U, g]) = (0) }. For a polarisation p at f we always have that Ad* (H)f is 
open inf+ p.L. We say that pis a Pukanszky polarisation, if Ad*(H)f = f + p.L. 

2.12. We can now describe the unitary dual of an exponential group G. The theory of 
Kirillov-Bernat-Vergne-Pukanszky says that the induced representation TH,x, is irreducible 
if and only if Q is a Pukanszky polarisation at f. Furthermore, given f E g•, there always 
exists a Pukanszky polarisation p at f and for two Pukanszky polarisations p, resp. p' 
at f, resp. at f', the representations TP,x, and Tp•,x,, are unitarily equivalent, if and 
only if the coadjoint orbits of f and f' are the same. Finally, by Mackey's imprimitivity 
theorem, every irreducible unitary representation 1r of G is equivalent to some induced 
representation TP,xi· We obtain in this way a bijection (the orbit picture) between the 
space of the coadjoint orbits g• /G and the dual space of G: 

IC: g• /G • G, Ad•(G)f • [rP,x,J. (P = exp(p), p any Pukanszky polarisation at!). 

2.13. We can construct Pukanszky polarisations at f E g• in the following way. Let as 
before n denote the nilradical or any nilpotent ideal of g containing [g, g]. Take a J.H. 
sequence (a;)j=, for the action of g on n and let g(q) be the stabilizer of q = fin in g. The 
subspace 

• 
Po= L a;Uia) 

j=m 
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is then a polarisation at q inn (see [Ve.1,2]. The stabilizer g(q) of q in g is a subalgebra of g 
containing g(f) and the quotient algebra g(q)/ker(f) nn(q) is either abelian or isomorphic 
to a Heisenberg algebra. Furthermore we have that [g(q), Po] C Po• Let Pi be a polarisation 
at f1o(q)• Then p = P1 + Po is a Pukanszky polarisation at / (see also [Le.Lu)). 

The Heisenberg algebra 

!Jn = span {X1 · · ·, Xn, Y1, · · ·, Yn, Z}, (n EN) 

has the bracket relations: 

(X;, Y;] = ,5;,;Z, [X;, Xj] = [Y;, Y;] = 0 = [U, Z], 1 ~ i,j ~ n, U E IJn· 

For a linear functional / on !Jn, we see that the stabilizer !Jn(f) at / is equal to !Jn if 
f (Z) = 0 and !Jn(f) = IRZ if f(Z) ,f: 0. In the latter case we have many polarisations. For 
instance the subspaces span{X1 +a1Y1, · · ·, Xn + anYn, Z}, where a1, ···,an are any real 
numbers, give us an infinity of polarisations at/. 

2.14. The irreducible representations 1T = -rP,Xt of an exponential group G have the fol
lowing property. The subspace 1{,1 of all the vectors e in the space 1{, of 1r, for which 
there exists an element ip = 'P{ E L1(G), such that the operator 1r(ip) is the orthogonal 
projection P{ onto q is different from (0), and hence is dense in 1{, since 7l' is irreducible. 
There exist even non zero elements e in 1{,1 , such that 'P{ is rapidly decreasing, which 
means that V'P( is also in L1(G) for every real character v of G. This was proved by Howe 
(see (Ho.]) in the nilpotent case, by Ludwig (see [Lu.2)) and by Poguntke (see [Po.1)) in 
the exponential case. 

3. Algebraically and topologically irreducible Representations. 

3.1. Let A be a Banach algebra and (T, V) an algebraically irreducible A-module. For 
any v E V,v ,f: 0, the annihilator A.,= {a E A;T(a)v = 0} is a maximal modular left 
ideal, which is automatically closed, and so the representation (T, V) is equivalent to the 
left module (>., A/A.,). In particular (T, V) is a Banach module of A. (see [Bo. Du.)) 

3.2. Let now (T, V) be a topologically irreducible representation of A. We can again fix a 
non zero vector of V and consider the annihilator A., of v in A, which is a closed left ideal. 
We have an injection 

i: A/A., • V,i(a mod A.,)= T(a)v, 

and the image of the mapping i is dense in V since T is irreducible. We transfer the 
norm II· llvof V to the space A/A., via i and so we can replace the Banach space V by 
the completion of A/ A., and realize T by left translation on the space A/ A., and on its 
completion. In this way, the module (T, V) is determined by the closed left ideal A., and 
a certain module norm II · II on A/A., which satisfies the following inequality: 

llab mod A.,11 ~ llallAllb mod A.,11,a,b EA. 

3.3. Let Al be the ideal in A, consisting of all the a's in A, such that T(a) is an operator of 
finite rank. Suppose that Al ,f: (0). Then the submodule V1 = span {T(a)v, a E Al, v E 
V} is dense in V and defines a simple A-module. 
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3.4. The simple L1 (G)-modules in the nilpotent case have been determined by Dbanier 
(see [Di.I]), Leptin (see [Le.2]), Poguntke (see [Po.4]), Jenkins (see [Je.]) and Ludwig (see 
[Lu.3]) from 70 to 77 and Leptin and Poguntke studied the exponential case in some papers 
from 76-81 (see for instance [Le.Po.]) and finally Poguntke (see [Po.2]) gave a complete 
description of these modules in 1983. It turns out that every simple L1(G)-module is of 
the form (T, V1) for some topologically irreducible Banach representation (T, V) of L1 ( G). 
We will describe them in (3.14). 

3.5. Let us analyse such a topologically irreducible L1 (G)-module (T, V), for an exponential 
group G. Then T is also a G-irreducible module and we can restrict T to the nilradical 
N = exp(n) of G. The group G acts on N by conjugation and so also on the functions of 
N and in particular on the elements of L 1(N). Whence an ideal IC L 1(N) is G-invariant 
if for every 'P E I the function 

n i-+ .llo(t)1P(r1nt) = t'P(n), n EN, 

is also in I for every t E G. The restriction of T to N is no longer irreducible, but the 
kernel kerL'(N)(T) ofT in L 1(N) is a closed G-prime ideal. AG- prime ideal I in L 1(N) 
is by definition a twosided G-invariant ideal, which has the property that for every pair 
11, 12 of twosided G-invariant ideals in L 1(N), such that 11 * 12 C I, necessarily one of 
the two ideals Ii and 12 is contained in I. It has been shown by Molitor-Braun in 1996 
(see [Mo.I] and [Lu.Mo.3]), that every closed G-prime ideal I in L1(N) is the kernel of a 
G-orbit in N, i.e. 

I= n kerL'(Nlr) = ker(0 r) 
tEG 

for some r EN. The representation T of N is associated to its Kirillov-orbit Ad•(N)q for 
some q E n•. Let / E g• be an extension of q. We take a subspace t of g(/), such that 
g(/) = t EB (g(/) n n). Let Q be a subspace of g containing n, such that g = t EB Q. Then 
[g, g] C n C Q and so Q is an ideal of g. Let p = /1~ E Q•. Let us choose a Pukanszky 
polarisation p at /, such that Po = p n n is a polarisation at q as in (2.13). Then p n Q 
is a Pukansky polarisation at p and the restriction of the representation 1r = TP,x, of G 
to H = exp(Q) is irreducible and equivalent to <1 = TPnH,xp• Our choice of Q implies that 
the H-orbit of p is saturated with respect to n, i.e. Ad*(H)p + n.J.. = Ad*(H)p. As a 
consequence, (see [Ha.Lu] and [Lu.Mo.3]), 

kerL'(H)(u) = kerL'(H)(T). 

Hence the representation T annihilates the twosided ideal 

IT= span (L1(G) * kerL'(H)(u)) = span (L1(G) * kerL'(N)(r)) 

of L1(G) (here (--) denotes closure in L1(G)). Th~ the representation T factorizes 
through IT and defines an irreducible representation T of A = L 1(G)/IT. The algebra 
A is itself a generalized L1-algebra. As Banach space A is isometrically isomorhic to 
L 1(T, (L1(H)/kerL'(H)(u))), where 

T= exp(t) ~ G(f)/G(f) nN ~ G/H 
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and the algebra L 1(H) acts by convolution on the right and on the left on A and so A has 
many idempotent multipliers (see [Po.2]). Indeed, we can choose exponentially decreasing 
elements cp = 'P>. in L1 (H), such that u(cp) is the orthogonal projector P>. onto C.X. Hence 
a t--+ cp * a mod IT defines an idempotent multiplier on A, since cp * cp = cp modulo 
kerL'(H)(T). We take for every t ETC G(f) the element v(t) E L1(H)/kerL'(H)(u) for 
which u(v(t)) = 1r(t)-1oP>., The norm w(t) of v(t) in the quotient space L 1(H)/kerL'(H)(u) 
is a measurable submultiplicative function which is constant on G(f) n N and defines a 
weight on G(f)/G(f) n N. It follows from this that the subspace B = B,p = cp *A* cp is a 
closed subalgebra of A. Furthermore we have for a E A that 

cp *a* cp(t) = h(t)v(t) E L1(H)/kerL'(H)(u), t ET, 

where t t--+ h(t) is a measurable function defined on T and in fact on G(f)/G(f) n N, such 
that 

ll'P *a* 'PIIA = h-lh(t)lllv(t)lldt. 

It turns out that the mapping cp * a * cp t--+ h is even an isometric isomorphism of the 
algebra B onto the weighted convolution Banach algebra L 1(G(f)/G(f)nN, w) (see [Po.2]). 
Since G(f)/G(f) n N is commutative, it follows that B itself is commutative. Let now 
W = T(cp>.)V CV. Since T(cp>.) is a projector we have that Wis a closed subspace of V 
and Wis an irreducible B-submodule of V. Let us denote by S the restriction of T to W. 

3.7. If T is algebraically irreducible, then (S, W) is also a simple B-module and B being 
abelian, it follows that Wis one dimensional and Sis a character of the algebra B, which 
we denote by Xv• We can describe this character by a linear form (denoted by v) on g(f): 

Xv('P *a* cp) = { h(t)e-iv(log(t))dt, a EA. 
j G(f)/G(f)nN 

3.8. If T is only topologically irreducible, the space W need not be one dimensional. The 
commutative algebra L1(G(f)/G(f) n N, w) has infinite dimensional irreducible represen
tations, if the weight w is exponential. It suffices in that case for instance to take a real 
linear functional v on g(f)/g(f) n n, such that ev(T) ::; w(log(T)), TE g(f), and to choose 
any infinite dimensional Banach space W, which adlnits a bounded operator u, which has 
no closed invariant subspaces except the trivial ones (see [Be.]). The representation S 
defined by 

S(cp *a* cp) = { h(t)e-v(log(t))udt, a EA, 
j G(f)/G(f)nN 

is then irreducible on W. 

3.9. Conversely, every irreducible Banach space representation (S, W) of the algebra B 
allows us to define a falnily of topologically irreducible representations of G in the following 
way. Choose a non-zero vector w E W and let 

Bw = {b E B;S(b)w = O}, Aw= {a EA, S(cp*ha*cp)w = O,'v'b EA.} 
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Define the function 11 • llmin on A/Aw by 

llamodAwllmin= inf 11S(rp*b*a*rp)wllw,aEA. 
llbl!A=l 

It turns out that 11 • II min is a norm on A/ Aw for which 

111/1 * a mod Awllmin:::; lltPllilla mod Awllmin, a EA, 1/1 E L1{G). 

Furthermore the restriction of II· llmin to (B+Aw)/Aw ~ B/Bw is equivalent to the norm 
bi-+ IIS(b)wllw of B. Hence we obtain a Banach space vmin, the completion of A/Aw with 
respect to II· llmin of A, such that convolution on the left on A/Aw extends to a bounded 
representation Tmin of £ 1 ( G) on vmin. Furthermore the subspace wmin = Tmin ( rp .>.) vmin 
is isomorphic to W and the representation smin of B is equivalent to the representation 
(S, W). We say that (Tmin, vmin) is an extension of (S, W). It is easy to show that Tmin 
is even irreducible (see [Lu.Mo.3]). 

3.10. There may be other extensions. For instance if S is character of B, then we may 
take as extension norm the quotient norm on A/Aw, since now B/Bw is one dimensional. 
The left ideal Aw is now modular and a modular left unit is given by any element of B, on 
which S has the value 1. It is not difficult to see that Aw is even maximal and so A/ Aw is 
an algebraically irreducible submodule of the module vmin. We see also that two simple 
modules T and 'l'' of A are equivalent, if and only if the corresponding characters of the 
algebra B coincide (see [Po.2]). 

3.11. We say that a norm II· II on A/Aw is an extension norm, if 

11¢ * a mod Awll:::; C11,11ll1/lll1lla mod Awll 

for any a E A and ¢ E L1{G) { for some constant C11,11) and if the restriction of II · II to 
B/Bw ~ (B+Aw)/Aw is equivalent to the norm b I-+ IIS(b)wll of B. It turns out that every 
extension norm II· II dominates the minimal norm, i.e. we have that llallmin :::; Cllall, a E A, 
{for some constant C) and that the completion of A/Aw with respect to the norm II• II, 
considered as a subspace of the Banach space vmin, is also an irreducible L1(G) module. 
Hence there are as many equivalence classes of irreducible extensions of a given (S, W) 
module as there are equivalence classes of extension norms (see [Lu.Mo.3]). 

3.12. In the case where Sis a character, there are in general an infinity of such extensions. 
For instance, if G is nilpotent every closed prime ideal I of £ 1 ( G) is the kernel of an element 
1r of G. Hence every irreducible bounded irreducible module (T, V) with kerL'(G){T) = 
kerL'(G)(1r) contains as simple submodule a copy of (1r, 1i1). Let us realise 1r as indix, 
for a polarisation P = exp(p) at f. Instead of taking the Hilbert space 1i we may take the 
Banach spaces 

LP(G/P, Xt) = {e: G • C; e measurable ,e(xp) = x1(p)- 1e(x), x E G,p E P, 

1 le(x)IPdx = 11e11: < oo,} 
G/H 
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(1 :$ p < oo). For p = oo, we can take the space 

Coo(G/P,x1) = {~: G • C;~(xp) = x1(p)-1~(x),x E G,p E P, 

~ continuous, tending to O at oo}. 

The group G acts by left translation on all these spaces and we write T(P,xt,P) for these 
representations. Since the spaces L1'(G/P,x1) are not isomorphic, the representations 
T(P,xi,P) cannot be equivalent. The operators T(P,xi,P)(cp), cp E L1(G), are kernel operators 
whose kernels 'PCP,xt,Pl do not depend on p. In fact 

'P(P,xi,p)(u, v) = l cp(upv- 1)x,(p)dp = 'PP,x,,2(u, v), u, v E G, 

and so kerL'(G)(T(P,xt,P)) = kerL'(G)(7r) and the representations T(P,xi,P) are irreducible 
and all contained in the corresponding ymin. 

3.13. Let us sum up what has been said above. For every G-orbite Ad*(G)q inn•, we 
have the commutative subalgebras B"',. ~ 'P>. * L1(G)/L1(G) * kerL'(N)(Tq) * ,P>. which 
are all isomorhic to L 1(T,w) ~ L 1(G(l)/G(l) n N,w), for some weight independent of 
A. Having fixed one of the 'P>. 's, every irreducible bounded module (T, V) defines an 
irreducible bounded module (S, W) of B, where for h E L1(T,w), 

S(h) = Ir h(t)T(t)T(v>.(t))dt. 

The representations (T, V) and (T', V') are equivalent if and only if their Ad* ( G) orbits in 
n• coincide, if the modules (S, W) and (S', W') are equivalent and if the extension norms 
on A/Aw= A/A:U are equivalent. 

3.14. Let us finish this exposition with a characterisation of the simple modules of L1(G). 
We have seen that every simple module is determined by its orbit Ad*(G)q in n• and a 
character XT = Xv of B = L 1(G(l)/G(l) n N,w) ~ L 1(T,w). 

Poguntke has given a description of the weight w (see [Po.2]). Choose a J.H. sequence 
(b;)T=1 of the g(f)-module n/Po, where Po is a g(f)-invariant polarisation of q (see 2.13). 
Let for T E g(f), 

1 m 

µ(T) = µq(T) = 2 L jtr ad&;/&;+, (T)I. 
j=l 

Then the weight w satisfies the following inequalities: 

eµ(T) :$ w(exp(T)) :$ eµ(T) R(T), TE g(f), 

for some polynomially bounded expression R of T. Hence the characters Xv of Bare of 
the following form: 

Xv(h) = Ir h(t)e-i(v(log(t)))dt, h E L1(T, w), 
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where vis any complex linear functional of 9(/), for which !Im(v)I ::; µ. We see thus that 
B has exponentially increasing characters, if and only if one of the modules b;/b;+1 is not 
trivial. In that case the group G is not *-regular in the sense of Boidol (see [Boi.]). 

3.15. We shall show now that for a simple module (T, V) of L 1(G), there exists a topo
logically irreducible i:nodule (T;;, V;;) of G such that (T, V) is equivalent to (T;;, VJ-). Let 
q E n• and let f E 9• be an extension of q. Let b = 9(q) + n, which is an ideal of 9 and 
which contains our Pukanszky polarisation p =Pi+ Po at f. 

We choose a J.H. sequence 

n = a. :::> • • • :::> a,,. :::> Clm+1 = Po 

of the b-module n/Po• Let ,: be a subspace of p such that b = i: EB (p + n) and let s be a 
subspace of 9 such that s EB b = 9. Let us also choose for every j a subspace tu; of a; such 
that a; +Po= tu; EB (a;+1 +Po)- We let p = (p1, .. · ,Pm) E [1, ooim and for TE 9(q) we set 

6;;-(T) = f tr(ad(T)!a;/'1;+t. 

i=l P1 

Let t..p( exp(T)) = e.S.(T), T E p, and let 

V(G/P,x1) = {e: G • C;e measurable ,e(xp) = t..p(h)x1(p)- 1e(x),x E G,p E P, 

llell;; = (l (1 (i, (· .. (lm 1e(exp(S)exp(X)exp(U1) .. •exp(Um))IPmdUm) f.;-

. • -f' dU1) *)2 dXds/ < oo}. 

· It is easy to verify that this norm II· lip is translation invariant and that for p = (2, • • •, 2) = 
2, we obtain the Hilbert space of the induced representation indix,. Left translation 
defines thus an isometric representation denoted by T(P,x.,,Pl on I.J(G/P,xt). For every 
cp E L 1(G), the operator T(P,x.,,pJ('P) is a kernel operator, whose kernel 'P(P,x.,,P! is equal 
to the kernel of the operator TH,x., (t..pt..tcp), if cp is exponentially decreasing. This obser
vation tells us that T(P,x.,,Pl is irreducible and that there exist many cp E L 1(G), for which 
T(P,x.,,;;)(cp) is of rank one. The character Xv,., of the commutative algebra B defined by 
the simple module (r(P,x.,,p'J,LP(G/P,x1) 1 ) is given by 

Xv,-(h) = { h(t)e}:;'._, Cf;"-½ )trad•;l•;+1 (logt) dt. 
•P JF 

It turns out that every real linear functional v = v,z, on 9(/), for which !v(T)I ::; µq(T), TE 
9(/), is of the form 
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for some (p1, •••,Pm)- This shows that any simple module (T, V) of L1 (G) is equivalent to 

for some f E g• and some p. 
We obtain finally the following description of the space G of the equivalence classes 

of simple L 1(G) modules. 
Let g;,.im be the collection of all pairs (f,v) E g• x g(/)*, such that lvl :::;'. µt1 •• 

The group G acts on s;,.;m by Ad*. Let s;/G be the corresponding quotient space. The 
mapping 

g-;,_;m/G • G, [(f,v)] o-+ [(T(P,x,,p),V(G/H,x1) 1 )], 

is a bijection (see [Po.2],[Lu.Mi.Mo.]) 
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Let G be a linear reductive Lie group which is a subgroup in its complexification Ge, We 
denote the Lie algebra of G by g0 , and its complexification by g = C ®JR g0 • We will use 
the similar notation for any linear Lie group L; thus, Le denotes its complexification, 10 

its Lie algebra, and I the complexification of 10 . 

Take a maximal compact subgroup K of G. Then K determines a Cartan decomposi
tion g0 = t0 EB s0 and its complexification g = e EB s. The adjoint action of Kc preserves s, 
and the set of all nilpotent elements N. in s. It is well known that N. is a normal variety 
and that it has finitely many Kc-orbits ([2)). 

Now consider a dual pair {G, G') = (O(p, q), Sp(2n, JR)) (see [1] for the properties of 
dual pairs). In this note, we define certain double fibration maps of nilpotent varieties for 
O(p, q) and Sp(2n, JR). We use the double fibration maps to get a correspondence between 
nilpotent Kc-orbits ins and nilpotent Kc-orbits ins', which is called a "theta lift". We 
describe the theta lifts of two-step nilpotent orbits in N.,, where g' = t' EB s' is a Cartan 
decomposition for G' = Sp(2n, IR) (Proposition 1.3). 

If a nilpotent Kc-orbit O c s is the theta lift of a nilpotent Kc-orbit CJ' c s', 
it is interesting to describe the regular function ring C[O] by means of C[ 0']. Our 
main results are descriptions of the Kc-module structure of C[O] in terms of the double 
fibration maps (Theorem 2.4 and Proposition 3.4). In the course of the proof, we realize 
the closure O of the orbit as a geometric quotient of the fiber of O' (Proposition 3.3). As 
an application of these results, we get a formula of branching coefficients between different 
kind of classical groups (Corollary 3.5). 

The Kc-module structures of nilpotent orbits may reflect the K-type decompositions 
of the corresponding admissible representation of G via orbit method ( or geometric quan
tization). Thus we can expect to extract information on the admissible representations 
from the geometry of nilpotent orbits. This will be treated elsewhere. 
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1 Double fibration of nilpotent varieties 

Let G == O(p, q) be an orthogonal group of signature (p, q). Then a maximal compact 
subgroup K is isomorphic to O(p) x O(q). We realize them as follows. 

G == O(p, q) == {g E GL(p + q, JR) I tglp,99 == lp,9}, l _ (lp O ) p,q - 0 -19 ' 

( O(p) 0 ) 
K = O(p) x O(q) = O O(q) . 

Then the corresponding (complexified) Cartan decomposition is given by 

{( a /3) aEAltp(C) } 
g= 113 'Y I 'YEAltg(C) ,/3EMp,q(C) 

( Altp(C) 0 ) ( 0 
= 0 Alt q(C) EB I Mp,q(C) 

Hence we identify .s with Mp,9(C) via 

Mp,9(C) 3 /3 t-t ( 1~ ~) E .s. 

Denote the set of nilpotent elements in .s by N.. Then, by the above identification, 
/3 E Mp,9(C) belongs to N. if and only if 1/3/3 is a nilpotent matrix, if and only if /3 1/3 is 
so. 

Next we consider the symplectic group G' == Sp(2n, JR) of rank n. A maximal compact 
subgroup K' is isomorphic to the unitary group U(n) of size n. To realize I(' in a simple 
way, we define Sp(2n, JR) in a slightly different manner from the usual one. Namely, we 
put 

G' = U(n,n) nSp(2n,C) 

= {g E GL(2n,C) I 1'§ln,n9 = ln,n, 1gJg = J}, 

where 

( ln O ) 
ln,n == Q -ln , 

Then G' is isomorphic to Sp(2n, IR.), and 
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is a maximal compact subgroup. The corresponding Cartan decomposition is given by 

We identify s' with Sym n ( C) EB Sym n ( C) via 

Symn(C)EBSymn(C) 3(C,D)t-t (~ ~) Es'. 

Then (C, D) belongs to the nilpotent variety N., if and only if C • D is nilpotent, if and 
only if D • C is so. 

Now we shall define the double fibration maps. Let W = Mp+q,n(C) be the space of 
all the (p + q) x n-matrices. We express a matrix Z in W as 

A E Mp,n(C), B E Mq,n(C). 

We define two maps tp and VJ by 

Put 

tp :W 3 Z t-+ A tB E Mp,q(C) = s, 
VJ :W 3 Z t-+ ( tAA, tBB) E Symn(C) EB Symn(C) = s'. 

Mc= GLp(C) x GLq(C) :) O(p, C) x O(q, C) = Kc, 

Mc= GLn(C) x GLn(C) :) AGLn(C) = Kc, 

and define Mc x Mc-action on W by 

where 

m = (m1,m2) E Mc= GLp(C) x GLq(C), 

m' = (m~, m~) E Mc= GLn(C) x GLn(C). 

We introduce Mc-action on s (resp. Mc-action on s') so that 'P : ·W -+ s is an Mc x Kc
equivariant map (resp. VJ: W-+ s' is a Kc x Mc-equivariant map). Note that the induced 
action is compatible with the adjoint Kc-action on s (resp. Kc-action on s'). As a GLn(C)
module, the second component Symn(C) of s' is regarded as the contragredient of the 
first component. By this reason, sometimes we will write 51 = Symn(C) EB Symn(C)•. 

Our first observation is the following. 
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Lemma 1.1 rp o 1/J-1 and 1/J o rp-1 preserve nilpotent elements: 

PROOF. This is an easy consequence of direct calculations. Q.E.D. 

Definition 1.2 Let O (resp. O') be a nilpotent Kc-orbit in s (resp. Kc-orbit in s'). If 
0 = rp('I/J-1 (0')) holds, we say that O is the theta lift of 0'. 

Note that rp('I/J- 1(0')) is an affine closed cone. 

Proposition 1.3 Assume that 2n < min(p,q). Let Ofr,s) = O~ •.• C N., be a nilpotent 
Kc-orbit through 

Then there exists a nilpotent Kc-orbit O C N. for which rp(1/J-1(0fr,,J)) = 0 holds, i.e., 
the theta lift of Ofr,s) exists. We denote O = O[n;r,s)· 

Remark 1.4 We allow r = s = 0, which means that Ofo,oJ = {O}. Note that Ofr,,J 
exhausts all the two-step nilpotent orbits in s'. 

PROOF. We will specify the nilpotent Kc-orbit O = O[n;r,sJ in the end of the proof. 
To prove the proposition, it suffices to prove that 1/J-1(0fr,,J) is irreducible. In fact, if 

it is irreducible, then rp(1/J-1(0fr,,))) is an irreducible closed set, and is Kc-stable in N.. 
Since N. contains only a finite number of Kc-orbits, it must be the closure of a single 
orbit. 

Let us see that 1/J-1 ( Ofr,,J) is irreducible. We call 

'Ri,,k = {A e M,,,k(C) I 1AA = o} 

a null cone of size (p, k). It is known to be irreducible if 2k < p. Thus, if we put 

Nr,, = { Z = (~) E WI A= ( ci I~) 1 B = (~I ~ ) , 
where E E 'Jl,,-r,n-r and F E ffiq-,,n-s} 

then Nr,s is irreducible and is contained in the fiber of >-r,s• Moreover, under the condition 
that 2n < min(p, q), it is easy to check that the exact fiber of >.,,s is given by 

Kc. Nr,s = 1/J-1 (>-r,s), 
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where Kc c::: SO(p, C) x SO(q, C) is the identity component of Kc, Now we see that 

(Kc X Kc) . N,,s = 'lj;- 1(0fr,s]), 

is irreducible, and hence 'lj;-1(0fr,s)) is irreducible. 
We can take the following matrix as a representative of a generic Kc x Kc-orbit in 

'1f'-l(Ofr,,]). 

Z= (~) E W; 

0 0 ) ( •·-· n EM,,.(q A= ln-r 
E Mp,n(C), B= 0 (1.1) 

il~-r il~-• 

By the above arguments, we know that the theta lift of Ofr,s] should be exactly the Kc
orbit through ip(Z), where Z is given in (1.1). Q.E.D. 

By the above proof, we conclude that the theta lift O[n;r,s) of Ofr,,) consists of at most 
three-step nilpotents. It is two-step nilpotent if and only if r = s = 0. Thus, we see that 
the theta lift of a k-step nilpotent orbit is a (k + 1)-step nilpotent orbit. 

2 Regular function ring of nilpotent orbits 

In this section, we always assume that 2n < min(p,q). 
Let Ofr,,J = O~ •.• (r + s ~ n) be a nilpotent Kc-orbit in N., given in Proposition 1.3. 

We denote the corresponding theta lift by O[n;r,,), which is a nilpotent Kc-orbit in N.. 
We consider the case s = 0 in the following. Then we have 

Ofr,o] = {(C,O) Es' ICE Symn(C),rankC = r}, 

and it is known that Ofr,o) is the associated variety of an irreducible unitary highest 
weight representation of Sp(2n, R) (or its metaplectic double cover). In particular, 
Of n,OJ ~ Sym n ( C) is the associated variety of a holomorphic discrete series representation 
of Sp(2n, JR). 

Since Ofr,oJ is a Kc-orbit, the regular function ring C[ Of,,oi) carries a natural Kc
module structure. Note that Kc= GLn(C). We denote by A the set of all partitions of 
length ~ k, i.e., 'Pk = {>, = (.X1, ... , .Xk) E zk I .X1 ~ .X2 ~ • • • ~ .Xk ~ O}. 

Theorem 2.1 The regular function ring C[ Of,,oiJ is decomposed as 

C( Ofr,oil ~ Ee rv: (as a GLn(C)-module), 
J.E1', 

where Tµ denotes an irreducible finite dimensional representation of GLn(C) with highest 
weight µ, and Tµ • is its contragredient. 
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PROOF. See [5], for example. 

Note that the fibration map 

1/1: W = Mp,n(C) X Mq,n(C) -+ Symn(C) X Symn(C)* = 51 

is a product of two maps of the same kind, 

1/lp: Mp,n 3 A >-7 tAA E Symn(C) and 

1/lq: Mq,n 3 B >-7 1BB E Symn(C)*. 

Q.E.D. 

Since Sp(2n, R.)/U(n) is a Hermitian symmetric space, s' decomposes into two pieces 
of Kc-stable subspaces s' = s~ EB s'..., which we can identify with the decomposition 
s' = Symn(C) EB Symn(C)•. Our orbit Ofr,o] lives in 5~ alone. Therefore, if we put 

=1r,0J = 1/l-1(Ofr,o]), it is decomposed as a product of closed affine cones 

where !Jlq,n denotes the null cone given in the proof of Proposition 1.3, and 

Recall that 

3~) = 1/l;'(Ofr,o]) = {A E Mp,n(C) I tAA E Ofr,o]} 

= {A E Mp,n(C) I rank tAA $ r}. 

The following lemma is now clear. 

Lemma 2.2 The fiber =1r,0J = 7/J-1(Ofr,o]) is a product 3!J'l x!Jlq,n, and hence it is KcxMc,
stable. The regular function ring breaks up into 

C(21r,oi) c:= C(2~>] t8I C(1Jt9,n] 

as an (O(p, C) x GLn(C)) x (O(q, C) x GLn(C))-module. 

The regular function ring C( 1Jt9,n] consists of precisely the O(q, C)-harmonic polyno
mials in C( M9,n] (see [4], for example). As a consequence, it decomposes in a multiplicity
free manner, 

C(IJtq,n] c:= Le o-tq) [81rµ (as an O(q,C) x GLn(C)-module), (2.1) 
µE'Pn 
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where aiq) denotes an irreducible finite dimensional representation of O(q, C) with highest 
weightµ. Let us decompose C[3~P)] as an O(p,C) x GLn(C)-module, 

C[2~Pl] ~ Lem(>., 17) £T},1') l8I r.,,* (as an O(p, C) x GLn(C}-module), (2.2) 
).,~ 

where m(>., 17) denotes the multiplicity. 
For >. E 'Pn, decompose an irreducible representation rlp) of GLp(C) restricted to 

O(p,C), 

(p)I ~ ~e bA (p) 
T). O(p,C) - L.., ~ O"~ ' (2.3) 

rJE1'n. 

where b~ denotes the branching coefficient. Note that 77 is also a partition of length ::; n. 

Lemma 2.3 The summation in (2.2) is taken over>., 17 E 'Pn; and the multiplicity m(>., 17) 
satisfies the following inequality, 

(2.4) 

where d).,~ denotes Kronecker's delta. Moreover, we have a decomposition 

C[2[r,oi] ~ Le m(>., 17) (at) l8I 0"1q)) l8I (r). • l8I rµ) (2.5) 
A,µ,qE'Pn 

as an (O(p, C) x O(q, C)) x (GLn(C) x GLn(C))-module, where m(>., 17) denotes the mul
tiplicity given above. 

PROOF. Since 2~Pl is a closed subvariety of Mp,n, C[siJ'l] is a quotient of C[ Mp,n]. On 
the other hand, it is well known that C[ Mp,n] decomposes as 

(as a GLp(C) x GLn(C)-module). 

Therefore, we have 

C[ Mp,n] ~ Le b; O"t> l8I rln)* (as an O(p, C) x GLn(C)-module) . 
.\,qE'Pn 

Now the second inequality in (2.4) is clear. The first inequality follows from the fact that 
9'lp,n C 3iJ'l (cf. (2.1)). Q.E.D. 
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Theorem 2.4 We assume that 2n < min(p,q). Then the regular Junction ring of the 
theta lift O[n;r,oJ decomposes as 

C[ O[n;r,oi] '.:::'. LEB m(>.., 77) at> [8J o{q) (2.6) 
A111EPn 

as a Kc= O(p, C) x O(q, C)-module, where the multiplicity m(>,., 77) is given in (2.2) (cf. 
Lemma 2.3). 

We shall prove Theorem 2.4 in the next section. 

Corollary 2.5 (1) We have a multiplicity-free decomposition 

C[ O[n;o,oi] '.:::'. LEB of) [8J aiq) (cf. [4]). 
AE1'n 

(2) If we denote the branching coefficient of the restriction GLp(C) .j, O(p, C) by b~ (see 
(2.3)), the following decomposition holds. 

C[ O[n;n,oi] '.:::'. LEB b; a¥') [8J aiq)_ 
A,11E'Pn. 

3 Harmonic polynomials and geometric quotient 

In this section, we always assume that 2n < min(p, q) as in the former section. 
To prove Theorem 2.4, we study the induced algebra homomorphisms 

rp*: C[s] ~ C[W), and 1/J*: C(s'] ~ C[W]. 

Let us introduce a coordinate on s'. Take ( C, D) E s~ EB s'... = s', where C = ( C;j) and 
D = (D;j) are symmetric matrices. We use {C;j I 1 $ i $ j $ n} U {D;j j 1 $ i $ j $ n} 
as a coordinate on s'. Then 1/J* is given explicitly by 

p q 

1/J*(C;j) = LAkiAkji 1/J*(D;j) = LBliB1j, 
k=l 1=1 

where {A;j = Z;j 11 $ i $ p, 1 $ j $ n} U {B;j = Zp+iJ I l $ i $ q, l $ j $ n} is 
considered as a system of coodinate functions on W which extracts the (i,j)-th element 

of Z = (~) E Mp+q,n(C) = W. Note that the image of the coodinate functions via 'lj;* is 

precisely the fundamental invariants for Kc = O(p, C) x O(q, C), which generate all the 
Kc-invariants in C( W]. Thus 

is surjective. Moreover, we have 
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Lemma 3.1 Assume that 2n < min(p,q). Then the map 7/J*: C[s'] ---t IC[wtc is an 
isomorphism. 

Similarly, if we introduce a coordinate on s by the (k, l)-th element of X = (Xk1) E 
Mp,q(C) = s, we see that 

n 

cp*(Xkc) = L Ak;Bc;, 
i=l 

which is a fundamental invariant for Kc = G Ln (IC). Thus cp* : IC [ 5] • IC [ W tc is 
surjective by the similar arguments as above. Let S[n) = { X E Mp,q(C) I rank X $ n} be 
the determinantal variety of rank n. 

Lemma 3.2 Assume that 2n < min(p, q). Then the image of cp is precisely the determi
nantal variety: cp(W) = S[n)· Thus the induced algebra homomorphism cp* : IC[ S[nJ] ---t 

C[wtc is an isomorphism. 

The proofs of the above two lemmas are almost immediate. We omit them. 

Proposition 3.3 Let O[n;r,•J be the theta lift of Of,,,]· Then O[n;r,a] is the geometric quo

tient of the fiber =1,,•J = -rp- 1 ( Of,,,1) by Kc, i.e. 1 O[n;r,•J = =1r,,J/ / Kc- In particular, we 
have 

C[ Oln;r,,i) :::= C(B1r,,i)«c_ 

PROOF. Let J = I(B[r,s]) be the defining ideal of B[r,s) C W. Then, I = (cp•)- 1(J) is 

the defining ideal of O[n;r,,], since cp(B[r,,]) = O[n;r,s]• Recall that cp• : C[ s] • C[ W] K/: is 
surjective. 

C[ 5] <p* : surjection c[wtc 
projection 1 1 projection 

c[ O[n;r,,il = C[ 5] / [ ~ c[wtc!J«c 

Therefore, we get C[s]/I :::= IC[wtc!J«c. Note that IC[B1r,,i)«c = (IC[W]/J)«c ~ 
C[Wt"/J«c. Thus, the proposition is proved. Q.E.D. 

Let us consider the case where s = 0, and recall the decomposition (2.5). By the 
proposition above, we get 

C[ O[n;r,oi) :::= IC[B1r,0Jtc 

= Le m(>., 1)) ( at 181 aiq)) 181 (TA• 181 rµ).c,.aL.(C). 

A1µ,11E'Pn 
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By Schur's lemma, we have 

Therefore, the above formula becomes 

if>.. 'P µ, 
if>..=µ. 

C[ O[n;r,oJ] ~ Lai m(>.., 1/) a¥')~ aiq), 
>..,11E'Pn 

which finishes the proof of Theorem 2.4. 
Finally, let us assume that r = n, and express the multiplicity m(>.., 1/) by the 

Littlewood-Richardson coefficient c;,v, which is defined by the following formula 

Proposition 3.4 Let O[n;n,D] be the theta lift of the open Kc-orbit O[n,o] in .s~. Then we 
get a Kc-type decomposition 

"'[,;,-] ~ '"'ai ('"' .\ ) (p)"" (q) "- V[n;n,D] - L.., L.., c~. 2µ a~ "" a.\ . 
A,fJE'Pn µE'Pn 

Therefore, the multiplicity m(>.., 1/) in Theorem 2.,/ is given by 

m(>.., 1/) = L c~~2µ, 

µE'Pn 

forr = n. 

PROOF. In this case, we have :::;!fl = Mp,n· Let 1i be the space of all O(p, C)-harmonics 
in C [ Mp,n] . Then we have an isomorphism 

given by the multiplication map. Thus we get 

From the following two decompositions, 

1l ~ C['Y!,,,n] ~ Lai a¥') ~r/ (as an O(p,C) x GLn(C)-module), 
11E'Pn 

C[ .s'+J ~ Lai r2/ (as a GLn(C)-module), 
µE'Pn 
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we conclude that 

c[s~l] :::1-l®C[s~] 

::: LEB u);'l C8l ( Tq • ® T2µ •) 

::: LEB u);'l C8l LEB cq~ 2µ T;. • 

r, 1µEPn AE'Pn 

::: LEB ( L cq~ 2µ) u);'l C8l T;. •. 

A,qE'Pn µE'Pn 

Q.E.D. 

As an application of the above proposition, we get an interesting formula for the 
branching coefficient b~ (see (2.3) for definition). 

Corollary 3.5 If Zn< min(p,q), then we have 

b~ = L Cq~2µ for>., T/ E Pn, 
µE'Pn 

Remark 3.6 The branching coefficient b~ is naturally identified with the multiplicity of 
the K-type T;. in the holomorphic discrete series of Sp(Zn, JR) with the minimal K-type 
Tq, Thus, it does not depend on the particular value p, but only depends on>., T/ E Pn, 

PROOF. This follows from Corollary 2.5 (2). Q.E.D. 

4 Further results and comments 

Let us briefly discuss generalizations of the results above. 
First, we note that we can develop the similar theory interchanging the role of the 

pair (G, G'), if p + q ::; n holds. So, if one of the pair is very small (i.e., if the pair is in 
the stable range), we can define the theta lifting from the smaller member of the pair to 
the larger one. 

Almost all the arguments and results above are also valid for the other type I dual 
pairs with appropriate modifications. However, we must develop a new, unified language 
to describe them in general. For example, at present, we have to construct double fibration 
maps based on the case-by-case analysis. See the arguments in [6] for the pair U(p, q) x 
U(n, n). 

Though the double fibration maps defined here might seem quite ad hoc, we have a 
natural interpretation for them, using the kernels and the images of nilpotent elements 
(cf. [7], [3]). Also there may be another interpretation by using moment maps. These 
interpretations will be useful for a general theory. 
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Our correspondence of nilpotent orbits is intimately related to the theta lifts of repre
sentations of Sp(2n, JR) to O(p, q). The orbits Ofr,o] treated in this note are associated to 
the unitary highest weight representations of Sp(2n, IR) {or its metaplectic double cover). 
In particular, Ofn,oJ corresponds to a holomorphic discrete series representation. There
fore, the theta lift O[n;n,oJ should be associated to the theta lift of a holomorphic discrete 
series. See [8) for the theta lift of the trivial representation, which is associated to the 
trivial orbit Ofo,oJ = { 0}. 

Detailed discussions on the subjects commented above will appear elsewhere. 
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Abstract 

We study various classes of strongly continuous one-parameter semigroups which 
are generated by abstract versions of linear Calogero-Moser-Sutherland Hamiltonians 
for arbitrary root systems. These Hamiltonians contain modifications by exchange 
terms and can be written in terms of Dunk! operators. The semigroups under con
sideration include the generalized heat semigroup and the Schrodinger semigroup 
related with the free abstract Calogero Hamiltonian, as well as the semigroup gen
erated by the Calogero Hamiltonian with harmonic confinement. The latter one is 
closely related with a Dunkl-type generalization of the classical Ornstein-Uhlenbeck 
semigroup. 

1 Introduction 

In recent years, quantum many particle models of Calogero-Moser-Sutherland (CMS) 
type have gained considerable interest in theoretical physics. These models describe sys
tems of identical particles on a circle or line which interact pairwise through long range 
potentials of inverse square type. They are exactly solvable and are therefore of great 
interest for the understanding of quantum many body physics. CMS models have in 
particular attracted some attention in conformal field theory, and they are being used 
to test the ideas of fractional statistics ([Ha], [Hal)). While explicit spectral resolutions 
of such models were already obtained by Calogero and Sutherland ([Ca], [Su)), a new 
aspect in the understanding of their algebraic structure and quantum integrability was 
only recently initiated by [Po) and [He). The Hamiltonian under consideration is hereby 
modified by certain exchange operators, which allow to write it in a decoupled form. 
These exchange modifications can be expressed in terms of Dunkl operators of type 
AN-I• Dunkl operators, as introduced and first studied by C.F. Dunk! ((D1), [D2)), are 
parametrized differential-reflection operators associated with root systems. They extend 
the usual partial derivatives by additional reflection terms. Besides their important role 
in the context of quantum integrable many particle systems, Dunkl operators provide a 
key tool in the analysis of special functions related with root systems. In the present 
paper, we study several classes of one-parameter semigroups which are generated by sec
ond order Dunkl operators. These operators can be seen as abstract versions of linear 
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CMS operators which are associated with arbitrary root systems and are modified by 
exchange terms in the sense of [Po]. After a brief survey on Dunk! operators in Sec
tion 2, the connection of these operators with quantum Calogero models is described in 
Section 3. We then turn to the basic one-parameter semigroup in the Dunk! setting, 
namely the generalized heat semigroup introduced in [Rl ]; it is discussed in Section 4 on 
various function spaces besides ( Co (!RN), 11-11 00 ). When considered for imaginary times, 
the Dunkl-type heat semigroup in a suitably weighted L2-space leads to the solution of 
the time-dependent Schriidinger equation for the free quantum Calogero model. This is 
contained in Section 5. Finally, the last section is devoted to the semigroup generated 
by the Calogero Hamiltonian with harmonic confinement. It can be interpreted as the 
Dunkl-type version of the classical oscillator semigroup, and is closely related with the 
Ornstein-Uhlenbeck semigroup studied in [R-VJ. 

2 Some basic facts from the theory of Dunkl operators 

Let R be a (reduced, not necessarily crystallographic) root system in JRN, i.e. a finite 
subset ofJRN \ {O} with RnlR-o = {±a} and u0 (R) = R for all a ER. Here o-0 denotes 
the reflection in the hyperplane orthogonal to a, which is given by 0-0 (:z:) = x- (o,:z:} ·o, 
with (., .} denoting the standard Euclidean scalar product. We hereby assume that the 
root system R is normalized, i.e. Jaj2 = 2 for all a E R, where 1-1 is the Euclidean norm. 
We further denote by G the finite reflection group generated by {0-0 , a ER}. A function 
k : R • C is called a multiplicity function on the root system R, if it invariant under the 
natural action of G on R. We fix some multiplicity-function k on R, which is throughout 
this paper assumed to be non-negative, i.e. k(o) ? 0 for all a ER. The Dunk! operators 
on JRN associated with G and k are defined by 

'°' J(x) - J(u0 x) 
T;f(x) := 8;J(x) + L.., k(a)a; ( } , 

<>ER+ a,x 

where R+ is an (arbitrary) positive subsystem of R, i.e. (a, /3) > 0 for some /3 E JRN and 
all a E R+- The operators T; can be considered as a perturbation of the usual partial 
derivatives in the parameter k, and many properties of the usual partial derivatives carry 
over to them ([Dl], [D2], [dJ]}; here we mention only the following ones: 

(i) The set {T; , i = 1, ... , N} generates a commutative algebra of differential-reflection 
operators on JRN • 

(ii) The operators T; are homogeneous of degree -1 on the space rrN := C[IRN] of 
polynomial functions in N variables, i.e. if p E rrN has total degree k, then T; p 

has total degree k - 1. 

(iii) If f E Ck(JRN) with k ? 1, then T;f E ck-1(1RN); moreover, if f belongs to the 
Schwartz space .9'(JRN) of rapidly decreasing functions on ]RN, then also T;f E 
.9'(JRN). 
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Of particular importance in our context is the generalized Laplacian, which is defined by 
D.k := E{':,1 T[- It is given explicitly by 

D.k = D. + L k(a)o0 (2.1) 
e>ER 

with 
0 J(x) _ ('v J(x), a) _ J(x) - aaf(x). 
" - (a,x) (a,x)2 ' 

here D. and 'v denote the usual Laplacian and gradient respectively. 

2.1 Example. {Dunkl operators of type AN-1). These belong to the symmetric group 
G = SN, which acts in a canonical way on ]RN by permuting the standard basis vec
tors e1, ... , eN. Each transposition (ij) acts as a reflection a;;, sending e; - ej to 
its negative. On C1(JRN), a;; acts by transposing the coordinates x; and x; with re
spect to the standard basis. The attached root system, of type AN-I, is given by 
R = {e; - e;, 1 ~ i,j ~ N, i f. j}. Since all transpositions are conjugate in SN, 
the vector space of multiplicity functions on R is one-dimensional. The Dunk! operators 
associated with the multiplicity parameter k E IC are given by 

mS !l k "'"'1-a;; 
~i = v; + . L.,---

#i Xi -Xj 

and the generalized Laplacian is 

(i=l, ... ,N), 

1 [ 1 - cr·· 1 t.i = t.+2k I: -- (ai -a;)---'' . 
l$i<j~N Xi - Xj Xi - Xj 

The Dunk! theory provides also a counterpart to the usual exponential function, called 
the Dunk! kernel Ek(x, y). For each fixed y E ]RN, the function x o-+ Ek(x, y) can 
be characterized as the unique solution of the system T;f = y;f ( i = 1, ... , N) with 
f(O) = 1; see [O]. The kernel Ek(x, y) is symmetric in its arguments and has a unique 
holomorphicextension to cN xcN. It satisfies Ek(z,O) = 1 and Ek(>.z,w) = Ek(z,>.w) 
for all z, w E cN and all >. EC. Moreover, Ek has a Bochner-type representation of the 
form 

Ek(x,z) = { e<{,z)dµ~(t), for all z E cN, laN 
where µ~ is a compactly supported probability measure on ]RN with suppµ~ being con
tained in the convex hull of the orbit {gx, g E G}, see [R2]. It follows that IEk(x, iy)I ~ 1 
for all x, y E ]RN , and that 

mine(gx,y) ~ Ek(x, y) ~ maxe<9x,y). 
gEG gEG 

(2.2) 

In particular, Ek(x, y) > 0 for all x, y E !RN. We mention that this positivity result was 
first deduced in [Rl] from the positivity of the associated heat semigroup. The Dunk! 
kernel gives rise to a corresponding integral transform on ]RN with respect to the weight 
function 

wk(x) = IT l(a,x)l2k(a). 

aER+ 
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Notice that Wk is G-invariant and homogeneous of degree 21 , with the index 

1 := ,(k) = :E k(a). 
<>ER+ 

The Dunk! transform on L1 (!RN, wk) is defined by 

where Ck is the Mehta-type constant 

Ck:= r e-lxl'f2wk(x)dx. 
}RN 

This integral transform has many properties which are completely analogous to those 
of the classical Fourier transform. A thorough investigation is given in [dJ]. We re
call from there that the Dunk! transform is a homeomorphism of .9'(JRN ), satisfying 
(T1J)"k(e) = ie1Jk(e). Moreover, it has a unique Plancherel-type extension to an iso
metric isomorphism of L2(JRN, wk), which is also denoted by f >-+ fk. The inverse 
transform is given by rk(x) = Jk(-x). 

3 Quantum Calogero models 

We continue with a short explanation of linear Calogero-Moser-Sutherland models and 
the relevance of Dunk! operators in their algebraic description. The Hamiltonian of the 
so-called quantum Calogero model with harmonic confinement in L2(JRN) is given by 

(3.1) 

here w > 0 is a frequency parameter and k ~ 0 is a coupling constant. In case w = 0, 
(3.1) describes the free Calogero model. The study of this Hamiltonian was initiated by 
Calogero ([Cal); he computed its spectrum and determined the structure of the eigen
functions and scattering states in the confined and free case, respectively. Perelomov 
[Pe] observed that (3.1) is completely quantum integrable, i.e. there exist N commut
ing, algebraically independent symmetric linear operators in L2(!RN) including 1-lc. We 
mention that the complete integrability of the classical Hamiltonian systems associated 
with (3.1) goes back to Moser [Mo]. There exist generalizations of the classical Calogero
Moser-Sutherland models in the context of abstract root systems, see e.g. [0-Pl], [O-P2]. 
In particular, if R is an arbitrary root system on ]RN and k is a nonnegative multiplic
ity function on it, then the corresponding abstract Calogero Hamiltonian with harmonic 
confinement is given by 

with the formal expression 

- ~ 1 
:Fk = D. - 2 L.., k(a)(k(a) -1) (a x) 2 . 

oER+ ' 
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If R is of type AN-I, then ii,k just coincides with 1lc, For both the classical and the 
quantum case, partial results on the integrability of this model are due to Olshanetsky 
and Perelomov [0-Pl], [O-P2]. A new aspect in the understanding of the algebraic struc
ture and the quantum integrability of CMS systems was later initiated by Polychronakos 
[Po] and Heckman [He]. The underlying idea is to construct quantum integrals for CMS 
models from differential-reflection operators. Polychronakos introduced them in terms 
of an "exchange-operator formalism" for (3.1). He thus obtained a complete set of com
muting observables for (3.1) in an elegant way. In [He] it was observed in general that 
the complete algebra of quantum integrals for free, abstract Calogero models is inti
mately connected with the corresponding algebra of Dunk! operators. Since then, there 
has been an extensive and ongoing study of CMS models and explicit operator solutions 
for them via differential-reflection operator formalisms; among the broad literature, we 
refer to [L-V], [K], [BHKV], [BF], and [U-W]. Let us briefly describe the connection of 
abstract Calogero models with Dunk! operators: Consider the following modification of 
Jk, involving reflection terms: 

~ k(a) 
:Fk = 6- - 2 L.J -( )2 (k(a) - O'a). 

oER+ a,:x 
(3.2) 

In order to avoid singularities in the reflecting hyperplanes, it is suitable to carry out a 
gauge transform by Fk· One obtains (c.f. Lemma 3.1. of [R3)) that :Fk is essentially self

adjoint when considered as a linear operator in L2 (1RN) with domain 'D(:Fk) := {w!12 f: 
f E Y(IRN)}. Moreover, 

:Fk = w!12 6-k w-;;112 , 

where 6-k is the Dunk! Laplacian in L2(1RN ,wk) with domain Y(IRN). Consider now the 
algebra of G-invariant polynomials on !RN: 

(ITN)G = {p E IIN : g · p = p for all g E G}. 

It follows easily from equivariance properties of the Dunk! operators ( c.f. [dJ)) that for 
every p E (IIN)G, the Dunk! operator p(T) leaves (ITN)G invariant. For suchp we denote 
the restriction of p(T) to (IIN)G by Res (p(T)). Then, as observed in [He], the family 

is a commutative algebra of differential operators, containing the operator 

Res(6.1<) = w-;;112Awt. 
This implies the integrability of the free Calogero Hamiltonian jk· Polychronakos [Po] 
also succeeded to determine a complete set of quantum integrals for the classical, i.e. 
SN-type Calogero Hamiltonian with harmonic confinement - at least in the physically 
relevant bosonic and fermionic subspaces of L2(IRN). He constructed the integrals by 
a Lax formalism involving suitable lowering and raising operators. For the abstract 
Calogero operator ii,k with harmonic confinement, the general question of how to obtain 
an algebra of quantum integrals is, to the author's knowledge, still open. It is, however, 
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easy to achieve a complete spectral analysis of ii.k, We again work with the gauge
transformed version with reflection terms, 

11.k:= w-;; 112 (-:Fk+w2lxl2)w!12 = -t.k+w2jxj2. 

This operator is symmetric and densely defined in L2(1RN, wk) with domain 'D(tl.k) := 

Y(IRN). Notice that in case k = 0, 11.k is just the Hamiltonian of the N-dimensional 
isotropic harmonic oscillator. We further consider the Hilbert space L2{IRN, mf ), where 
mf is the probability measure 

Moreover, we introduce the operator 

N 

:h := -t.k + 2w Z:x;B; 
i=l 

in L2(1RN, mf ), with the dense domain 'D(jk) := rrN (the polynomials in N variables). 
The following connection between 11.k and Jk is established in the same way as part (2) 
of Theorem 3.4.(2) in [Rl]. 

3.1 Lemma. On 'D(jk) = rrN, 

Jk = ewl:z:1 2/2 (11.k _ (2-y + N)w) e-wl:z:12/2, 

In particular, Jk is symmetric in L2(1RN, mf). 

We conclude with a complete description of the spectral properties of 11.k and Jk; these 
results generalize well-known facts for the corresponding classical operators. In the fol
lowing, Pf; denotes the space of polynomials from IIN which are homogeneous of degree 
n. Notice also that by the homogeneity of t.k, the operator e0~• is well defined on 
polynomials and preserves the total degree. 

3.2 Theorem. For w > 0 and n E Z+ define 

V,;" := {e-~•/4wp :p E P:} C ITN and W~ := {e-wl:z:l212q(x), q EV,;"} C .9'(!RN). 

Then the following assertions hold: 

(1) The spaces L2(1RN, mf) and L2 (IRN, wk) admit the orthogonal Hilbert space decom
positions 

L2(1RN 'mf) = EB V,;" 
nEZ+ 

and L2(IRN,wk) = EB W~; 
neZ+ 

here V,;" is the eigenspace of Jk corresponding to the eigenvalue 2nw, and W~ is 
the eigenspace of 11.k corresponding to the eigenvalue (2n + 2-y + N)w. 

(2) The operators 11.k and Jk are essentially self-adjoint; the spectra of their closures 
are discrete and given by cr(tl.k) = {{2n + 2-y + N)w, n E Z+} and cr(jk) = 
{ 2nw, n E Z+} respectively. 
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Proof. (1) It was shown in Theorem 3.4.(1) of [Rl] that in case w = l, each function 
from Vt is an eigenfunction of Jk corresponding to the eigenvalue 2nw. For arbitrary w, 
the corresponding result is obtained by rescaling. Moreover, Vt .l V,\;' for n cf m by the 
symmetry of Jk• This proves the statements for Jk, because rrN = EB Vt is dense in 
L2(1RN, m';:), The statements for 1ik are then immediate by the previous Lemma. 
(2) follows from (1) by a well-known criterion for self-adjointness of symmetric operators 
on a Hilbert space which have a complete set of orthogonal eigenfunctions within their 
domain (Lemma 1.2.2 of [Da3]). D 

By the G-equivariance of t,.k, the spectral resolution of the Calogero Hamiltonian ii.k in 
the bosonic subspace L2 (RN)G is now an easy consequence of Theorem 3.2. 

3.3 Corollary. For n E Z+, put W,';'•G = {e-wlxl 212e-ll.•/4wp: p E P{; n (IIN)° }. 
Then 

L2(RN)° = EB W,';',G' 
nEZ+ 

and W,';'•0 is the eigenspace ofii.k in L 2(JRN)G corresponding to the eigenvalue (2n+2-y+ 
N)w. 

4 Heat semigroups associated with finite reflection groups 

This section deals with the Dunkl-type analogues of the classical heat semigroup on 
several Banach spaces. These semigroups are generated by the Dunk! Laplacian, and 
they are governed by a generalized heat kernel which was introduced in [Rl] and replaces 
the usual Gaussian kernel in the Dunkl setting. 

4.1 Definition. The generalized heat kernel rk associated with the reflection group G 
and the multiplicity function k is defined by 

rk(t X y) := .....!!!.!:._ e-(lxl2+IYl 2l/4t Ek(~ ....1L) ]RN t 0 ' ' t"l+N/2 ,/2t' J2t ' x,y E ' > 

with Mk= (v+N/Zck)- 1. 

The strict positivity of Ek for real arguments implies that r k is strictly positive as well. 
In the following, we collect some further important properties of this kernel. 

4.2 Lemma. (1) .....!!!.!:._ mine-l9:i:-yl2/ 4t < rk(t x y) :5 -3!!_ maxe-l9x-yl'/4t 
t"l+N/2 gEG - ' , t"l+N/2 gEG . 

(2) ( rk(t,x, y) wk(y)dy = l. }RN 
(3) For fixed t and x, the function y M rk(t,x,y) belongs to .9'(RN), with 

rk(t, x, .)"'k(t) = c;;1e-1lel2 Ek(-ix, {). 

(4) fk(t + s, x, y) = ( fk(t, x, z) fk(s, y, z) Wk(z)dz. }ri!,N 
(5) For fixed y E RN, the function u(t, x) := rk(t, x, y) solves the generalized heat 

equation l:,.ku = 81-u on (0, oo) x JRN. 
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Proof. The estimates (1) are immediate from the bounds (2.2) on Ek- Properties (2) and 
(5) have been shown in [Rl]. The first part of (3) is easily deduced from (1), while the 
second statement follows from the reproducing identity for Ek (c.f. [D3]}, 

r Ek(x, z) E,1;(x, w) e-lxl2!2wk(x)dx = Ck e((z,z)+(w,w))/2 E,1;(z, w) (z, w E cN). (4.1) 
}RN 

For the proof of (4), we use (3) and the Plancherel theorem for the Dunk! transform to 
obtain 

f f,1;(t, x, z) f,1;(s, y, z) w,1;(z)dz = c;;- 1 f e-tl{I' Ek(ix, e)rk(s, y, .)"k(()w,1;(e)~ }RN }RN 
= c;;-2 f e-(s+t)l{l2 Ek(ix, e) E,1;(-iy, e)wk(e)~ = f,1;(t + s, x, y). 

}RN 

We next introduce the generalized heat operators associated with the kernel rk. 
4.3 Definition. For f E V'(JRN, w,1;) (1 $ p $ oo) and t 2: 0 define 

{ f f,1;(t, x, y)f(y) w,1;(y)dy if t > 0, 
H,1;(t)f(x) := }RN 

f(x) if t = 0 

• 

Notice that the decay properties of f,1; assure that the integral defining H,1;(t)f(x) con
verges for all t > 0, x E JRN. We recall the following properties of the operators H,1;(t) 
on the Schwartz space S"(JRN) from[Rl]: 

4.4 Theorem. Let f E S"(JRN). Then u(t,x) := H,1;(t)f(x) belongs to Cb([0,oo) x 
JRN) n C2((0, oo) x JRN) and solves the Cauchy problem 

{
(-6.,1; - 81)u = 0 on (0,oo} x !RN, 

u(0, .) = f. 
Moreover, H,1;(t)f has the following properties: 

(1) H,1;(t)f E S"(IRN} for all t > 0. 
(2) H,1;(t + s) f = H,1;(t)H,1;(s)f for alls, t 2: 0. 
(3) l!Hk(t)f - /11 00 • 0 with t • 0. 

4.5 Lemma. For every t > 0, H,1;(t) defines a continuous linear operator on each of 
the Banach spaces V'(IRN, w,1;) (1 $ p $ oo), (Cb(IRN), 11-11 00 ) and (Co(IRN), 11-11 00 ), with 
norm IIH,1;(t)II $ 1. 

Proof. The estimates for the kernel rk in Lemma 4.2(3) and its normalization ensure 
that for every f E L00 (JRN, w,1;), we have H(t)f E Cb(IRN) with IIH,1;(t)flloo $ llflloo. 
Moreover, if f E V'(JRN, wk), then Jensen's inequality implies that 

IH,1;(t)f(x)IP $ r f,1;(t,x, y) lf(y)IP w,1;(y)dy, 
}RN 

and therefore IIH,1;(t)fl!P,"'• $ llfllP,"'•. Finally, the invariance of Co(JRN) under H,1;(t) 
follows from part (1) of the previous theorem, together with the density of S"(JRN) in 
Co(IRN). • 
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In the following, Xis one of the Banach spaces LP(IRN, wk)(I ~ p < oo) or (Co(IRN), 1\.1\ 00 ). 

We consider the Dunk! Laplacian Ilk as a linear operator in X with dense domain 
V(b..k) := .9'(!RN). 

4.6 Theorem. (1) (Hk(t))t;::o is a strongly continuous, positivity-preserving contrac
tion semigroup on X. 

(2) Ilk is closable, and its closure Kk is the generator of the semigroup (Hk(t))1;::o on 
X. 

In view of this result, we call (Hk(t))t;::o the generalized Gaussian or heat semigroup on 
X. 

Proof. (1) Theorem 4.4(2), together with Lemma 4.5 and the density of .9'(IRN) in X, 
ensures that (Hk(t))t>O forms a semigroup of continuous linear operators on X. Its 
positivity is clear by the positivity of rk. Moreover, in case X = (Co(IRN), I\. 1\ 00 ), 

its strong continuity follows from part (3) of Theorem 4.4. It remains to check strong 
continuity in the case X = LP(IRN, Wk), 1 ~ p < oo. In view of Lemma 4.5, and as 
Cc(IRN) is dense in LP(IRN, wk), it suffices to show that lim1io I\H(t)f - fl\p,w• = 0 for 
all f E Cc(IRN); hereby we may further assume that f;:,: 0. We then obtain 

As lim40 I\Hk(t)f - flloo = 0, a well-known convergence criterion (see for instance 
Theorem (13.47) of [H-St)) implies that lim40 I\Hk(t)f - fl\1,w• = 0. The estimation 

then entails that lim40 I\Hk(t)f - fllp,w, = 0 as well. 
(2) Let A be the generator of the semigroup (Hk(t))t>O on X. As A is closed, it suffices 
to prove that AIY(RN) = l:!.k, and that A = AIY(RN~, i.e . .9'(IRN) is a core of A. The 
proof of these statements is similar to the classical case. To begin with, let f E .9' (IRN). 
Then by Theorem 4.4(1), Hk(t)f E .9'(IRN) for all t > 0, and application of the Dunk! 
transform yields 

[!(Hk(t) -id} f]"k(f.) = !(e-ti{I' - l}fk(f.). 
t t 

It is easily checked that with t + 0, this tends to -lf.12 [k((.) in the topology of .9'(IRN). 
The Dunk! transform being a homeomorphism of .9'(IRN), we therefore obtain 

Jim !(Hk(t)-id)f = (-lf.1 2fktk = 6.kf 
40 t 

in the topology of .9'{IRN), and therefore in 1\- llp,w• as well. It follows that f belongs to 
the domain V(A) of A. Thus .9'(1RN) c V(A), and AIY(RN) = Ilk, Moreover, .9'(IRN) 
is dense in X and invariant under {Hk(t))t;::o, A well-known characterization of cores 
for the generators of strongly continuous semigroups (see, for instance, Theorem 1.9 of 
[Dal)) now implies that .9' (IRN) is a core of A. • 
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The above theorem says in particular that (Hk(t))t>o is a symmetric Markov semigroup 
on L2(JR.N, wk) in the following sense: -

4.7 Definition. ([Da2]) Letµ E M+(JR.N) be a positive Radon measure on JR.N_ A 
strongly continuous contraction semigroup (T(t))i::::o on L2 (JR.N ,µ) is called a symmetric 
Markov semigroup, if it satisfies the following conditions: 

(1) The generator A of (T(t))i::::o is self-adjoint and non-positive, i.e. (Af, f) s; 0 for 
all f E 'D(A); 

(2) (T(t))i::::o is positivity-preserving for all t ~ 0, i.e. T(t)f ~ 0 for f ~ 0; 

(3) If f E L00 (JR.N, µ) n L2(JR.N, µ), then IIT(t)flloo,µ s; ll!lloo,µ for all t ~ 0. 

Theorem 1.4.2 of [Da2] implies the following 

4.8 Corollary. For l < p < oo, the semigroup (Hk(t))i::::o on .LP(IR.N, wk) is a bounded 
holomorphic semigroup (in the sense of [Dal}) in the sector 

{zEC: iarg(z)I < ,r-minG,tn, 

where q is the conjugate index defined by ¼ + ¼ = 1. 

Remarks. 1. For X = (Co(IR.N), 11- lloo), Theorem 4.6 just says that the generalized heat 
semigroup is a Feller-Markov semigroup, i.e. a (strongly continuous) positive contraction 
semigroup on Co(IR.N). This observation was the starting point in [R-V] for the construc
tion of an associated semigroup of Markov kernels on JR.N. It leads to a Markov process 
in JR.N which admits a cadlag version (i.e., there exists an equivalent process whose paths 
are right-continuous and have limits from the left), and which obeys a modified notion 
of translation-invariance. For a detailed study of this Dunkl-type Brownian motion we 
refer to [R-VJ. 
2. It is a basic fact from semigroup theory that for given initial data f E 'D(Kk) c X, 
the function u(t) := Hk(t)f provides the unique classical solution of the abstract Cauchy 
problem 

{
d -dt u(t) = Liku(t) for t > 0, 

u(0) = f; 

here "classical" means u E C1([0,oo),X) with u(t) E 'D(Ek) for all t ~ 0. We refer to 
[Rl] for the solution of the classical initial-boundary value problem for the Dunkl-type 
heat equation, with initial data taken from Cb (JR.N). 

5 The free, time-dependent Schrodinger equation 

Consider again the self-adjoint Dunk! Laplacian Kk in L2 (JR.N, wk)- By Stone's Theo
rem, the skew-adjoint operator i:iS"k generates a strongly continuous unitary semigroup 
(eitX• )t>O on L2(JR.N, wk)- The explicit determination of this semigroup can be achieved 
by standard arguments, see for instance Chapter IX. 1.8 of [Kat] for the classical case. 
First, notice that the heat kernel rk extends naturally to complex "time" arguments, by 

rk(z X y) = __!!!!:._ e-(l:rl2+IYl2)/4 : Ek(-=- y) , , z-r+N/2 2z , 
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for x, y E !RN and z EI[;_ := C\ {w E IR: w ~ 0}; here z'Y+N/2 is the holomorphic branch 
in I[;_ with p+N/2 = 1. We next determine the Schriidinger semigroup on a sufficiently 
large subset of .9'(IRN). 

5.1 Lemma. If J(x) = e-bl:z:12 with a parameter b > 0, then 

eitiS..k J = f rk(it, ., y) J(y) Wk(y)dy for all t > 0. 
}RN 

Proof. Consider the function 

u(t,x) := 1 N/2 e-bl:z:l>/(1+4ibt) (t > 0, x E !RN). 
(1 +4ibt)'Y+ -

(5.1) 

The same calculation as in Lemma 4.3. of [Rl] shows that u satisfies the generalized 
Schriidinger equation 

811.t = iAkU on (0, 00) X !RN, 

with u(0,x) = e-bl:rl2. It is also easily verified that the function t t-t u(t, .) belongs 
to C1([0, oo), L2(1RN, wk)). This shows that eiti5..h J = u(t, . ) for t ~ 0. Finally, the 
reproducing identity (4.1) for Ek implies that fort~ 0, 

1 e-bl:z:12/(1+4bt) = r r (t X y) e-blyl2 w (y)dy. 
(1 + 4bt)'Y+N/2 }RN k , , k 

By analytic continuation, this identity remains true if t is replaced by it. This completes 
the proof. • 
In the following, we shall need the notion of a generalized translation on the Schwartz 
space .9'(JRN), c.f. [Rl]. Its definition is natural: 

Notice that that fork= 0, we just have LKJ(x) = J(x + y). Important properties of the 
usal group translation on JRN carry over to the generalized translation for arbitrary k. 
It is, for example, easily checked that Lt/ belongs to .9'(IRN) again with (Lt J)"k(e) = 
Ek(iy, e) fi'(e). Moreover, LV(x) = L%f (y) for all x, y E ]RN, and the operators Lt 
commute with the corresponding Dunk! operators T; on .9'(1RN ). The following statement 
is obtained exactly as its classical analogue in [Kat], by using the Plancherel formula and 
the injectivity of the Dunk! transform. 

5.2 Lemma. The C-linear hull (M) of the set 

M := {x t-t Lie-bl:rl2, a E !RN, b > 0} 

is dense in L2(1RN, wk). 

We thus have shown that on the dense subspace ( M) of L2(1RN, wk), the linear operators 

Sk(t)j := f rk(it, . , y)f(y) Wk(y)dy, t > 0, 
}RN 
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coincide with the unitary operators e itiS:, . They can therefore be extended uniquely to 
unitary operators on L2(JRM,wk), which are written in the same way, the integral now 
being understood in the L2-sense. In this sense, we have for all f E L2(IR.N, wk), 

eitiS:, f = {lN rk(it, . , y)f(y) Wk(y)dy if t > 0, 

f ~t=~ 
(5.3) 

6 The semigroup of the Calogero Hamiltonian with har
monic confinement 

For a fixed parameter w > 0, consider the Hamiltonian 

N 

:Tk = -f:;.k + 2w I:x181 
j=l 

with domain V(:Tk) := rrN in the weighted Hilbert space L2(IR.N, mk) (c.f. Section 3). 
Notice that :Tk can be interpreted as the Dunkl-type generalization of the classical oscil
lator Hamiltonian in L2(IR.N). In the following, we shall work with generalized Hermite 
polynomials with respect to the measure mk. Generalized Hermite polynomials were in
troduced in [Rl] (for w = 1) by means of homogeneous orthogonal systems with respect 
to a certain bilinear form on polynomials. We give an equivalent definition, which is 
more convenient on the basis of Theorem 3.2: 

6.1 Definition. A family {Hv = Hv(w, . ), v E Z~} C rrN of real-valued polynomials is 
called a system of generalized Hermite polynomials (associated with the reflection group 
G, the multiplicity parameter k and the frequency parameter w), if the following are 
satisfied: 

(i) {Hv, lvl = n} is a Cbasis of V;' for every n E Z+· 

(ii) The Hv, v E Z~ are orthogonal with respect to the probability measure mt on 
1R_N. 

We now consider a fixed system {Hv, v E Z~} of generalized Hermite polynomials 
associated with G and k. We assume in addition that the Hv are even orthonormal with 
respect to mt By definition, they form a basis of eigenfunctions of :Tk in L2(IR.N, mk) 
with 

(6.1) 

We shall need the following Mehler formula, which was shown in [Rl] for w = 1 and is 
obtained for general w by rescaling: 

6.2 Lemma. (Mehler-formula for the generalized Hermite polynomials.) The polynomi
als Hv = Hv(w; . ) satisfy 

L Hv(x)Hv(y)rlvl = Mk(r,x,y) 

vEZ~ 
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with the generalized Mehler kernel 

1 { wr2(lxl2 + IYl2)} ( 2wrx ) 
Mk(r,x,y) = (1-r2)'l'+N/2 exp - 1-r2 Ek 1-r2' y . 

The sum on the left hand side of (6.2) converges absolutely for all x, y E !RN and 0 < 
r < 1. 

According to Theorem 3.2, .:lk is essentially self-adjoint in L2(1R.N, mt). Let (.,.) denote 
the scalar product in L2(JR.N, mt). Then the closure of .:lk is given by 

with domain 

.:lk(f) = L 2lvlw (/, H,,) f, 
vezi 

V(.:lk) = {fEL2(1R.N,mt): L lvl21(!,H,,)l2 < oo}. 
veZt' 

The spectral resolution of .:lk directly implies that -.:lk generates a strongly continuous 
contraction semigroup on L2(JR.N,mt), namely 

e-tT. f = L e-2lvlwt (!, H,, )H,, for all t ~ 0. 

vezi 

According to (6.2), we have 

L e-2lvlwtH,,(x)H,,(y) = M1;(e-2t,x,y) 
vezi 

for all t > 0. It is easily seen from the absolute convergence of the sum on the left, 
together with the orthogonality of the generalized Hermite polynomials, that the function 
y t-t Mk(e-21 ,x,y) belongs to L2(1R.N,mt) for each fixed x E JR.N. This shows that for 
t > 0, 

e-tT. f(x) = f Mk(e-2t,x,y)f(y) mt(y) a.e. 
laN 

6.3 Proposition. (e-t:14 )t>O is a symmetric Markov semigroup on L2(1R.N ,mt) in the 
sense of Definition 4- 7. -

Proof. :J k is self-adjoint and non-negative, and the semigroup ( e -t T.) t>o is positivity
preserving on L2(JR.N, mt), because the kernel Mk is strictly positive. The {H,,, v E Z~} 
being orthonormal with Ho = 1, we further have 

f Mk(e-2t,x,y)dmt(y) = 1 for all t > 0, x E IR.N. 
111.N 

(6.3) 

This implies that the operators e-t:h , t ~ 0 are also contractive with respect to 11- lloo
O 
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As a consequence, the generalized oscillator semigroup ( e -t Y.\>o also allows an 
extension to a strongly continuous contraction semigroup on each of the Banach spaces 
V'(JRN, mk). We introduce the following notation: 

6.4 Definition. For f E £ 1 (JRN, mk) and t :::: 0 set 

if t > o, 

if t = 0 
(6.4) 

6.5 Corollary. (Ok(t))t>o is a strongly continuous, positivity-preserving contraction 
semigroup on each of the- Banach spaces V'(JRN, mn, 1 :5 p < oo. For p > 1 it is a 
bounded holomorphic semigroup in the sector 

{zEIC: larg(z)I < 1r·min(i,i)}, 

where ~ + ¼ = 1. 

Proof. This follows from Proposition 6.3 together with Theorems 1.4.1 and 1.4.2 of [Da2]. 
D 

Direct inspection shows that the Mehler kernel is related to the Gaussian kernel r k via 

The operators Ok(t) can be expressed in terms of the heat operators Hk(t): 

1 -4wt 
Ok(t)f(x) = Hk( -~ )f(e-2w1x) (6.6) 

for all f E Co(IRN) and all t > 0. This implies that (Ok(t))t>O leaves both Co(IRN) 
and .9'(JRN) invariant. It provides in fact a Feller-Markov semigr~up on (Co(lRN), 11-lloo), 
which is a generalization of the classical Ornstein-Uhlenbeck semigroup to the Dunk! 
setting. The essential parts of the following result are contained in Section 10 of [R-V]: 

6.6 Proposition. (Ok(t))t>O defines a strongly continuous, positivity-preserving contrac
tion semigroup on (Co(JRN)~II, IJ 00 ). The Schwartz space .9'(JRN) is a core of its generator 
A, and AIY(RN) = l:J.k - 2w Ef=,1 Xj8j. 

Proof. The first part of the statement has been shown in [R-V]. The proof given there 
implies also that .9'(IRN) is contained in the domain of A, and that AIY(R"') = l:J.k -
2w Ef=,1 Xj8j, Since .9'(JRN) is invariant under (Ok(t))t~o, it is in fact a core of A. • 
Remark. It is also shown in [R-V] that for each f E Cb(JRN), the function u(t,x) := 

Ok(t)f(x) belongs to Cb([O, oo) x JRN) n C2((0, oo) x !RN) and solves the initial value 
problem 

{ Btu = ~l:J.k - 2w Ef=l Xj8j) u on (0, oo) x JP..N, 

u(O, .) - j. 
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Abstract 

In this paper, we give infinite dimensional stochastic processes generated by functions of the 
Levy Laplacian. Moreover we introduce an operator to connect the Levy Laplacian with the 
Number operator and also give a relationship between a (C0)-semigroup generated by the Levy 
Laplacian and an infinite dimensional Ornstein-Uhlenbeck process. 

1. Introduction 

An infinite dimensional Laplacian, the Levy Laplacian, was introduced by P. Levy (17]. This 
Laplacian was introduced into the framework of white noise analysis initiated by T. Hida [4] .. L. 
Accardi et al. [l] obtained an important relationship between this Laplacian and the Yang-Mills 
equations. It has been studied by many authors ( see [l, 2, 3, 5, 7, 8, 13, 15, 16, 18, 21, 22, 23, 
24 etc]). 

In the previous papers [25,26] we obtained stochastic processes generated by the powers of an 
extended Levy Laplacian and also in (29] we obtained stochastic processes generated by some 
functions of the Laplacian. 

The purpose of this paper is to present recent developments on stochastic processes generated 
by functions of the Levy Laplacian acting on white noise distributions based on the idea in [29] 
and to give a stochastic expression of an equi-continuous semigroup of class (Co) generated by 
the Laplacian related to an infinite dimensional Ornstein-Uhlenbeck process following (27]. 

The paper is organized as follows. In Section 2 we summarize some basic definitions and results 
in white noise analysis. In Section 3 we introduce a Hilbert space as a domain of the extended 
Levy Laplacian which is self-adjoint on the domain following our previous paper [27], and we 
give an equi-continuous semigroup of class (Co) generated by some functions of the extended 
Levy Laplacian. In Section 4 we give infinite dimensional stochastic processes generated by 
those functions of the Levy Laplacian. In the last section we give a relationship between the 
semigroup generated by the Levy Laplacian and an infinite dimensional Ornstein-Uhlenbeck 
process. 
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2. Preliminaries 

In this section we assemble some basic notations of white noise analysis following [7, 12, 15, 
19]. 

We take the space E* = S (R) of tempered distributions with the standard Gaussian measure 
µ which satisfies 

l. exp{i(x,m dµ(x) = exp (-~1~15), ~EE= S(R), 

where(·,•) is the canonical bilinear form on E* x E. 
Let A= -(d/du)2 +u2 + 1. This is a densely defined self-adjoint operator on L2(R) and there 

exists an orthonormal basis {ev;v <:'. 0} for L2(R) such that Aev = 2(v + l)ev. We define the 
norm I · IP by lflp = jAP !lo for J E E and p ER, where I · lo is the L2 (R)- norm, and let Ep be 
the completion of E with respect to the norm I • IP- Then Ep ia a real separable Hilbert space 
with the norm I· IP and the dual space E~ of Ep is the same as E-p (see [10]). 

Let Ebe the projective limit space of {EpiP <:: 0} and E* the dual space of E. Then E becomes 
a nuclear space with the Gel'fand triple EC L2 (R) CE*. We denote the complexifications of 
L2 (R), E and Ep by Lb(R), Ee and Ee,p, respectively. 

The space (£2) = L 2(E*, µ) of complex-valued square-integrable functionals defined on E* 
admits the well-known Wiener-Ito decomposition: 

where Hn is the space of multiple Wiener integrals of order n EN and Ho= C. Let Lb(R)®n 
denote the n-fold symmetric tensor product of Lb(R). If cp E (£2) has the representation 

cp = E;:"=oln(Jn), fn E Lb(R)®n, then the (£2)-norm ll'Pllo is given by 

( 
00 ) 1/2 

ll'Pllo = fa n!lfnl5 , 

where I· lo is the norm of Lb(R)®n. 

For p E R, let ll'Pllp = llf(A)Pcpllo, where r(A) is the second quantization operator of A. If 
p <:: 0, let (E)p be the domain of r(A)P. If p < 0, let (E)p be the completion of (£2) with respect 
to the norm II· lip• Then (E)p, p ER, is a Hilbert space with the norm II· lip• It is easy to see 
that for p > 0, the dual space (E); of (E)p is given by (E)-p- Moreover, for any p ER, we have 
the decomposition 

00 

(E) - ffiH(p) p-i;;:v n' 
n=O 

where H!f) is the completion of {In(!); f E E~n} with respect to II· lip• Here E~n is then-fold 

symmetric tensor product of Ee. We also have Hf!')= {In(!); f E Ee®n} for any p ER, where ,p 
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E~~ is also then-fold symmetric tensor product of Ee,p• The norm ll'Pllp of cp = E::"=o In Un) E 
(E)p is given by 

( 
oo ) 1/2 

ll'Pllp = ,; n!lfnl; ' 

where the norm of E~n is denoted also by I· IP• ,P 
The projective limit space (E) of spaces (E)p, p ER is a nuclear space. The inductive limit 

space (E)* of spaces (E)p,P ER is nothing but the dual space of (E). The space (E)* is called 
the space of generalized white noise functionals. We denote by « •, • » the canonical bilinear 
form on (E)* x (E). Then we have 

00 

« 4>, cp »= L n!(FnJn) 
n=O 

for any 4> = E::"=o In(Fn) E (E)* and cp = E::"=o InUn) E (E), where the canonical bilinear 
form on (E~n)• x (E~n) is denoted also by (·, •}. 

Since exp(·,{) E (E), the S-transform is defined on (E)* by 

S(w]({) = exp (-~(U}) « w, exp(·,{) », {E Ee. 

3. An equi-continuous semigroup of class (Co) generated by a function of the Levy 
Laplacian 

Let q, be in (E)*. Then the S-transform S(w] of 4> is Frechet differentiable, i.e. 

s(w](e + 11) = s(w](e) + S(w]'(e)(11) + 0(11), 

where 0(11) means that there exists p;;:: 0 depending on { such that 0(11)/IT/lp • 0 as IT/Ip • 0. 

We fix a finite interval Tin R. Take an orthonormal basis {(n}::"=o CE for L2 (T} satisfying 
the equally dense and uniform boundedness property ( see (7,15,16,18,24, etc] ). Let 'DL denote 
the set of all 4> E ( E)* such that the limit 

exists for any { E Ee and is in S((E)*]. The Levy Laplacian .6.L is defined by 

for 4> E 'DL, We denote the set of all functionals 4> E 'DL such that S[w](11) = 0 for all T/ E E 
with supp(11} C ye by DI, 
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A generalized white noise functional 

is equal to 

<I>= { f(u1, ... , Un) : eia1z(u1) ... eianz(un) : du E 'DI, 
Jan 

f E Lb(R)®n n Lb(R)®n, ak ER, k = 1, 2, ... , n, 

f f(ui, ... , Un) : eia1z(u1) ... /•nz(un) : du 
lr• 

and the $-transform S[<I>] of <I> is given by 

(3.1) 

(3.2) 

This functional is important as an eigenfunction of the operator t::.L. In fact, we have the 
following result: 

Theorem 1.[27] A generalized white noise functional <I> as in (3.1} satisfies the equation 

1 n 

ll.L<I> = -ITI L ai<I>. 
k=I 

(3.3) 

We set 

Dn = {l n f(u) : fr i*-l: du E vf; f E Ec(R)®n} 
T v=l 

for each n EN and set Do= C. Then Dn is a linear subspace of (E)-p for any p,:: 1, and t::.L is 
a linear operator from Dn into itself such that llt::.L <I>!l-p = ]T[ ll<I>ll-p for any <I> E Dn. We define 

a space Dn by the completion ofDn in (E)-p with respect to II· 11-p- Then for each n E NU{0}, 
Dn becomes a Hilbert space with the inner product of (E)-p- For each n E Nu{0}, the operator 
Cl.L can be extended to a continuous linear operator Cl.L from Dn into itself satisfying 

The operator Cl.L is a self-adjoint operator on Dn for each n E NU {0}. 

Proposition 2. [27] Let <I> = E::"=o <I>n, IV = E::"=o IVn be generalized white noise functionals 
such that <I>n and IVn are in Dn for each n EN U {0}. If <I> = IV in (E)*, then <I>n = IVn in (E)* 
for each n EN U {0}. 

Proposition 2 says that E::"=o <I>n, <I>n E Dn, is uniquely determined as an element of (E)*. 
Therefore, for any £ E R, we can define a space E-p,t by 

{ 
co co ( n )2l } 

E-p,l = fa <I>n E (E)*; fa 1 + ITI l!<I>nll:p < oo, <I>n E Dn, n = 0, 1, 2, ... 
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with the norm Ill· 111-p,f given by 

for each e E R and p :C:: 1. For any e E R and p :C:: 1, E-p,t is a Hilbert space with the norm 

111 · 111-p,l· 

Put E-p,oo = nt>l E-p,l with the projective limit topology and put E-p,-oo = Ue>I E-p,-l with 
the inductive limit topology. Then, for any l :C:: 1, we have the following inclusion relations: 

E-p,oo C E-p,t+l C E-p,£ C E-p,l C (E)-p C E-p,-l C E-p,-t C E-p,-l-l C E-p,-oo· 

The space E-p,oo includes Dn for any n E NU {O}. The operator Cl£ can be extended to a 
continuous linear operator defined on E-p,-oo, denoted by the same notation CiL, satisfying 
IIIAL4>Jll-p,£::; 1114>111-p,l+I, 4> E E-p,t+I, for each e ER. Any restriction of l::,.L is also denoted 
by the same notation A£. With these properties, we have the following: 

Theorem 3. The operator AL restricted on E-p,t+l is a self-adjoint operator densely defined 
on E-p,l for each e E R and p :C:: 1. 

Proof We can apply the same proof of Theorem 2 in (27] to this theorem. D 

Let {X1; t :C:: O} be a stochastic process and ex, (z) be a characteristic function of X 1• For each 
t :C:: 0 we consider an operator G[X1] on E-p,-oo defined by 

for 4> = E::'=o 4>n E E-p,-oo• For any <l> = E::'=o <I>n in E-p,-oo, there exists e E R such that 
<l> E E-p,l· Then, for any t :C:: O,p :C:: 1, the norm IIIG(X1]4>1ll-p,e is estimated as follows: 

fo (1 + 1;/t llcx, c;1) 4>nlC 

::; E (1 + J;/e il<l>nll:.P = lll<l>lll:.p,t· 

Thus the operator G(Xt] is a continuous linear operator from E-p,-oo into itself. Moreover we 
have the following: 

Proposition 4. Let {X1;t :C:: O} be a stochastic process. Then the family {G[Xt];t :C:: O} is an 
equi-continuous semigroup of class (Co) if and only if there exists a complex-valued continuous 
function h(z) of z ER such that h(O) = 0 and cx,(z) = eh(,)t for all t :C:: 0. 
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Proof If there exists a complex-valued continuous function h(z) of z ER such that cx,(z) = 
eh(z)t, then it is easily checked that G[Xo] = I, G[Xt]G[X,] = G[Xt+•l for each t, s ;;=: 0. Moreover 
we can estimate that 

IIIG[Xt]<l.> - G[Xto]<I>lll:.p,I E (1 + 1;1flx, c;1) -cx,o c;1) 12 
ll<I>nll:.p 

::; 4; ( 1 + 1; 1) 
21 

ll<I>nll:.P = 4l ll<I>lll:.p,t < 00 

for each t, to ;;=: 0, e E R and iJ.> = I:::"=o il>n E E-p,l· Therefore, by the Lebesgue convergence 
theorem, we get that 

Jim G[Xt]iJ.> = G[X10 ]iJ.> in E_p oo 
H~ ' 

for each to;;:: 0 and iJ.> E E-p,-oo• Thus the family {G[X1]; t ;;=: O} is an equi-continuous semigroup 
of class (Co). Conversely, if {G[X1];t;;:: O} is an equi-continuous semigroup of class (Co), then 

it is easily checked that cx0 ( frr) = 1, ex, ( frr) ex, ( frr) = ex<+, ( frr) for any t, s ;;=: 0 and 

lim1--,10 ex, (m) = ex,0 (frr) for any toe:: 0 and n EN. Therefore, by the continuity of ex,(z) 
of z, we have that ex0 = 1, ex, ex, = ex,+, for any t, s ;;=: 0 and lim1--,t0 ex, = ex,0 for any 
to ;;:: 0. Consequently, there exists a complex-valued function h(z) of z E R such that h(O) = 0 
and cx,(z) = eh(z)t. Since cx,(z) is a characteristic function, the function h(z) is continuous. • 

For any p ;;=: 1 and complex-valued continuous function h(z), z ER satisfying the condition: 

(P) there exists a polynomial r(z) of z ER such that lh(z)I S r(\z\) for all z ER, 

the operator h(-LlL) on E-p,-oo is given by 

h(-LlL)iJ.> = L::°=o h ( JTf) <l>n, for iJ.> = L::°=o il>n E E-p,-oo• 

Theorem 5. If h(z) in Proposition 4 satisfies the condition (P), then the infinitesimal gen
erator of { G[X1]; t ;;=: O} is given by h(-LlL). 

Proof: Let p ;;=: 1 and let iJ.> = I:::"=o <l.>n E E-p,-oo• Then, there exists e E R such that 
iJ.> E E-p,l· Let cl,. be the degree of the polynomial r in the condition (P). Then we note that 

Ill G[X1]t<l> - <l.> - h(-LlL)<l.>IICl-dr = E ( 1 + l;i) 2(1-dr) II ( l(mt- 1 - h (i;I)) <l.>nlC 

(3.4) 
Since eh(z)t is a characteristic function, we note that Re[h(z)] S 0. By the mean value theorem, 
for any t > 0 there exists a constant 0 E (0, 1) such that 

li(ml1 -1l=lh(~)1 Re[h(m)]w< (~) 
t ITI e - r ITI · 
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Therefore we get that 

ll l(ml1 
_ 1 _ (__!:_) 11

2 

t <I>n h jTj <I>n 
-p 

ll(m;t-l _hc;Jj\<I>nll:.p 

~ 4r (i;/ ll<I>nll=-p· 

( ) 2(t-d,) ( )2 
Since there exists a positive constant Cr depending on r such that 1 + frr r frr ~ 

Cr ( 1 + frr) 21
, we have 

oo ( n )2(t-d,) ( n )2 
~ 1 + ITI r ITI ll<I>nll:p < oo. (3.5) 

By (3.4), (3.5) and 

ll(m) 1 _1 (n)j 
/~ t - h ITI = o, 

the Lebesgue convergence theorem admits 

limlllG[X1]<I>-<I> -h(-AL)<I>lll2 =0. 
t• O t -p,t-d, 

Thus the proof is completed. D 

4. Stochastic processes generated by functions of the Levy Laplacian 

In this section, we give stochastic processes generated by functions of the extended Levy 
Laplacian by considering the stochastic expression of the operator G[X1]. 

Let {X1; t 2: 0} be a stochastic process such that {G[Xt]; t 2: 0} is an equi-continuous semi
group of class (Co) and satisfies the condition of Theorem 5. Take a smooth function rrr EE 

with T/T = J1'r on T. Put G[X1) = SG[X1Js-1 on S[E-p,oo] with the topology induced from E-p,oo 

by the S-transform. Then by Theorem 5, {G[X1]; t 2: 0} is an equi-continuous semigroup of 
class (Co) generated by the operator h(-.6.L), where LlL means SALs-1 • 

Theorem 6. Let F be the S-transform of a generalized white noise functional in E-p,oo· Then 
it holds that 

G[X1]F({) = E[F({ + X1T1T)), {EE. 

Proof Put F({) = fr• f(u)ei{(ui) · · · ei{(u,)du with f E E~n. Then we have 

E[F({ + X1rrr)] = fr• f(u)ei{(u,) · · · ei{(u.}E[imx']du 
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= i(#i)1F({) = G[X1]F({). 

Let F = I:~o Fn E S(E-p,00]. Then for any n EN U {O}, Fn is expressed in the following form: 

where (JINl)N is a sequence of functions in E~"- Hence we have 

00 

L E[IFn({ + X17tr)I] 
n=O 

f: E [IimN• oo lfr• j[Nl(u)ei{(u1) ... i{(u.)eiX,J)T(u1) ... eiX,'lT(u,)dul] 
n=O 

f: Iim I r JINl(u)ei{(u1) ... ei{(u.)dul 
n=ON-+co lrn 
00 

L IFn({)!. 
n=O 

Since Fn E S[E-p,oo], there exists some <I>n E E-p,oo such that Fn = S[<I>n] for any n. By the 
characterization theorem of the U-functional (see [12,20,21, etc]), we see that 

00 00 

L IFn({)I :s L ll<I>nll-pll'Pellp 
n=O n=O 

for all { EE and some f. <": 1, where 'Pe(x) =: exp{(x,{}} : . Therefore by the continuity of 
G[X1] we get that 

Thus we obtain the assertion. D 
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n=O 
00 

L G[Xt]Fn({) 
n=O 

G[X1]F({). 



Theorem 6 says that the infinite dimensional stochastic process {( + XtT/T;t 2: O} is generated 
by h(-AL). 

For any <I> E (E)* and 1/ E E, the translation Tq'P of <I> by 1/ is defined as a generalized white 
noise functional Tq'P whose S-transform is given by S[rq<I>](() = S[<I>](( + 11), ( E Ee. Then we 
can translate Theorem 6 to be in words of generalized white noise functionals. 

Corollary 7. Let 4' be a generalized white noise functional in E-p,oo• Then it holds that 

G[Xt]<I>(x) = E[rx,'7T41(x)]. 

By Corollary 7 we can see that {rx,IJT;t 2: O} is an operator-valued stochastic process and 
{E[rx,1JT)i t 2: O} is an equi-continuous semigroup of class (Co) generated by h(-AL). 

Example: Let {Xti t 2: O} be an additive process with the characteristic function cx,(z) of 
Xt for each t 2: 0 given by 

cx,(z) = exp [t{imz- -2v z2 + { (ei•u-1-izu) dv(u) + { (eizu _ 1) dv(u)}], 
/lu\<l /lu\2:1 

where m ER, v 2: 0 and vis a measure on R satisfying v( {O}) = 0 and fa(l /\ lul2)dv(u) < oo. 
Then the function 

h(z) = imz - ~z2 + { (ei•u -1- izu) dv(u) + { (eizu - 1) dv(u} 
2 /lu\<l /lu\2:1 

satisfies conditions of Proposition 5 and the condition (P). Therefore {G[Xt);t 2:: O} is an equi
continuous semigroup of clajCo) generated by h(-AL), The stochastic process {( +XtT/Ti t 2: 
O} is also generated by h(-AL), 

In particular, if {Xl'; t 2: O}, 0 < 'Y ::, 2, is a strictly stable process with the characteristic 
function cx1(z) of x;r given by cx1(z) = e-t\•I', then {( + Xl'T/T;t 2: O} is generated by 

-(-AL)'. 

5. A relationship to an infinite dimensional Ornstein-Uhlenbeck process 

Put 

for q 2: 0 and e 2: 0. Define a space [EJ 9,t by the completion of [E]9,t with respect to the norm 
11 · ll(EJ •. , given by 
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for tp = E~o lnUn) E (E)'. Then [E]q,l is a Hilbert space with norm II· lliEJ,,,· It is easily 

checked that (E]q,l C (E)q for any q ;?: 0. Put [E]oo,t = nq2'.0 [E]q,l with the projective limit 
topology and also put [E]oo,oo = nl2'.1 [EJoo,l with the projective limit topology. 

Define an operator K on [E]00 ,00 by 

Then we have the following: 

Proposition 8. Let p ;?: 1. Then the operator K is a continuous linear operator from (E] 00 ,00 

into E-p,oo• 

Proof Let p ;?: 1. Then for each e ;?: 1 we can calculate the norm IIIK[ip]lll:.p,t of K(ip] for 

tp = E::":o lnUn) E [E]oo,oo as follows: 

jjjK[c,o]lll:.p,l t ( 1 + 1;y jj(: (eix)®n :, fn)ll:.p 

~ t (1 + l;l)t~l! k1,-~=0j~(2k; +W2p ll~l~ (Fv,ek, © ···©ek,)12' 
~ n ®v· 

where II= (111, ... , lln) E NU{O}, jvl = 111+ · -+vn, 11! = 111! ... Vn! and Fv = fR• f(u)®;=16,.;' du. 
Since there exists q ;?: 0 such that 

I: IT (2k; + 2)-2P I L ~ (Fv, ek, 0 · · · 0 ek,) 1
2 

k1 , ... ,k,=O J=I lvl=l 

~ lfnl~n2e(L ~) 2
(I:(2k+2)-2Pjekj:.q)t, 

Jvl=l k=O 

we get that 

IIIK[cp]llj:.p,l ~ t ( 1 + ,;, r en' E:'=o(2k+2)-2(p+9)l/nl~ 

~ t (1+ 1; 1)\n'/21/nl~-

This is nothing but the inequality: 

IIIK[ipJlll-p,l ~ ll'Pll1EJ,,, · 

Thus the proof is completed. D 
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The operator K implies a relationship between 11L and the number operator Non (E)' given 
by 

00 

Nil>= I>In(/n) for <I>= L~=Oln(Jn) E (E)*. 
n=O 

The operator K implies also a relationship between the semigroup { G[Xl]; t ;:: 0} and the 
E'-valued Ornstein-Uhlenbeck process: 

U1 = e-1x + ./2 l e-<t-,)dB(s), t;:: 0, 

where {B(t); t ;:: O} is a standard E'-valued Wiener process starting at 0. Since [E]00 ,00 is in 
(E), we can apply the same proofs of Proposition 5 and Theorem 6 in [27] to get the following 
results. 

Proposition 9. For any <p E [E]00,00 we have 

Theorem 10. For any <p E [E]00,00 we have 

G[Xf]K[,p](x) = K[E[,p(Uf;ITI)]]. 
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1. INTRODUCTION 

Let M bead-dimensional paracompact C"°-manifold and Diff(M) be the group of all 
C00-diffeomorphisms on M. Among the subgroups of Diff(M), we take here the group 
Diff0(M) which consists of all g E Diff(M) with compact supports, that is the set {PE 
Ml g(P) -:f P} is relatively compact. Up to the present time, unitary representations 
(U, 11.) of Diffo(M) or of its subgroups (11. is the representation Hilbert space of U) are 
constructed and considered by many authors. A purpose of this report is a trial to 
construct some differential method to analyze these representations (U, 11.) of Diff0(M) or 
of its subgroups. Roughly speaking, we wish to consider a differential representation of a 
given one. 

So the first step we should do is to define a suitable Lie algebra Yo of Diff0(M), regarding 
it as an infinite dimensional Lie group. For the case of compact manifold, it is well known 
for a pretty long time ago that Diff(M) = Diff0(M) is an infinite dimensional Lie group 
whose modeled space is a nuclear Frechet space called strong inductive limit of Hilbert 
spaces by a few authors, especially by H.Omori.(cf.[12]) So after them, we are naturally 
derived that we should take a set r 0(M) of all C00-vector fields X with compact supports 
as the Lie algebra Yo, and it is appropriate to take a map Exp(X) as the exponential map 
from ro(M) to Diffo(M), where {Exp(tX)}tER is an integral curve along a vector field 
XE ro(M). 

Thus formally we have self adjoint operators dU(X) on 1f. by Stone theorem, 

U(Exp(tX)) = exp(HtdU(X)) for all t ER, 

and simaltaneouly there arise many problems for such dU(X) and for Exp(X). Among 
them the following questions are fundamental. 

(1) Is a common domain of {dU(X)}xEro(Ml rich such one like Garding space? 
(2) Does RdU become a linear representation under suitable restriction of 

the domain of each dU(X) ? 
(3) Is a subgroup generated by Exp(X), XE ro(M) dense in Diff0 (M) ? 

It is easily expected that the linearity of RdU mostly depends on a formula which is 
similar with one derived from usual Campbell-Hausdorff formula, listed as the following 
theorem and actually it was made sure in [19]. (2) is affirmative. 
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Theorem 1.1. Let X, Y E r0(M). Then as n tends to +oo, 
tX tY 

(1) {Exp(-) o Exp(-W converges to Exp(t(X + Y)) , and 
n n 
tX tY tX tY 

(2) {Exp(- y'n) o Exp(- y'n) o Exp( y'n) o Exp( .;nW converges to Exp(-t2 [X, Y]) 

in TK uniformly on every compact interval oft, respectively, where K is any compact set 
containig suppX and suppY, and TK is a toplogy of uniform convergence on K together 
with its every derivative. 

Proof. It is carried out by using C1-hair theory on regular Frechet group. For details 
see [13] and [19]. 

Now the theory of product integral works so effectively on (3). It turns that the above 
subgroup is dense in the connected component Diffo(M) of id, where id is the identity 
map and the topology Ton Diffo(M) is the inductive limit topology of {Diff(K), TK}K,cpt, 
where Diff(K) := {g E Diff0 (M)I suppg ~ K}. It is noteworthy that T never gives a 
group topology, unless Mis compact (cf. [21], [22]), so we must take care of topological 
group operations on Diffo(M). Nevertheless Diffo(M) is normal and it is also arcwise 
connected. In other words, any element in Diffo(M) is homotopic to the identity as a 
map, and vice versa. 

Theorem 1.2. A subgroup generated by Exp(X), X E r0 (M) is dense in the arcwise 
connected subgroup Diff0(M). 

Proof is omitted. (cf.[19]) 

Now as a direct cosequence of (2) and (3), for example, we have that there is no 
continuous finite dimensional representations of Diffo(M) except for a trivial one. 

However for almost all parts concerning the questions (2) and (3), I have already re
ported at several places ( cf. [19] and [201). What I wish to discuss in this paper are 
problems for the first question. Thus in what follows I will write this report fully placing 
the focus on the matters for the first question. The last section is briefly devoted to an 
application of these reults to 1-cocycles. 

2. C00-VECTORS AND QUASI-INVARIANT MEASURES ON THE GROUP OF 
DIFFEOMORPHISMS 

Now to the first question the following is a partial answer which is a main theorem of 
this issue. 

Main theorem. Assume that 
(1) M is a compact Riemannian manifold and 
(2) (U, 1-f.), which is a unitary representation of Diff0(M) at first, has a continuous ex
tension to a larger group Diff'K (M), which consists of all CK -diffeomorphisms g being 
homotopic to id. Then a set ofC00 -vectors is dense in 1-f.. 

Let us show first an idea of the proof and next follow the proof itself. The idea comes 
from the usual locally compact Lie group theory. 
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Idea of the proof For any h E 1i, put 

wh := { Q(f)U(f)h µ(di), Jew, 
where ~(V) is a neighbourhood of id in Difrk+-Y(M) (O < 1 < 1) ( later, this group will 
be explained exactly), Q is a non negative function such that 

suppQ C ~(V) and f Q(f)µ(df) = 1, 
},(V) 

and finally µ is a Diff'k+m(M)-quasi-invariant measure on Diff'k+"Y(M) which was first 
considered by Shavgulidze. Of course m must be taken so largely. In the papers [14], [15] 
and [16], Shavgulidze constructed such a measure. His idea is nice, but there needs some 
corrections to his proofs. So a definite proof of the existence of such a measure is desired. 
Now I'll justify it by the following successive 8-steps. 

2.1. Construction of quasi-invariant measures on the group of diffeomor
phisms. 

1-step Let U ~ Rd be an open set and f be a Ck-diffeomorphism defined on U. 
Take m, £, k E N such that 3m $ £ $ k. Shavgulidze defined a map Au,t,mU) for each 
h1, • • · , ht E Rd as follows. 

where ct; (i = 0, • • • , m) is a real number which satisfies the following equations, 

m m 

I:: ct;= 1, Lt-iCp-j ;C;ct; = 0 (0 $ "j < p, 1 $ "p $ m). 
i=O i=O 

Of course ;C; is the combinatorial number, if i 2'. j and it is equal to 0, if j > i. Further ah 
is a directional derivative along hand df., is a differential of the map fat x. Needless to say, 
here all tangent spaces are identified with each other. Note that Au.t,mU)(x)(h1, • • • , ht) 
defines a ck-t_vector field on U for each fixed h1, • • • , ht. 

Theorem 2.1. If¢ is a Ck+m_diffeomorphism on f(U), 

Au.t,m(<P o f)(x)(h1, .. · , ht) - Au.t,mU)(x)(h1, · .. , ht) 

is a vector field of ck+m-l_class. 

Proof is derived from the usual chain rure and Leibniz formula. (cf. [16]) 

2-step Let us consider a group DifP'+7 (M) (k E N, 0 < , < 1). The defini-
tion is as follows : g E DifP'+-Y(M) if and only if g E DifP'(M) and every derivative of 
order k is Lipshitz continuous of order,. Making a parallel definition of the vector field, 
we obtain a Banach space space fk+"Y(M) with the natural norm and a Banach manifold 
DifP'+"Y(M) via a coordinate map ~ on an open neighbourhood U of O E rk+-r(M) given 
by Omori, 

~(u)(x) := exp., u(x) 
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where exp,, u(x) is a terminal point of a unit geodisic starting at x along the direction u(x). 

3-step In what follows we always assume that 

3m :S 2£ :S k. 

According to Shavgulidze, we extend the previous map Au,u.m to a global one as Au,m 
from Diff"+'l'(M) to rk+"f-u(M) such that 

d d n 

Au,m(/)(x) = L · · · L L Pi(/(x))p;(x)(d'1/J;),i,;-'(z)Au;n,i,;-'(f-•(V,)),2l,m("P;1 of o 1/J,) 
i1=l it=l iJ=1 

( ¢;1 (x) )( h;_,., h;,;1 , h;.,,, h;_,., · · · , h;,;,, h;.,,), 

where{(½, ¢,)}f=t is an atras of M, {p;}f=1 is a partition of unity such that suppp; C ½, 
U; := ¢;1(½) and finally (d¢;),i,,1(:r:J(h;,1), · · · , (#,),i,,•(:r:)(h;,d) is a linear base in a tangent 
space T:r:(M). 

Theorem 2.2. (1) Au,m is a C00 -map from Diffk+..,(M) to fk+..,-u(M). 
(2) Au,m(</> of) - Au,m(/) E fk+m-2l(M), whenever</> E Diffk+m(M). 
(3) Put L := dAu,mlf=ld• Then L is a differential operator of elliptic type with C00 -

coefficient on the vector field. 

Proof It is not hard to see the properties (1) and (2). Let us check the third property. 
Set 

L(u) := dA2t,mlf=ld(u) (u E ~+'l'(M)). 

In a little while let us use notations as below for simplicity. 

y := ¢;1(x),f1(y) := ¢;1oe(tu)o¢;(y), U := U,n¢;1(Vj), and k. := h;,,.{l :S s :Si). 

Then it is easy to see that ~I Au,u,m(/1)(y)(k1, k1 , ••• , kt, kt) is a differential operator 
1=0 

with respect to u with C00-coefficients and the term of order 2£, which is the highest part, 
is given by 

1 m 

(2i)! L ~ o.(dfa'M&k.(I) '' '&k•(2t)d¢;1(u(x))) = d¢; 1od¢j(&k1&k1 '' '&1;,&1;,d¢;1(u(x): 
aE621s-0 

Hence 
d d n 

dAu,m(u)(x) = L · · · L L Pi(x)p;(x)(d¢i),i,-:-'(:r)&1;1&1;1 • • • &1;,8J;,d'1/J;1(u(x)) 
i1=l it=l i,j=l J 

+ terms of order less than 2i. 

Now take any u E fk+'Y(M) and cp E C00(M) with properties, u(x) f, 0, cp(x) = 0 and 
dcp(x) ¥ 0. Then it follows from an equality, 

l 

&1;,&1;1 • •• &,.,&1;,d¢;1((cp2lu)(x)) = (2£)! IT {dcp:r: o d¢,(k,)}2 (d¢_;1):r:(u(x)), 
s=l 

that we have 
n d d l 

L(cp2eu)(x) = (2i)! LL••• L p;(x) II {dcp:r: o d¢,(h;,;,)}2u(x). 
i=l i1=l it=l s=l 
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The linear independence of d'I/J;(h.;,i) (j = 1, · · · d) and the choice of <p lead to that 
dcp,. o d,f;;(h;,;0 ) f 0 for some i0, and so a term corresponding to i1 = i2 = · · · = it = io is 
positive. Thus, we get L(cp2lu)(x) ,f 0. • 

4-step Generalized Hodge theorem. Let E;+-r(M) be a collection of all p-forms 
of class Ck together with all kth derivatives having Lipshitz continuity of order 7, and let 
L be a differential operator of elliptic type of order£ with C00-coefficients on the space of 
p-forms. 

Theorem 2.3. 
E;+-r(M) = L(E;+l+-r(M)) EB ker L• 

E!+'Y(M) = L'(E;+l+-r(M)) EB ker L, 

where EB means an orlhgonal decomposition defined by the 12-norm, in the orientable case, 
with respect to the volume form on the compact Riemannian manifold M. While in the 
non orientable case, it is defined by an inner product on E;+-r(M) defined by 

< w1,w2 >M:=< 8rrw1,6'rrw2 >M, 

where (M, rr) is the the double covering of M, rr is a natural projection, and < •, • >Ai 
is an inner product which defines the L2-structure on Iv/. Further L' is a formal adjoint 
operator of L with respect to these inner products. 

Proof. It is derived from theorem 4.1 in p84 in [17] concerning with interior Shauder 
estimates. 

Note that ker L and ker L' have finite dimensions, respectively, so L(Ek+l+-r) is also 
a Banach space with the induced normed topology. 

Remark 2.1. According to an example 4.1 in p 85 in [17], the above theorem is no longer 
true, even for Laplace-Beltrami operator for the case 7 = 0. This is the reason why the 
7-factor is added to the regularity of diffeomorphisms. 

In what follows, I use the above result for the I-form and identify Ei'+-r(M) with 
rk+-r(M) by the Riemannian metric on M. 

5--step This step is devoted to a definition of a fundamental map A. So let 

be natural projections, respectively, and put 

zk+-r := L(rJ'+'Y(M)) X ker L. 

Now define A : ~(U) 1--+ zk+-r by 

A(/):= (rr~+-r-2l(A2e,m(/)), rr~+-r(C 1(/))). 

Theorem 2.4. There exists a neighbourhood U1 (~ U) of Osuch that A is a C 00 -diffeomorphism 
from ~(U1) to zk+-r_ 
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Proof. It is straightforward to check that dAl1=1d(u) = (Lu, rr~+•(u)), and that it is a 
continuous bijection from rk+,(M) to zk+,_ So the inverse function theorem on Banach 
manifold assures its validity. • 

Of course we may assume that the relations 

~(U1)~(U1) ~ '(U), 

holds good, if necessary, taking a sufficiently small neighbourhood of 0. 

6--step Here we make preparations from a category of Sobolev spaces. Put d* = [ ~] + 1 

and m = 3d' + 2. So the relation of m, e and k now becomes, 

9d' + 6 = 3m :$ 2f :$ k. 

Consider a Sobolev space H•(M) of all vector fields with square summable derivatives of 
order less than or equal to s equipped with the natural Hilbertian norm. Then we have 

f"'+3d"+1-2t(M) C Hk+3cl'+1-2t(M) C Hk+cl'+t-2t(M) C f"'+1-2t(M) C f"'+.-2l(M), 

where the second inclusion map is nuclear and the third one is actually imbedding due to 
the choice of d'. Next let us put 

E'(M) := Cl(L(f8+2t(M)) in W(M). 

Then 
L(rk+3cl'+1(M)) c Ek+3d"+ 1- 2t(M) c Ek+cl'+i-2t(M) c L(f"'+1'(M)), 

where the third set is actually a subset of the last one. For, given any/ E Ek+a•+1-2t(M), 
choose Un}n C L((f"'+cl'+l(M)) such that In--+ f (n---+ oo) in Hk+cl'+t-2t(M). Since 
/n E (ker L').L for all n, the same holds for/, which together with Theorem 2.3 assures 
/ E L(fk+•(M)). 

For the topologies on these spaces, we give the natural Banach topologies on the series 
of L-image of r-spaces and give the Hilbertian topologies on the series of E-spaces. Then 
the all injections are continuous. Now put, 

X = xk,l := Ek+cl'+l-2l(M) X ker L, 

which is a subspace of zk+,, and consider a transformation 

A,.:= AO L,i, 0 A-1 on xk,l 

for all ip E ,(U1) n DifF+m(M). For any (TJ, r) E Xk,t n A(,(U1)), let us write down A,. 
explicitly using its components, 

A,i,(1/, r) := (TJ + FJ(TJ, r), Fj(TJ, r)). 

Theorem 2.5. (1) For (TJ, r) E Xk,t nA(~(Ui)), FJ(TJ, r) belongs to L(fk+3cl'+l(M)) and 
for the map FJ, regarding it as L(rk+3cl'+l(M))-valued map from Xk.t n A(,(U1)), it is 
continuously differentiable. 
(2) A,;; is a local C 1-diffeo11wrphism on xk,t_ 

Proof. The most part of them are derived from Theorem 2.2. • 

7-step Now we shall introduce a basic measure for our arguments. As we have 

seen, H1 := Ek+3d'+t-2l is nuclearly imbedded into H := Ek+d'+t-2t_ Let i be the 
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imbedding map and decompose it into T and U, i = To U, where U : H1 >--+ H is an 
onto isometric operator and Tis a strictly positive-definite nuclear operator on H. It is 
well known that there exists a Gaussian measure 9T with mean O and variance operator 
TonH, 

br(x) (== 1 exp(v-1 < x,y >H)9r(dy)) =exp(-~< Tx,x >H). 

The following is a transformation formula for variable change. 

Theorem 2.6. Let X := H x R• (3 (17, r)), where H is a real separable Hilbert space and 
s EN. Suppose that 

F(17,r) = (17+ Tf1(17,r),h(17,r)) 

is a C1-diffeomorphismfrom an open set U in X to F(U), where f1 is a C1-map from X 
to H and Tis a strictly positive-definite nuclear operator on H. Then for any Borel set 
B ~ U, 

9T ® >.(F(B)) = l exp(-< 17,/1(17, r) >H -~ < Tfi(17, r), f1(17, r) >H) · 

I det(dFc'l,r))lgr ® >.(d17, dr), 

where >. is Lebesgue measure on R• and 

det(dFc'l,r)) := J!..~ det(PndFc'l,r)IXn) (the l-imit surely exists at every point in U), 

Pn is a natural projection from X to Xn := Sp{1J.1, x R• (k = 1, • • • , n)} and finally 17k is 
an eigen-vector of T 

00 

T17 = :~::>1.: < 17, 17k >H 17k, (T1 ~ T2 ~ · · · ~ Tn ~ · · · > 0). 
k=I 

Of course there are more fundamental formulas for variable change, namely without 
finite dimensional component >.. They are also actively now studied by many mathemati
cians. A particular one of these theorems is due to [16]. The above theorem is a simple 
version of this result. 

Now let us return to our case. That is, 

H = Ek+d·+1-2t(M), R• = ker L and F = A,;1. 

Then settling the above arguments, we find that 

Theorem 2.7. For any Borel set B ~ X n A(e(U1)), 

(2.1) 9r®>.(A,;1(B)) = l exp(-< 17,UFJ(17,r) >H -~ < FJ(17,r),UFJ(17,r) >H) · 

I det((dA,;1)c11,r>) IBr ® >.(d17, dr). 

8-step Now we are in a position to define a desired mesure. Define 

µ(E) := 9r ® >.(A(E) n X) 
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Theorem 2.8. There exists a neighbourhood U2(~ U1) of 0 in rk+-r(M) such that for 
any Borel set E ~ ~(U2), · 

µ(Ee L,t,(E)) --, 0, whenever <p---+ id in Diffk+3<1'+2(M). 

Proof. It is done by long but elementary calculations, using standard techniques in 
measure theory and subgaussian poperty described , for example, in p79 in [5). 

The detailed proof is as follows. First we state the following lemma which is an imme
diate consequence of Theorm 2.6 without finite dimensional component >-. 

Lemma 2.1. Let H be a real separable Hilbert space, B be a bounded operator on H, and 
T be a strictly positive-definite nuclear operator on H, which has a form, 

00 00 

Tx == L Tn < x, h,, > hn, T1 2:: · · · 2:: Tn 2:: • · • > 0, 
n=l 

and L Tn < 00. 
n=l 

Further let us assume that Id + TB is invertible. Then a limit 

det(ld + TB) :== J!.,q}, det(ld + PnTBIHn) 

exists, where Hn :== Sp{h1, · · • , h,,} and Pn : H 1--+ Hn is the natural projection. More
over the following formula holds good for Gaussian measure 9T on H and for any but fixed 
continuous non negative bounded function s ji; 0 with bounded support. 

(2.2) k s((Id + TB)-1x)9T(dx) == I det(ld +TB)!· 

k s(x)exp(- < Bx,x >H -i < TBx,Bx >H)9T(dx). 

Lemma 2.2. Under the same notation as in Lemma 2.1, 
(1) det(ld +TB) is bounded on a domain IIBII $ r for any but fixed r > 0. 
(2) I det(ld + TB) I is a continuous function of B with respect to the operator norm. 

Proof. They follow easily from (2.2). 

Returning to our case, we find that by Lemma 2.1, det((dA,t,)(.,,,)) has the follow
ing explicit form, using Gaussian measure 9f on X, where Tis a nuclear operator defined 
by T(T/, r) :== (TT/, r), and using a continuous non negative bounded functions ji; 0 on 
X with bounded support. 

(2.3) I det((dA,t,)(.,,r))I == 11 · l2-\ 

Ii :== ix s((dA,t,)c,,'.,)) (T/1, r'))gt(dT/', dr'), 

/2 :== fxs(T/',r')exp(- < U(dFJ)(.,,,)(T/',r'),T/1 >H - < (dFJ)(.,,r)(T/1,r1)-r',r' >kerL) · 

exp(-i < (dFJ)c.,,,)(T/1, r'), U(dFJ)(,1,r)(T/1, r') >H -ill(dFJ)c.,,r)(T/1, r')-r'llterL)9t(#, dr'). 

Hereafter we will denote the integrand in (2.1) by P,t,(T/,r). Note that FJ(T/,r) is a map 
of C1 class from Xx Diff1'+3d"+2(M) to L(rk+3d"+l(M)) and that FJ(T/,r) is a map of 
C3d"+I class on X x Diff1'+3d"+2(M). Hence there exists a neighbourhood ~(W) of id in 
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Diffl'+3d"+2(M) (WC U1) and a neighbourhood c;(Uf1>) of id in Diff'+-Y(M) (Uf1> ~ Ui) 
such that the followings hold good with a positive constant K1, 

IIFJ(17,r)IIE•+ld'+1-21 $ Ki, ll(dFJ)(71,rJllop $ K1 and 1i(dFJ)(71,r)llop $ Ki, 

for all rp E c;(W) and (77, r) E A(c;(Uf1>)). Thus it follows from Lemma 2.2 and (2.3) 
that the second term in the integrand in (2.1), that is, ldet(dA4i)(.,,rJI is bounded on 

A(c;(Uf1>)) x c;(W). Further by the following elementary estimate of the first term, 

exp(- < 77, UFJ(17, r) >n -~ < FJ(17, r), U FJ(17, r) >n) $ exp(~Kf) exp(K1l177IIE>+•·+1-2t), 

we get 

IP1>(17, r)I $ 3M exp(K1ll77IIE>+«-+1-2t) 

on this region, and the later function is summable with respect to 9T(d17). (cf.[5]) As (2) 
in Lemma 2.2 leads us to 

p4i(17, r) --+ 1, whenever rp--+ id in Diffk+U-+2(M), 

it follows from the bounded convergence theorem that 

f (I) IP4i(77,r)- ll9T(d77)A(dr)--+ o, 
1xnA({(U1 n 

whenever rp--+ id in Diffl'+3d·+2(M). 
Next we take a sufficiently small neighbourhoods uf2>, uf3> ofO in f"'+'Y(M) such that 

uf3) ~ uf2> ~up>, c;(Uf2l)c;(uf2>) ~ c;(Ufll), c;(uf3>)c;(Uf3l) ~ c;(Uf2l), c;(uf3>)-I = c;(Uf3l). 

Moreover from now on till the end of this proof, let us assume that rp belongs to Diffl'+3d"+2(M)n 
c;(Uf3>). Then for any Borel set E ~ c;(uf3>), 

µ(Ee L4i(E)) = 9T ® A(A(E e L4i(E)) n X) 
= 9T ® A(A(E) n Xe Aq1A(E) n X) 
= 9T ® A(A(E) n Xe Aq1(A(E) n X)). 

Given c > 0, take a closed set F and an open set G in X which fulfills, 

F ~ A(E) n X ~ G ~ A(c;(uf3>)) n X and 9T ® A(G\F) < t:, 

and take a continuous function CT on X such that 

Then 

(2.4) 

0 $ CT $ 1, CT = 1 on F and CT = 0 on G0 • 

µ(E6L4i(E)) $ ix IXA(E)nx(17, r)-CT(17, r)lgr®A(d17, dr)+ ix ICT(17, r)-CTq1(17, r) lfJT®A(d17, dr)+ 

j ICT4i(17, r) - XA,,(A(E)nxJ(77, r)l9T ® A(d77, dr), 

where a function CT4> is defined by 

if (77, r) E A,;;(A(c;(Ufl)) n X) 
otherwise. 
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It is easy to see that 

lcr(1J,r)-cr<1>(1J,r)j $ XA({CUl2,>Jnx(1J,r)lcr(1J,r)-cr(A91-1(1J,r))I, 

so the second term in the right hand side in (2.4) converges to 0 according to </J ---> id in 
Diff"+3<1'+2(M). Further a sum of the remainder terms in that inequality is dominated by 

€ + / <'l IP<1>(1J, r) - ljgr ® >.(d1J, dr), 
1A({(U1 ))nX 

by virtue of an obvious inequality, 

IXA(E)nx(11,r)-cr(11,r)I $ xa(1J,r)-XF(1J,r). 

Consequently, for any Borel set E in e(U2), where U2 := ufl, we see that 
µ(Ee L.p(E)) ---> 0, whenever </J---+ id in Diff"+3d·+2(M). D 

Next take a countable dense set {</J;}; from Difrk+3<1'+2 (M) and define 

ji.(B) := La;µ(L.p,(B) ne(U2)) (B ~ Diff"k+'l'(M)), 
i=l 

where a;> 0 (i = 1, 2, •••),and I:;~1 a;= 1. 

Theorem 2.9. ji. is a Dif[<k+m( M)-quasi-invariant and continuous measure on Diff•k+-r ( M), 
where m = 3d' + 2, and 3m $ (2l) $ k. 

Proof. It is evident that ji.(B) = 0 if and only if µ(L¢, (B) n e(U2)) = 0 for all i. 
Now given any </J E Diff"k+m(M), take a sequence </J;; converging to </J and put 'Pi; = rp;</J
Then, 

jµ(L.,.,;(B) ne(U2)) -µ(L¢(B) ne(U2))I $ µ((L¢,/B) e L.,.(B)) ne(U2)) 

= µ((L,.p;(L.,.(B)) e L.p(B)) ne(U2)) 

$ µ(L,.p;(L.p(B) n e(U2)) e L,p(B) n e(U2)) 

+ µ(L,.p;(e(U2)) e e(U2)) ---> 0, (j ---+ oo), 

due to Theorem 2.8. Therefore µ(L,p(B) n{(U2)) = 0, whenever ji.(B) = 0. This shows 
the quasi-invariance. For the continuity it is enough to show that 

v B, vi, µ(L¢,(B e L,p(B)) n e(U2)) ---+ 0, 

whenever </J ---> id in Diff"+m(M). Put 

Then, 

E := L,p,(B) and 1j; := </J;</J¢; 1• 

µ(L.p,(B 9 L.,.(B)) n e(U2)) = µ((E 0 L,i,(E)) n e(U2)) 

$ µ(L,i,(E n e(U2)) 0 En e(U2)) 

+ µ(L,i,(E ne(U2)) e L,i,(E) n{(U2)) 

$ µ(L,i,(E n e(U2)) 0 En e(U2)) 

+ µ(L,i,(e(U2)) e e(U2)) ---+ 0 (¢-+ id). D 

2.2. Existence and denseness of C00-vectors. Let (U, 7-l) be a unitary represen-

tation of Diff"(M) on a compact Riemannian manifold M. Suppose that our unitary 
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representation (U, 1t) has a continuous extension to a larger group Diff'K (M). Take k so 
large that k 2: K. 

Further take a C 00-function p = Pa,b (0 <a< b) on [0, oo) such that 

0 Sp S 1, p = 1 on [0, a], p = 0 on [b, oo), 

and define a function Q on zk+-r by 

Q(77,r) := p(IJ(77,r)-A(id)ll3ch'.x(7J,r)/C, 

where C is a normalizing constant such that L Q(77, r)gT(d77)>.(dr) = 1, and xx is an 

indicator function of X, and 11 · llx is the natural norm. Finally put 

Q(f) = Qa,b(/) := Q(Af) 

Then after long calculations we have the following announced result. 

Theorem 2.10. For any h E 1t define 

wh = w:•b := r Qab(f)U(f)h µ(df). 
le<U,> · 

Then w:•b is a C00 -vector and w:•b converges to h, whenever a, b tend to 0. 

Proof. Needless to say, 

dU(X)h = ! IT=O U(Exp(tX))h (X E r(M) and he 'It), 

and his said to be a C 00-vector of (U, 1t), if and only if dU(X1)(• · · (dU(Xn)h)) exists 
for every n and X 1, • • • , Xn E r( M). Thus for the proof it is enough to see that for any 
n and any s(S n), U(Exp(t1X1) • • • Exp(t,.X .. )) is s-times continuously differentiable 
on a neighbourhood oft := (t1, • • • , t,.) = (0. • • • , 0). Hereafter we always assume that 
suppQa,b C ~(U2). Put 

<Pt:= Exp(t1X1) o · · · o Exp(t,.X,.), and ·1/Jt := Exp(-tnXn) o · · · o Exp(-t1X1). 

Then 
U('I/J1)wh = { Q(A- 1 (77, r))U('I/Jt o A- 1 (77, r))h 9T ® >.(d77, dr), 

}A({(U2))nx 

and for sufficiently small [ti := ltd+ · · · + lt,.1, 

(2.5) U('I/Jt)Wh = { Q(A-1 A4>, (77, r))p4>, (77, r)U(A- 1 (77, r))h 9T ® >.(d17, dr), 
lA({(U3))nX 

where U3 := uf2> which was already given in the proof of Theorem 2.8. Thus for the proof 
we must check differentials of Q(A- 1 A,;i,(77, r)) and P>1>,(77, r) with respect tot. 

First note that by the definition of Q and p, the integration in (2.5) is actually carried 
out over a set of (77,r) satisfying IJA,;1,(77,r) -A(id)lli Sb. Next, since the map 
A4>(77, r) : Diff'+3d"+2 (M) x X >---+ X is continuous, so for a sufficiently small ltl and 
for such ab, the above inequality implies that IIA,i,,(A911 (77,r)) -A(id)llx S 1. In other 
words, an actual integral domain D in (2.5) may be assumed to be bounded. 

Now let us consider first the differentials of P,;1, (17, r), and so recall the definition of 
FJ, and FJ,. Namely, 

(2.6) FJ, (77, r) = 1T~+3d' +l-2l(Au,m(<Pt of) - A2,,m(f)), 
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(2.7) 

where f := A-1(17,r). Further let us denote a terminal point of unit geodisic starting at 
x along a direction u by K(x, u) and denote a tangent vector at x of unit geodisic with 
an initial point x and a terminal pointy by J(x, y). Then Kand J are C00-maps on the 
tangent bundle on Mand on M x M, respectively. Since for the maps f =: e(u) and 
¢1 =: e(vi,,-·•,tn) we have, 

</Jt o J(x) = K(K(x, u(x)), Vt,,-•-,t. (K(x, u(x))), 
Vt 1, ••• ,1• (x) = J(x, Exp(t1X1) o · · · o Exp(tnXn)(x)), 

e-1 (ef>t O J)(x) = J(x, K(K(x, u(x)), Vt,,---,dK(x, u(x)))), 

so FJ,(17,r) and FJ,(17,r) are infinitely differentiable maps with respect tot. Further 
somewhat long and complicated calculations lead us to that there exists 81 > 0 such that 

(2.8) ll&:FJ,(17,r)IIE>+•,,.+1-21 and ll&:FJ,(17,r)ll1re,L are bounded 

for any !ti< 81 and (17,r) ED. Thus the derivatives of the first term of P,i,,(17,r), that is, 

1 1 I 1 exp(-< 17,UF,i,,(11,r) >E>+,,.+1-21 - 2 < F,i,,(f!,r),UF,i,,(f!,r) >E•+«-+1-2t) 

are also bounded and continuous. While for the second term in that function, namely 
ldet((dA),i,,(f!,r))I, we take, in the present case, u(f!,r) := p(ll(f/,r)lli) as the functions 
in (2.3) and write it down as follows. 

/1 (t, f/, r) := L u(f/1 + (dFJ,)(,,,r)(f/1, r'), (dFJ,)(,,,r)(f/', r'))gi'(df/', dr'), 

(Since (f/, r) E A(e(U3)), we see that a support of the above integrand is bounded as far 
as ltl is sufficiently small) 

/2(t, f/, r) := L exp(- < U(dFJ.)(,,,r)(171, r'), f/1 >EH«-+1-2t - < (dFJ,)(,,,r)(f/1, r')-r', r' >i.,,L)· 

exp(-~ < (dFJ,)(,,,,)(f/1, r'), U(dFJ,)(,,,r)(f/1
, r') >EH«-+1-2, -~ll(dFJ.)(,,,r)(f/1, r')-r'llferL)· 

u(f/', r')gi'(df/1, dr'). 

Then by virtue of the previous arguments, /i(t,f/,r) and /2(t,f/,r) are bounded for any 
(f/, r) E A(e(U2)) n X and for any ltl < 3~. 

Next let us observe O:(dFJ,)(,,,r) and O:(dFJ,)(,,,r)• Since 

(dFJ,)(,,,r)(f/1, r') = ! lr=O 1rk+:ld"+1-2l(A2t,m(</JtoA-1(f/+Tf/1, r+rr'))-Au,m(A-1(17+Tf/1, r+rr'))), 

so changing f = A-1(17,r) to fr= A- 1(f!+r17',r+rr'), together changing u := e-1(!) to 
Ur:= e-'Ur), and proceeding in the same manner as before, we have 

for any (f/,r) E A(e(U3)) n X (if necessary, taking a smaller neighbourhood U~ in place 
of U3), for any [ti < 383 and for any (171, r') in any but fixed bounded domain. The same 
estimate holds for [[8t(dF;,)(,,,r)(l7', r')llxerL· By the above, O:I det(dA,i,, (17, r))I surely 
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exists and it is bounded and continuos on the integral domain. Therefore the same con
clusion for P<1>,(TJ,r) follows directly. 

Lastly for the function Q(A- 1 ~. (TJ, r)), we have 

Q(A- 1~.(TJ,r)) = Q(A,p,(TJ,r)) = c-1p(ll(TJ+ F;,(TJ,r),F;,(TJ,r))-A(id)lli,). 

So there follows from (2.8) that &fQ(A- 1A<1>,(TJ,r)) is continuous and bounded for the 
same region. 

Consequently the s-th derivative of the integrand is continuous and bounded for any 
ltl < min(t1 , t2 , t3 ) on the integral domain. Therefore w:•b is a C 00-vector. The rest of the 
proof is obvious. • 

3. APPLICATION TO 1-COCYCLES ON THE GROUP OF DIFFEOMORPHISMS 

The rest of this issue is devoted to an application of these results to 1-cocycles. So let 
us introduce the notions of them briefly. 

Assume that a subgroup G of Diffo(M) acts on a measurable space (X, !B) from left 
(g, x) E G x X - gx E X. 

A U(H)-valued function 0 on Xx G, U(H) is the unitary group of a complex Hilbert 
space H, is said to be 1-cocycle, if 

"g1,g2 E G, "x EX, 0(x,g1)0(g11x,92) = 0(x,g192). (cocycle equality) 

For regularity of 1-cocycles, several notions have been considered. Some of them are as 
follows. 

Definition 3.1. (1) 0 is said to be precontinuous {==} "x0 : fixed, 0(x0 ,g) is continuous 
on a stabilizer group, G(xo) := {g E GJ gxo = xo}-
(2) 0 is said to be continuous{==} "xo: fixed, 0(xo,g) is continuous on the whole group, 
G. 
(3) 0 is said to be measurable{==} "g0 : fixed, 0(x0 ,g) is !B-measurable. 

We remark that someimes (3) implies (1), for example, under an assumption of dense
ness of C 00-vectors. (cf. pl38-140 in [9]) 

Now for the present discussions, I pick up the following two spaces as X, since they are 
standard for the representation theory on the group of diffeomorphisms. 

Finite configuration space B'if which is a collection of all n-point subsets in M. It 

is also a quotient space of Mn, where Mn := {P = (Pi,••• , Pn) E Mnl "I{ =J P;}, and 
the equivalence relation is defined in an obvious way. 

Infinite configuration space rM which is also a quotient space of M00 .- {P 
(Pi,··· , Pn, · · ·) E M 00 1 "P; =J P;, and {Pn}n has no accumulation points}, and 
the equivalence relation is similar with the above one. In this case we should assume 
that M is non compact. Of course Diflo(M) acts on these spaces diagonally as, {J(P) := 
(g(Pi),··· ,g(Pn),···). 

Now let 0 be a 1-cocycle on the finite or infinite configuration space. Then there 
correspondes one to one a symmetrical cocycle on the product space to 0. Thus it is rea
sonable to observe a cocycle form on the product space M" or M00 • Also for the sake of 
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limit of pages and for simplicity, we will confine ourself to these situations. 
Then the differential methods which we have seen lead us to the following theorem 

determining a local form of 1-cocycles. 

Theorem 3.1. (Local form ofprecontinuous l-cocycle) 
Let O be a U(H)-valued precontinuous 1-cocycle on Mn x Diflij(M), and assume that 
dim(H) < oo. Take an arbitrary finite Euclidean smooth measureµ on M. Then for any 
Q E Mn there exist a relatively compact open neighbourhood ofV(Q) of Q, a U(H)-valued 
map C defined on V(Q) and a commutative system of self-adjoint operators {Hkh:Sk:Sn 
on H such that 

(3.1) 

provided that ( P, g) satisfies the following condition. 

(*) There exists a continuous path {g1h,:;t:,1 C Diff0(M) such that 9o = id,g1 = g 
and"t,g11(.P) E V(Q). 

If moreover O is continuous, then so is the map C. 

Of course a global form of 1-cocycle will be obtained by patching up these local results. 
However difficulties arise because of non uniqueness of the above map C, which forms so 
called coboundary term. Roughly speaking we will meet a similar situation with many 
valuedness problem to analytic continuation. So some geometrical conditions on M are 
required in order to obtain a global result. One direction is as follows. ( cf. [20]) 

Theorem 3.2. ( Global form of precontinuous 1-cocycle ) 
Under the same notation in the above theorem and under the assumption that Mn is sim
ply connected, (3.1) gives a general form of precontinuous 1-cocycle. 

Remark 3.1. (1) In oder that Mn is simply connected, it is sufficient that Mis simply 
connected and dim M 2: 3 , thanks to dimension theory. 
(2) Theorem 3.2 is no longer trure, unless Mn is simply connected. ( cf [19], [20]) 

A cocycle form on M00 , in a special case that M is simply connected, is described in 
the following last theorem. 

Theorem 3.3. (1) Suppose that Mis simply connected, dim(M) 2: 3. and dimH < oo. 
Then the general forrn of precontinuous U ( H)-valued 1-cocycles on M00 x Diflii ( M) is as 
follows. 

(3.2) 
oo v-IH):'1 

o(P,g) = c(P)- 1 IT (~9 (Pk)) c(g-1(P)), 
k=I µ 

where C is a U(H)-valued map on M00 , and {Hf1h is a commutative system of self
adjoint operators on H depending on the residue class [P] defined by [P] := {Q E 
M00I Qn = Pn except finite numbers of n}. 
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Finally I wish to mension a few words about natural representations formed by mea
sures and 1-cocycles. Their irreducibility and equivalence are also examined by similar 
methods established here and they are characterized by the above theorems. 

Acknowledgement I express my thanks to Professor N. Shimakura at Tohoku Univer
sity for giving me impotant facts for generalized Hodge theorem. 
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FREE PROBABILITY THEORY AND FREE 
DIFFUSION 

ROLAND SPEICHER* 

1. INTRODUCTION 

Free probability theory was introduced and developed by Dan 
Voiculescu in an operator algebraic context, but has since then turned 
out to possess links to a lot of quite different fields of mathematics and 
physics. I will give a short general introduction into the basics of free 
probability and illuminate certain aspects of that theory (in particular, 
the analogy between classical and free probability theory) by a closer 
look at free diffusion. 

An extensive presentation of the basic theory of free probability is 
given in the monograph [VDN), whereas for getting an impression of 
the diversity of this field one should consult [V2, V3). 

2. FREE PROBABILITY THEORY 

Free probability theory was introduced by Dan Voiculescu around 
1985 as a tool for investigating the structure of special von Neumann 
algebras. Voiculescu separated from that concrete context the following 
abstract concept of 'freeness' and found it worth to be investigated on 
its own sake. The definition and the main properties of freeness do not 
require an operator algebraic frame, but can be formulated on the level 
of unital algebras and unital linear functionals. 

Definition 2.1. Let A be a unital algebra and cp : A • C a linear 
functional with cp(l) = 1. 
1) Let A1, ... , Am C A be unital subalgebras. The subalgebras 
A1, ... , Am are called free, if cp(a1 · • • ak) = 0 for all k E N and all 
a; E Ai(i) (1 $ j(i) $ m) whenever cp(a;) = 0 for all i = 1, ... , k, 
and neighbouring elements are from different subalgebras, i.e., j(l) # 
j(2) # · · · # j(k). 
2) Elements a1, ... , am E A are called free, if Ai, ... , Am are free, 
where, for i = 1, ... , m, A; := alg(l, a;) is the unital algebra generated 
by a;. 

*Supported by a Heisenberg-Fellowship of the DFG. 
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Voiculescu chose the name 'free' because the basic example where 
such situations occur are von Neumann algebras which are constructed 
from free groups (the so-called free group factors). 

The basic philosophy for the investigation of the concept 'freeness' 
is to consider it as an analogue of the concept 'independence' from 
classical probability theory. Hence we are using a probabilistic kind of 
language and are usually guided by concepts and ideas from classical 
probability theory. In this sense, the theory of freeness can be consid
ered as a part of non-commutative probability theory and it is usually 
referred to as 'free probability theory'. 

Let us first introduce some general notions from non-commutative 
probability theory. 

Notations 2.2. A pair (A, rp) consisting of a unital algebra A and a 
unital linear functional rp : A -+ C is called a (non-commutative) 
probability space, elements a1, ••• , am from the given algebra A 
are called random variables and expressions like rp(a;ci) • • • a;(k)) are 
called moments. The collection of all moments, for all k E N and 
all 1 :5 j(l), ... ,j(k) :5 m, is called the (joint) distribution of the 
random variables a1, ... , am. 

Remark 2.3. One should note that in the case of one self-adjoint 
bounded random variable a = a• E B(1l), one can identify the so
defined distribution of a indeed with a probability measure µ on JR by 
the requirement that the moments of a coincide with the moments of 
µ, i.e. 

(1) for all n EN. 

In that case we will denote this probability measure also with distr(a). 
In general, the distribution of random variables cannot be identified 
with some kind of probability measure, but is just a collection of num
bers. 

Examples 2.4. Let us now give some examples of probability spaces 
and distributions in this general algebraic sense - in order to become 
familiar with this kind of notations and to introduce some basic frame 
for our later investigations. 
1) Classical probability spaces. Classical probability spaces 
(!l, Q, P) - consisting of a set n, a o--algebra Q of measurable sub
sets of n and a probability measure P on n - can be treated in this 
frame by setting, e.g., A= L'"'-(!l) := U~1V'(!1) and where rp =Eis 
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the expectation 

(2) cp(X) = L X(w)dP(w) (XE A). 

2) Matrices. Let, for n E !II, A = Mn be equal to the n x n-matrices. 
A canonical state on this is given by the normalized trace cp = tr, i.e., 
for a= (aii)iJ=l EA we have 

1 n 
(3) cp(a) = - L ll;i• 

n i=l 
One should note that for self-adjoint matrices a = a• the distribution 
distr(a) is nothing but the eigenvalue distribution of a, i.e., if ,\1 , ... , An 
are the (real) eigenvalues of a, then distr(a) is that probability measure 
on JR which puts mass 1/n on each of the eigenvalues, i.e. 

1 n 
(4) distr(a) = - t" O>, .. 

n~' 
i=l 

3) Random matrices. Random matrices are a combination of (1) 
and (2), namely matrices whose entries are classical random variables: 
A = Mn ® £00-{!1) and cp = tr® E, i.e., a E A are of the form 
a= {%):'J=l' where the entries% E £ 00-(!1), and 

(5) 1 n 1 n l 
cp(a) = E[- La;.]= - L a;,(w)dP(w). 

n i=l n i=l n 
In the case of a self-adjoint random matrix a = a•, the distribution 
distr(a) is the averaged eigenvalue distribution of a. 

To enrich the general frame of non-commutative probability theory 
by some substance one has to add additional structure. In free prob
ability theory this is the concept of 'freeness'. In analogy with the 
concept 'independence' it should be considered as a rule for calculating 
mixed moments in free random variables. This might not be directly 
clear from the definition, so let us present some examples to get familiar 
with the concept of freeness. 

Examples 2.5. Let x and y be free random variables (with respect 
to a given unital functional cp). We want to calculate some mixed 
moments in x and y. 
1) The simplest mixed moment is cp(xy). The definition of freeness 
tells us immediately that cp(xy) = 0, if cp(x) = 0 and cp(y) = 0. But 
we can also reduce the general case to the definition by going over to 
centered variables: since :i; := x - cp(x)l is an element from the unital 
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algebra generated by x with the property rp(.i) = 0, and similarly for 
if:= y - rp(y)l, we have that rp(xy) = O; however, by linearity, we also 
have 

0 = rp(xy) = rp((x - rp(x))(y - rp(y))) = rp(xy) - rp(x)rp(y). 

Hence we have in general for free variables x and y that 

(6) rp(xy) = rp(x)rp(y). 

2) The mixed moment rp(xxyy) calculates in the same way by going 
over to the centered variables: 

yields 

(7) 

rp((x2 _ rp(x2))(y2 _ rp(y2))) = 0 

rp(xxyy) = rp(xx)rp(yy). 

3) Let us also consider a more complicated mixed moment: 

rp((x - rp(x))(y - rp(y))(x - rp(x))(y - rp(y))) = 0 

leads to 
(8) 

rp(xyxy) = rp(xx)rp(y)rp(y) + rp(x)rp(x)rp(yy) - rp(x)rp(y)rp(x)rp(y). 

Remarks 2.6. 1) The last example shows that freeness gives a differ
ent result than independence. Although both concepts are analogous, 
they provide different rules for calculating mixed moments. In particu
lar, freeness is not a non-commutative generalization of independence. 
2) If x and y are classical random variables, then, in particular, they 
commute, i.e. we have in this case that rp(xxyy) = rp(xyxy). However, 
for x and y free we have quite different expressions for these two mixed 
moments and one can easily see that they can only agree if at least 
one of the two variables is a constant. Thus classical random variables 
are, apart from trivial cases, never free. Freeness is really a concept for 
non-commuting variables. 
3) As the last example above indicates the formulas for mixed moments 
in free variables are more complicated than the corresponding formulas 
for independent variables and it is not clear from the definition of free
ness how the structure of a general mixed moment can be described. 
However, there is a nice combinatorial structure behind these formu
las. I have shown that their structure is ( via so-called free cumulants) 
governed by the lattice of non-crossing partitions ( see, e.g., the survey 
[Sp2]). This description is totally analogous to the description in clas
sical probability theory via cumulants and the lattice of all partitions 
and it provides an alternative approach (compared to the analytical 
approach of Voiculescu) to the theory of free random variables. 
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Let me end this short introduction into the generalities of free prob
ability theory by pointing out that there are two fundamental types 
of examples for free variables: The definition of freeness is modeled 
according to the situation occurring in free group factors, thus it is not 
very surprising that special operators in free group factors ( or more 
concretely, special operators on full Fock spaces) are free. But there 
is also a totally different context where free variables arise, namely it 
is one of basic results of Voiculescu [Vl] that special n x n-random 
matrices become free in the limit n -+ oo. I will be more concrete on 
such types of examples when I present the free Brownian motion. 

3. FREE DIFFUSION 

As pointed out before one of the basic philosophies in free probability 
theory is to consider freeness as an analogue of independence. Thus one 
tries to develop a free theory which goes parallel to classical probability 
theory. Astonishingly, this analogy is very far reaching and there exist 
a lot of (non-trivial) free counterparts of classical results. 

In the following I want to illuminate this general statement by a 
recent joint work [BSpl, BSp2] with Philippe Biane on free diffusion. 

3.1. Classical diffusion. Let me first explain what I mean with the 
corresponding classical notion. If V : JR -+ JR is a sufficiently nice func
tion ( called potential in the following), one can consider the classical 
diffusion in this potential. On one side there is a probabilistic construc
tion of this object, namely it is a stochastic process {X1)i>o which is 
given as the solution of a special stochastic differential equation. What 
I call here 'diffusion in the potential V' is the solution of 

{9) dXt = -~V'(Xi)dt+dBt, 

where Bi is classical Brownian motion. 
There exists also an analyical aspect of this diffusion, namely if we 

denote, for fixed t ~ 0, by distr{X1) the distribution of the random 
variable Xi, then this is a probability measure on JR which has a density 
with respect to Lebesgue measure. Denote this density by p1• Then 
one can write down a differential equation for the time evolution of this 
density, namely 

{10) 8p1(x) = !i_ [(i_ V'( )) ( )] 8t 28x ax+ x Pt x . 

This linear partial differential equation is usually called the Fokker
Planck equation of the corresponding diffusion and, from an analytical 
point of view, one can consider the diffusion also as a solution of that 
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equation. Furthermore, there exist also connections between such dif
fusions and classical entropy. 

The problem which I want to address in the following is whether 
there exist a free counterpart of these statements, i.e., can we define a 
free diffusion as a solution of a free stochastic differential equation and 
is there a corresponding free Fokker-Planck equation. In order to speak 
about free stochastic differential equations, we first have to introduce 
free Brownian motion. 

3.2. Free Brownian motion. In analogy with classical Brownian mo
tion one could define free Brownian motion [Spl] abstractly as a (non
commutative) stochastic process, i.e. a collection (Si)t>o of random 
variables, which have the properties that their increments are free and 
that the distribution of the increments is given by the free analogue 
of the Gaussian distribution (which is what one gets as the limit dis
tribution in a free central limit theorem). It is easy to verify that, 
by abstract reasons, such an object exists and that its distribution is 
uniquely determined. Fortunately, there are also nice concrete realiza
tions of free Brownian motion. 

Examples 3.2.1. In the spirit of the last statement in Sect. 2 there 
exist two such realizations, a functional analytic one by concrete oper
ators on Fock spaces and a probabilistic one by random matrices. 
1) Realization on full Foclc space. Denote by 1i the Hilbert space 
1i := L2 (lR+) and Jet 

(11) :F(1i) := ?i®O El) ?i®l EB 1i®2 EB ••• 

be the full Fock space over 1i, where ?f.®O is a one-dimensional Hilbert 
space which we write in the form 1i®0 = en for a distinguished vector 
n of norm l. n is also called vacuum. For each vector I E ?i, we define 
on :F(1i) a creation operator l(f) and an annihilation operator l*(f) 
by linear extension of 

(12) 

and 

(13) 

(14) 

1(/)11 (81 '' '(81 In =I® Ii (81''' (81 In 

l*(f)fi ®·--®In= (/,11)'2® ···®In 
Z*(f)n = o. 

The operators l(/) and l*(/) are bounded and adjoints of each other. 
Now put 

(15) S1 := 1(110,1)) + 1*(110,1)), 
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where l[o,t) is the characteristic function of the interval [O, t). Then 
it is quite easy to check that (Se)t>o is with respect to the vacuum 
expectation state cp, given by -

(16) cp(a) := (n, an), 

indeed a free Brownian motion. 
The von Neumann algebra generated by all Se (t ~ 0) is isomorphic to 
a free group factor, and this example comes from the original context 
of Voiculescu's investigations on the free group factors. Thus the ap
pearance of freeness in this context is not very surprising. 
2) Realization by random matrices. Let, for 1 ~ i ~ j < oo, 
B;;(t) be independent classical real-valued Brownian motions, and put 
B;;(t) = B;;(t) for j > i. We put now these Brownian motions as 
entries in a matrix, i.e. we consider the selfadjoint random matrices 

(17) (n) 1 ( ( ))n xt := In B;; t i,j=l 

in the probability space (Mn® £ 00-(0), \O(n) =tr® E). (These special 
random matrices are usually called Gaussian random matrices.) Then 
the basic result of Voiculescu [Vl] on the connection between freeness 
and random matrices tells us that the processes (Xt))t>o converge in 
distribution, for n • oo, towards the free Brownian motion (St)t>O• 
This means that -

(18) ;~ cpCnl(xtl · · · xtl) = \O(St, ···St.) 

for all k E N and all t1 , •.. , tk ~ 0. Thus, in a sense, free Brownian 
motion can be considered as an oo x oo-random matrix. However, one 
should note that this is not just an infinite array of entries, but the 
crucial information lies in the state. There exists no normalized trace 
on infinite arrays, and freeness is the mathematical structure which 
survives under taking this limit. 

Remark 3.2.2. The realization of free Brownian motion by random 
matrices gives us an interesting connection with systems of interacting 
particles. Namely, for fixed t, we know that the distribution distr(xtl) 
is the averaged eigenvalue distribution of these n x n-random matri
ces and thus free Brownian motion describes in particular also the 
behaviour of the eigenvalues of Gaussian n x n-random matrices in 
the limit n • oo. However, it is well known that the eigenvalues of 
such Gaussian random matrices are not independent, but they behave 
like electrically charged particles in two dimensions, i.e. like particles 
with a special type of pair-interaction. In a probabilistic language, the 
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eigenvalues of the random matrices xt> obey the stochastic differential 
equation 

1 l"' 1 d.>.;(t) = -dB;(t) + - L., --dt 
,In n ,s;s• >.; - Aj 

(19) (i = 1, ... , n), 

J#i 

where B;(t) (i = 1, ... , n) are independent classical Brownian motions. 
In the limit n -+ oo, the diffusive term can be neglected compared 

to the deterministic term and thus this limit corresponds to a system 
of infinitely many particles which interact with each other by a special 
type of pair interaction. Free Brownian motion provides thus in par
ticular the description for such a system of infinitely many interacting 
particles. 

3.3. Free stochastic differential equations. The next step is to 
develop a stochastic calculus with respect to free Brownian motion 
in order to be able to define and deal effectively with corresponding 
stochastic differential equations. By integration the meaning of a sto
chastic differential equation is reduced to the meaning of the corre
sponding stochastic integrals. In our case, this means that we have 
to define objects like J A1dS1B1, where dS1 is the increment of the free 
Brownian motion and where (At)t>o and (B1)t>o are adapted processes. 
((At)t>o adapted means that, for-each t ~ 0,-A1 is an element of the 
von Neumann algebra generated by all S, with s ~ t.) In contrast to 
the classical case, our processes and the increments do not commute, 
so one should really consider this bilinear integral in (At, B1) instead 
just a one-sided integral. Such stochastic integrals are defined as usual, 
namely for elementary processes, which are constant on time intervals 
I; and take there a fixed value A; or B;, the integral is defined as 

(20) J A1dS1Bt := L A;S(I;)B;, 
1 

where S(I;) is the increment of the free Brownian motion over the 
interval I;. Then one has to prove estimates for such integrals in some 
suitable norms and extend the definiton of the integral to the closure 
of elementary functions under the involved norms. The easiest norm 
estimate is an L2-estimate which works in the same way as for other 
stochastic calculi and which yields the usual Ito-isometry. Results of 
Pisier and Xu [PX] on non-commutative martingales can be used to 
obtain V'-estimates for p < oo. Whereas such kind of estimates are 
also true for other kind of stochastic calculi, a very specific feature of 
the free calculus is that one can also derive L00-estimates, i.e. one can 
estimate the integrals in operator norm. 
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Theorem 3.3.1. ([BSpl]} Let (At)t>o and (Bt)t>o be adapted pro-
cesses. Then we have - -

(21) II/ AtdStBtll $ 2/2(/ IIAill2 • IIB1Jl 2dt)112 • 

Having established the existence of the free stochastic integrals in 
nice topologies one can continue to investigate the corresponding sto
chastic calculus. There exists also a free Ito formula [KSp, BSpl], 
which, on a formal differential level, states that 

(22) dS1AdSt = rp(A)dt for A adapted. 

This should be compared to the classical Ito formula dBtAdB1 = Adt. 
The differences between the usual stochastic calculus and the free sto
chastic calculus can, on a formal level, be reduced to this difference 
between the corresponding Ito formulas. 

One can also derive free analogues of classical stochastic analysis. In 
[BSpl] we treated, e.g., iterated stochastic integrals, which give rise to 
a chaos decompositon of the L2-space of the free Brownian motion and 
allow to prove a representation theorem for martingales or to extend the 
free Ito integral to a free Skorohod integral for non-adapted processes. 

3.4. Free diffusion. 

Definition 3.4.1. We will consider the free stochastic differential 
equation 

(23) 

We call the solution of (23), if it exists, the free diffusion in the 
potential V. 

Remark 3.4.2. In the same way as free Brownian motion describes 
the behaviour of infinitely many particles which interact with a spe
cial pair-interaction, the free diffusion in the potential V describes the 
behaviour of such particles if we put them in addition into a potential 
V. 

Theorem 3.4.3. ([BSp2]} Let X0 be free from the free Brownian mo
tion (Si)t>O and V' be sufficiently smooth {e.g., V' E C2 ). 

1) Then there exists a unique solution (X1bo of the equation {23}. 
Furthermore, we have that Xt lies in the c• --algebra generated by X 0 

and all S, withs$ t and that the mapping t I-? X 1 is II· JI-continuous. 
2) The distribution of X 1 is absolutely continuous with respect to 
Lebesgue measure, distr(X1) = Pt(x)dx, where the density Pt is bounded 
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(but not smooth in general) and a weak solution of the following free 
Fokker-Planck equation 

8pt(X) 8 [ 1 / ) 
(24) ~ = - Bx (Hpt(x) - 2 V (x))Pt(x) , 

where His (up to a constant) the Hilbert transform, i.e. 

(25) Hp(x) := f p(y) dy. 
x-y 

Remarks 3.4.4. 1) Note that the free Fokker-Planck equation (24) is 
compatible with the picture of infinitely many interacting particles in 
the potential V: the particles at position x feel a force coming via the 
pair-interaction from the other particles at all possible positions y and 
in addition the force V 1(x) coming from the potential. 
2) The structure of the free Fokker-Planck equation is on a formal level 
very similar to the classical Fokker-Planck equation (10); the only dif
ference is that the second derivative is replaced by the Hilbert transform 
Hp1; however, this changes of course totally the nature of the consid
ered equation; instead of a second-order linear we have now a first-order 
non-linear partial differential equation. The non-linearity reflects the 
fact that we are dealing with interacting particles; in contrast, classical 
free diffusion can be thought of as infinitely many diffusing particles in 
the potential V without any interaction. 

3.5. Free diffusion and free entropy. The above mentioned results 
show a formal analogy between classical diffusion and free diffusion. 
But this analogy goes much further. As mentioned in Sect. 2, there 
exists a relation between classical diffusion and classical entropy. There 
is also a free counterpart of that. Voiculescu introduced free analogues 
of the classical notions of entropy and Fisher information [V4, V5]. A 
relative version (with respect to V) of these are as follows. (V = 0 
corresponds to the original definition of Voiculescu). 

Notations 3.5.1. The relative free entropy and the relative free 
Fisher information are given by 

(26) ~v(µ) :=ff log Ix - yjµ(dx)µ(dy) - f V(x)µ(dx) 

and (for µ(dx) = p(x)dx) 

(27) Iv(µ):= 4 f (Hp(x) - iv1(x)) 2p(x)dx, 

respectively. 

With these notations we have the following theorem. 
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Theorem 3.5.2. ([BSp2]) Let (Xt)t;,:o be the solution of the free dif
fusion equation {29). Then we have 

(28) 

In particular, I:v(X1) is increasing with t. 

If we replace Ev and Iv by their classical counterparts then the same 
theorem is true for classical diffusion. 

3.6. Conclusion. Formally there exists a very far reaching analogy 
between the theory of free diffusion and the theory of classical diffusion. 
However, free diffusion and classical diffusion describe quite different 
situations. Whereas the latter provides a theory for diffusing particles 
without interaction the former describes particles with a special type of 
pair-interaction. It is very surprising (but also exciting and promising) 
that a special type of interaction behaves in a very probabilistic way. 
Free probability theory seems to be the right tool for dealing with this 
kind of interaction. 
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Abstract 

In this note we present a Girsanov-type formula which turns ( central) Bessel processes on 
[O, oo[ of arbitary indices into non-central ones. It will be shown that this result may be 

seen as a special case of a general Girsanov formula for Levy processes on commutative 

hypergroups which connects Levy processes on different hypergroup structures on the 

same ground space, where the associated convolutions are related by some deformation. 

1 Introduction 

In this paper we present some. Girsanov formula for Levy processes on commutative hy

pergroups. We first illustrate the main result with Bessel processes on [O, oo[, as these 

processes may be regarded as Levy processes on the so-called Bessel-Kingman hypergroups; 

the understanding of this example requires no knowledge about hypergroups. 

We start with an n-dimensional Brownian motion (Bt)t;;:o defined on the Wiener space 

(!1, F, P) with 

n = C(IR.n) := {f: [O, oo[• IR.n, f continuous}, 

which carries the right-continuous, complete induced filtration (Ft)t;;:o as usually with F = 
u(F1 : t ~ 0). The classical formula of Girsanov then in particular implies that for any drift 

vector c E IR." there is a unique probability measure Q0 on (!1,F) with 

for t ~ 0, 

and with respect to Q0 , the process (Bt)t;;:o is a Brownian motion on IR.n with drift c. 

Moreover, for 

cI> : IR.n - [O, oo[, x >-• lxl = (x~ + ... + x~)112 , 
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the process (w(Bt))t?O is a Bessel process of dimension n; see [RY) for details. This process 

may be regarded as coordinate process (X1)t?D on (fl,:F,P) with 

fl:= {J: [O, oo[• [O, oo[, f continuous}, 

with the canonical er-algebras, and with P as image of P under the projection 'V : !1 • fl 
which is uniquely determined by 

for t ~ 0. 

Using the rotation invariance of (Bth?o and the integral representation 

in/2-1(x) := ( ei<x,y> dUn-1(y) (x EC) 
lsn-1 

of the spherical Bessel function in/2_1 (with Un-I the uniform distribution on the unit 

sphere sn-J C !Rn; see 9.1.20 of [AS)), we obtain for any drift c E IR" that the distribution 

Qc := w(Qc) E M 1(fl,:i) satisfies 

Qclp, = e-!llcll~/2in/2-J (illclbX1)Plp, for t ~ 0. 

Moreover, as for a Brownian motion (B1)t?O on !Rn with drift c the process (w(B1))t?O is a 

non-central Bessel process with dimension n and non-centrality parameter llcll2, it can be 

derived from the classical Girsanov formula that, with respect to Qc, the coordinate process 

(Xt)t?O is such a process. As there exist central and non-central Bessel processes also for 

"fractional dimensions" n E JR, n ~ l, it is natural to ask whether the change of measure 

above here also turns central Bessel processes into non-central ones. We shall give a positive 

answer in Theorem 3.8 below. 

We shall show below how this result may be regarded as a special case of a Girsanov

type formula for Levy processes on commutative hypergroups of the following kind: Let 

(Xt)t?O be a Levy process on some commutative hypergroup (K, *) that is associated with 

some convolution semigroup (µ1)t?O• Then, for any positive semicharacter a of (K,*), 

the hypergroup convolution * can be deformed into some new hypergroup convolution, say 

• (see [BH, Vl, V2)). We shall show that under some growth condition, (µ1)t?O can be 

transformed into some convolution semigroup (iit)t?O on (K, o), and that some Girsanov

type change of measure transforms (X1)t?o into a Levy process on (K, *) associated with 

(iith?o. The proof of this result will be based on a martingale cl!aracterization of Levy 

processes in terms of hypergroup characters; see [RV]. This main result will be discussed 

in Section 2 of this paper. Section 3 will be devoted to several examples and includes, in 

particular, a discussion of Bessel processes. 
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We finally mention that the results of this paper are completely disjoint to Girsanov 

formulas for Brownian motions on Lie groups (see [I, Karl), as groups do not admit nontrivial 

positive sernicharacters and hypergroup deformations. On the other hand, we hope that 

martingale characterizations of Levy processes on locally compact groups in [V3, V 4] in 

terms of group representations may be used to generalize the results of [Kar]. 

2 Renormalization of commutative hypergroups and a 

Girsanov-type formula 

We first recapitulate some notations and facts about Levy processes on commutative hyper

groups. For details on hypergroups we refer to the monograph [BH] and to [J]. 

2.1. Commutative hypergroups. A commutative hypergroup (K, *) consists of a locally 

compact space K together with a commutative, weakly continuous, probability preserving 

convolution * on the Banach space Mb(K) of all bounded regular Borel measures on K 

satisfying certain axioms which are well known from convolutions of measures on locally 

compact abelian groups. We denote the identity of (K, *) by e, and the hypergroup invo

lution by . - . It is well known (see [S]) that each commutative hypergroup (K, *) admits a 

Haar measure w(K,•) which is unique up to some multiplicative constant. The dual space 

f?• := {a E Cb(K): a"¢ 0, j ad(o,, * oy) = a(x)a(y) forallx,y EK} 

is a locally compact space w.r.t. the topology of compact-uniform convergence. Elements of 

R• are called characters. 

The Fourier transforms off E L1(K,w(K,•)) and µ E Mb(K) are given by 

!*(a)= { a(x) f(x) dw(K •J(x) lK ' and µ'(a) = l a(x) dµ(x) (a EK*) 

respectively. It is also well-known (Jewett [J]) that R• carries a unique Plancherel measure 

'lr(K,•) such that the Fourier transform on L1(K,w(K,•)) nL2(K,w(K,•)) extends uniquely to 

an isometric isomorphism between L2 (K, w(K,•)) and L2(K, 'lr(K,•)). Notice that sttpp'lr(K,•) 

may be a proper subset of R•. We here notice that the Fourier transform 

is injective (see Theorem 2.2.4 of [BH]). 

2.2. Convolution semigroups and Levy processes. A family (µ1)12:0 C M 1 (K) of prob

ability measures on a commutative hypergroup (K, *) is called a convolution semigroup, if 
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µ, * µ 1 = µ,+t for all s, t ~ 0 with µ 0 = Oe, and if [O, oo[ • M1 (K), t t-+ µ1 is weakly 

continuous. 

Let (µ1)1~o be a convolution semigroup on (K,*). AK-valued Markov process X = 
(X1)1~0 with filtration (.1'1)1~0 (and defined on some probability space (!1, :F, P)) is called 

a Levy process on (K,*) associated with (µ1)1~o and (:F1) 1~o, if its transition probabilities 

satisfy 

P(X1 E Al X, = x) = (µ1_, * 8,,)(A) (0 ~ s ~ t, x EK, ACK a Borel set). 

If the process X above is defined on a time interval [O, T] only and has the properties above 

there, then it is called a restriction of a Levy process on (K, *) associated with (µ1)1~o and 

(.1'1lt~o. 

It can be easily checked that all (restricted) Levy processes on (K, *) are Feller pro

cesses and hence admit cadlag versions; see [RV]. Moreover, one can construct martingales 

from Levy processes on ( K, *) by using hypergroup characters. The following version of a 

martingale characterization of Levy processes on commutative hypergroups was derived in 

[RV]; it is closely related with other versions for general (homogeneous) Markov processes 

as discussed, for instance, in Ch. 4 of (EK]. 

2.3. Lemma. Let (µ 1) 1~o be a convolution semigroup on the commutative hyperyroup (K, *). 

Then for each stochastic process X on K, which is adapted w.r.t. some filtration (:Ft)t~o, 

the following statements are equivalent: 

{1} X is a Levy process on (K, *) associated with (µ1)1~0 and (:F1)1~0-

{!2} For each a E f?•, the C-valued process (µi'(o)-1 ·a(X1))1~o is an (:Ft)r~o-martingale. 

(3) For each a E supp 1r, the process (µ1(0)- 1 · a(X1))1~o is an (:F1) 1~o-martingale. 

An inspection of the proof of this lemma in (RV] shows that a corresponding result also 

holds for restricted Levy processes. 

2.4. Renormalization of commutative hypergroups. For commutative hypergroups 

(K, *), the support supp 'lr(K,•) of the Plancherel measure may be a proper subset off?•. 

It was observed in [Vl] that this property is closely related with the fact that commutative 

hypergroups (K, *) may admit positive semicharacters, i.e., positive functions ao E C(K) 

that admit all properties of characters except that they may be unbounded. It was shown 

in [Vl] that each positive semicharacter a0 on a cornmutatice hypergroup (K, *) induces a 

new hypergroup structure (K, •) (where, by convention, the underlying positive semichar

acter ao as index will be suppressed); the convolution • is determined uniquely by the 
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convolution of point measures: 

(x,y EK). 

Identity and involution of (K, •) are the same as of (K, *). We next give a list of further 

connections between the data of the hypergroups ( K, *) and ( K, •); for details see [Vl]: 

(1) Ifµ, v E Mb(K) satisfy aoµ, aov E Mb(K), then aoµ • aov = ao(µ * v). 

(2) W(K,•) := a5w(K,•) is "the" Haar measure of (K, •). 

(3) The dual space of (K, •) is given by 

R• := {a/ao: a a semicharacter of (K,*) with !al~ ao}-

(4) If 1T(K,•) denotes the Plancherel measure of (K, •) on R•, then the mapping 

R•---+ R•, a >---t a/ao is a homeomorphism that maps 11"(K,•) into 11"(K,o). 

(5) The hypergroups (K, •) and (K, •) may be interchanged above by using the fact 

that 1/ ao is a positive semicharacter of (K, •), and that the associated renormalized 

hypergroup structure is just the original hypergroup (K, *). 

Let ao be a positive semicharacter on a commutative hypergroup (K, *). We now show 

how convolution semigroups on (K, *) can be transformed into convolution semigroups on 

(K, •). For this we say that a convolution semigroup (µ 1)t~o on (K, *) is ao-continuous 

whenever 

[0, oo[• [0, oo[, t >---t h(t) := l ao dµt 

is finite and continuous. If ao E R• is a positive character, then clearly each convolution 

semigroup on (K, *) is ao-continuous. 

2.5. Lemma. Let ao be a positive semicharacter and (µ 1)t~o an ao-continuous convo

lution semigroup on (K,•) Then, for all s,t ;:;=: 0, h(s) · h(t) = h(s + t), and (µf 0 := 

iiftj · aoµi) 1~ 0 is a convolution semigroup on (K, •). 

Proof. Clearly, µf 0 E M 1(K) for all t e': 0. Hence, for all s, t e=: 0, µ~• • µf' E M 1(K). 

Moreover, by Section 2.4, 

00 00 _ 1 ( ) ( ) _ 1 ( ) _ h(s + t) 1 
µ, • µt - h(s)h(t) aoµ, • aoµt - h(s)h(t) ao µ, * µi - h(s)h(t) h(s + t) aoµs+t• 

As h(s~t)aoµ,+t E M1(K), it follows that h(s) · h(t) = h(s + t) and µ~• • µf0 = µ~tt• The 

continuity of h finally ensures that t t-+ µf0 is vaguely and hence weakly continuous. D 
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The following Girsanov formula connects Levy processes associated with (µtlt;;:o and 

(µf 0 )t;;:o • 

2.6. Theorem. Let ao be a positive semicharacter and (µt) 1;;:o an ao -continuous convo

lution semigroup on the commutative hypergroup (K, *). Let (X1)t;;:o be a Levy process on 

(K, *) with filtration (Ft)t;;:o and with convolution semigroup (µ 1)t;;:o that is defined on some 

probability space (n, F, P). Then for each T :::: 0, the process (Xtlte[o,T] on the probability 

space (!l,Fr, iit½ao(Xr) • P) is the restriction of a Levy process on (K,•) associated with 

(µf")t;,:o • 

Proof. As (Xt)1;;:o is a Levy process on (K, *) with filtration (.r1)t;;:o and with convolution 

semigroup (µt) 1;;:o, we see that for alls, t:::: 0 and P-almost all w En, 

E(ao(Xs+t)IF,)(w) = E(ao(Xs+t)IX,)(w) = l ao d(µt * <lx,(w)) = h(t) · ao(X,(w)). 

Using h(s + t) = h(s)h(t), we obtain that (Zt := ;;tiycro{X1))t;;:o is a positive (Ft)i;;:o

martingale with E(Z1) = 1. In particular, (Zt · Pl,:-,)t;;:o is a family of probability measures 

with 

(Zt · PIF,)J', =Zs· Pl.rs for s, t:::: 0. 

Now let a E supp 1r(K,•) be a character of (K, •) contained in the support of the 

Plancherel measure. Section 2.4 shows that a := a • ao is a character of (K, *), and, 

by the definition of µr• , 

;:;;(&) = l a(x)ao(x) dµt(X) = h(t). (µr")"·(a) (t:::: 0) 

where."• denotes the Fourier transform w.r.t. (K,•). Lemma 2.3 now yields that 

is an (Ftlt;,:o -martingale on (n, F, P). Using the properties of (Z1) 1;;:o, we see that for 

T>O, 

is an (.r1) 1e[o,TJ -martingale on the probability space (fl, F, ZrP). As this holds for all 

a E supp 1r(K,•), Lemma 2.3 implies that the process (Xtlte[o,T] on (n, F, ZrP) is the 

restriction of a Levy process on (K, •) associated with (µr"lt;;:o. D 

We now give an extension of the preceding result to the complete time interval [O, oo[. 
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2. 7. Theorem. Let ao be a positive semicharacter and (µ1lt:2:o an ao -continuous convolu

tion semigroup on the commutative Polish hypergroup (K, *)- Let (X1) 1:2:o be a Levy process 

on (K, *) associated with (µt)t;?:O defined on the probability space (11, F, P) with 

11 = 'D(K) := {/: [0,oo[• K, f cadlag} 

and equipped with the right-continuous and complete induced filtration (F1lt:2:o. Then there 

exists a unique probability measure Q on (11, a(F1 : t 2: 0)) with 

for t 2: 0, 

and with respect to Q, the process (Xt)1:2:o is a Levy process on (K, •) associated with 

(µf 0 )t;?:0 · 

Proof. In view of the proof of the preceding result it suffices to check existence and unique

ness of Q. Uniqueness, however, is clear, and the existence follows from Lemma 16.18 of 

[Ka!]. • 
2.8. Remark. Lemmas 2.3 and 2.5 as well as Theorems 2.6 and 2.7 can easily be adapted 

to the setting of time-homogeneous random walks (Xn)n?:O on commutative hypergroups. 

2.9. Remark. Theorems 2.6 and 2.7 may be regarded as special cases of more general 

Girsanov-type formulas for Feller processes which satisfy certain technical restrictions. We 

shall present details of this generalization elsewhere and include some ideas here only: 

Assume that ao is a positive semicharacter and (µ1)1:2:0 an ao-continuous convolution 

semigroup on some commutative hypergroup (K, *). The associated Levy processes are 

Feller, and the generator G of the associated Feller semigroup on Co(K) is given by 

GJ(x) = lim ~(µ1 * J(x) - f(x)) 
1• 0 t (x EK, f E D(G)) 

where the domain D(G) of G is 11-lloo-dense in Co(K); see [RV]. Now consider the generator 

G00 of the Feller semigroup on C0(K) that is associated with the renormalized convolution 

semigroup (µf 0 ) 1:2:o on (K,•). Then, using the notation above, we have 

_ 1 _ 1 
((µf 0 ) • J)(x) = h(t) ((aoµ1) • J)(x) = h(t)ao(x) (µt * aof)(x) 

(seep. 408 of [Vl]). Moreover, by Lemma 2.5 we have h(t) = e<1 for some c E JR, and hence 
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limt• o t(l/h(t) - 1) = -c. Hence, 

G00 f(x)= lim !(((µf0 )- • f)(x) - f(x)) = lim ! (h( ) 1 ( ) (µt * aof)(x) - f(x)) 
t• O t t• O t t ClO X 

= __2_( ) lim ! (h(l) (µt • aof)(x) - (aof)(x)) 
etoXt• Ot t 

= __2_( )G(aof)(x) + __2_( ) lim(!(l/h(t) - l)(µt * aof)(x)) 
CIO X CIO X t• O t 

1 = -(-)G(aof)(x)-cf(x). 
CIO X 

Therefore, if M9 is the multiplication operator with some function g E C(K), then formally 

(2.1) coo = M1/oo o Go Mao - c 

where ao is an eigenfunction of G with eigenvalue c. 

We expect that Theorems 2.6 and 2. 7 can be extended in this way to arbitrary generators 

G of Feller semigroups on locally compact spaces K and arbitrary "eigenfunctions" ao E 

C(K) of G with eigenvalue c under certain restrictions concerning the domain of G. We 

mention that a related result for Feller processes on finite state spaces is given in Section 

IV.22 of [RW]. 

Lemma 2.5 admits the following converse statement: 

2.10. Lemma. Let ao be a positive semicharacter on (K, •) with ao ~ 1, and let (µt)t~o 

a convolution semigroup on (K, •) with generator G. Assume that 

coo := M1/oo o Go Mao - c 

(where c satisfies Gao = =o, and M is given as in 2. 9) is the generator of a convolution 

semigroup (µf0 )t~o on the modified hypergroup (K, •). Then (µ1)t~o is Clo-continuous, and 

(µf0 )t~o is equal to the convolution semigroup (µf•)t~o of Lemma 2.5. 

Proof. By our assumption, 1/c,0 is a positive character on (K, •). Now apply Lemma 

2.5 and Remark 2.9 to 1/ao and the 1/ao-continuous convolution semigroup (µf 0 )t~o on 

(K, •). Then the renormalization of • is just *, and the generator of the convolution 

semigroup on (K, •), which is the deformation of (µf 0 )t~o according to 2.5, is given by G. 

Hence, for t ~ 0, 

µt = --- 1-µf 0 where t >-t h(t) := { 1/ao dµf 0 is continuous. 
h(t) •ao JK 

This shows that the function h of Lemma 2.5 is equal to 1/h and hence continuous. The 

remaining assertions are now obvious. D 
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3 Examples 

In this section we present a few examples to which the Girsanov-type formulas 2.6 and 2.7 

may be applied. The most prominent examples will be Bessel processes which may be re

garded as Levy processes on the Bessel-Kingman hypergroups and their modifications. As a 

preparation we first discuss positive semicharacters on general Sturm-Liouville hypergroups 

on (O,oo(. 

3.1 Sturm-Liouville hypergroups on [O, oo[ 

(1) A function A E C((O, oo[) n C1 (JO, oo[) is called admissible if A(x) > 0 for x > 0, and 

if there exist constants f > 0, ao ;:::: 0 and a 1 E 0 00 (] - f, e[) with 

A'(x)/A(x) = °'0 +x·a1(x) for all xE]0,f[. 
X 

In the singular case ao > 0 we assume in addition that a 1 is even. 

(2) The Sturm-Liouville operator associated with an admissible A is defined by 

1 
LAJ(x) := - A(x). (A(x). J'(x))' for f E C2(]0,oo[), X > o. 

(3) A hypergroup ((0, oo(, *) is called a Sturm-Liouville hypergroup if there exists an 

admissible function A such that for each even f E C00 (IR.) the function u1(x,y) := 

It f d(ox * Oy) (x, y::::: 0) satisfies u, E 0 2((0, 00[2) with 

L:u(x, y) - L:u(x, y) = 0 and for x,y ::C:: 0 

where subscripts indicate variables with respect to which the operator £A is applied. 

3.1. Facts. Let ((0, oo(, *) be a Sturm-Liouville hypergroup associated with some admissi

ble function A that satisfies some further technical restriction; see (Z] and Ch. 3.5 of (BH]. 

Then the following statements hold: 

(l) p := ½ limx• oo A'(x)/A(x) exists with p ::C:: O; it is called the index of K. 

(2) A function a E C((O, oo[) is multiplicative on K, i.e., (ox* oy)(a) = a(x)a(y) for all 

x, y ::C:: 0, if and only if a E C2 ((0, oo[), and if a is the unique solution of the eigenvalue 

problem 

LAa = s., · a with a(O) = 1, a'(O) = 0 for some s0 EC. 

According to (BH, Z], we parametrize the eigenvalues by >.~ + p2 = s0 with >.., E IC. In 

this notation, the dual space K and the support of the Plancherel measure are given 
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by K = {a multiplicative: >.0 E [0,oo[Ui]0,p)} and supp1r = {a EK: >.0 E [0,oo[}. 
Moreover, a is a positive semicharacter if and only if >.0 E i · [0, oo[ holds; see [Vl, Z]. 

(3) If a is a positive character on ([0, oo[, *) with >.0 E i • [0, oo[, then the associated 

modified hypergroup ([0, oo[, •) is the Sturm-Liouville hypergroup associated with the 

admissible function A0 (x) := a(x)2 A(x); see [Vl]. 

3.2. Diffusions on [O, oo[ as Levy processes. It is well known (see [C,RV]) that for each 

Sturm-Liouville hypergroup ([0,oo[,*) with admissible A, the operator -LA is the gener

ator of a convolution semigroup (µ1)t~o on ([0, oo[, *). Now let a is an arbitrary positive 

character on ([0, oo[, *) with >.0 E i•[0, oo[. We now check that the assumptions of Theorems 

2.6 and 2. 7 are satisfied: 

3.3. Lemma. In the above setting, (µ1) 1~o is a-continuous with 

{"° ' 2 h(t) := Jo a dµt = e-t(>..+p l (t;?: 0) 

Proof. The lemma is obvious for a E R, i.e., >.; + p2 ;?: 0. Otherwise we have a > 1 

on [0, oo[ (see [BH] or [Z]) and we may consider the modified hypergroup ([0, oo[, •) with 

Aa := a2 A which is associated with a. A short computation yields 

(M1/a o (-LA) o M0 ) + >.; + p2 = -L"'A 

where, by our considerations above, -L"'A is the generator of a convolution semigroup on 

{[0,oo[,•). The lemma now follows from Lemma 2.10. D 

Theorem 2.7 now reads as follows in our present case: 

3.4. Theorem. Let ([0, oo[, *) be a Sturm-Liouville hypergroup with associated function A 

and index p. Then the operator 

A I d d 
-L = A(x) . dx (A(x). dx) 

is the generator of a convolution semigroup (µ 1)t~o on ([O, oo[, *). Let (Xt)1~o be an as

sociated Levy process ([0, oo[, *), i.e., (X1)t~o is a diffusion with generator -LA. Assume 

that (Xt)t~o is defined on the probability space (fl, :F, P) with 

fl := {/ : [0, oo[-t [0, oo[, f continuous} 

and is equipped with the right-continuous, complete induced filtration (:F1) 1~o. Then for 

each positive semicharacter a on ([0, oo[, *), there exists a unique probability measure Q on 

(fl, a(:F1 : t ;?: 0)) with 

for t;?: 0, 

and with respect to Q, the process (X1) 1~ 0 is a diffusion with generator -L"'A. 
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We now investigate concrete examples, namely Bessel processes which are Levy processes 

on the so-called Bessel-Kingman hypergroups. 

3.2 Bessel-Kingman hypergroups and Bessel processes 

3.5. Bessel-Kingman hypergroups (see [BH, J, Ki, RV]). For a first motivation, fix 

some integer n ~ 1 and consider the Banach spaces 

M;"d(IR.n) := {µ E Mb(R.n): A(µ)=µ for all rotations A E SO(n)} for n ~ 2 

and M;"d(IR1) := {µ E Mb(IR) : µ(B) = µ(-B) for all Borel sets B C IR} 

consisting of all "radial" measures on !Rn. M;•d(IRn) is a Banach-*-subalgebra of Mb(IRn), 

and the extension of the projection 4> : !Rn --t [O, oo[, x >---+ lxl = (x1 + ... + x~) 1l2 

to measures is an isometric isomorphism between the Banach- *-algebras Mtnd(Rn) and 

Mb([O, oo[) where the second space has to carry the corresponding convolution and involu

tion. This leads to a symmetric hypergroup ([O, oo[, *), the "Bessel-Kingman hypergroup of 

index a = n/2 - 1". 

The Bessel-Kingman hypergroup of arbitrary index a~ -1/2 is defined as the Sturm

Liouville hypergroup on [O, oo[ with admissible function 

A"(x) = x2"+1 for X ~ 0. 

The dual space is given by { \O~ : ,\ ~ O} where the \O~ satisfy rp~(x) := j 0 (>..x) with the 

normalized Bessel functions 

. ~ (-1Jkr(a+l) 2k 
Jo(z) = t:o 22kk! r(a + k + 1) z (z EC). 

3.6. Bessel processes. The convolution semigroup (pf)1;,:o on the Bessel-Kingman hy

pergroup of index a~ -1/2 with generator 

is given by the Rayleigh distributions 

(3.1) 
1 2" 2 

dp"(x) = --- -- x20+1 e-:z: /(2t) dx on [O, oo[ for t > O; 
t r(a + 1) t0 +1 

see 7 .3.18 of [BH]. Associated diffusions are called called Bessel processes of index a. Notice 

that in this notation, projections (4>(Bf))1;,:o of n-dimensional Brownian motions (Bf)t;,:o 

are Bessel processes of index a = n/2 - 1. 

We next consider the modification of Bessel-Kingman hypergroups. 
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3. 7. Modified Bessel-Kingman hypergroups and non-central Bessel processes. For 

any a<". -1/2 and p <". 0, the Bessel function 'Pfp is a positive semicharacter on the Bessel

Kingman hypergroup of index a. The associated modified Sturm-Liouville hypergroup will 

be called modified Bessel-Kingman hypergroup of index a and non-centrality parameter p; 

the associated admissible function is 

Ao,p(x) := x2o+l. ('Pfp(x))2 (x <". O}. 

Diffusions on [O, oo[ with the differential operator 

-£Ao,, / 2 =~~+(a + 1/2 +'Pf;).!!:_ 
2 dx2 x 'Pfp dx 

are called non-central Bessel processes with index a and non-centrality parameter p. 

To motivate these notions, consider the n-dimensional Euclidean space IR'.n ( n <". 1). Fix 

some non-centrality parameter p <". 0 and consider the multiplicative mapping 

hp : IR'.n -t]O, oo[, x >-+ e<c,,x> with Cp := (p, 0, ... , 0) E IR.n. 

By [V2], the vector space 

{µ E Mb(IR'.n) : µ = hp • v, v E Mt'"d(IR'.n) with compact support} 

is a subalgebra of Mb(IR'.n) whose total variation-closure M;ad,P(JR.n) is a Banach subalgebra 

of Mb(IR'.n). Similar as in Section 3.5, the projection <I> : IR'." -t [O, oo[ leads to an isometric 

isomorphism between the Banach algebras M;ad,p(IR.n) and Mb([O, oo[) where the latter 

has to be equipped with the corresponding "convolution". It can be easily verified (see 

[V2)) that [O, oo[ with this convolution is the modified Bessel-Kingman hypergroup of index 

a= n/2 - 1 and non-centrality parameter p. Moreover, if (Br•P)t?,o is an n-dimensional 

Brownian motion with drift Cp (i.e., (Br·P -tcp)t?,0 is a Brownian motion), then (<I>(Bf))t?,0 

is a non-central Bessel process with index a= n/2 - 1 and non-centrality parameter p. 

We now reformulate Theorem 3.4. 

3.8. Theorem. Let (X1)t?,O be a Bessel process on [O, oo[ of index a <". -1/2 which is 

defined on the probability space (!1, F, P) with 

!1 := {f : [O, oo[-t [O, oo[, f continuous}, 

and which is equipped with the right-continuous, complete induced filtration (Ft)t?,O. Then 

for each p <". 0, there exists a unique probability measure Q on (!1, a(Ft : t <". 0)) with 

for t <". 0, 

and with respect to Q, the process (Xt)t?,O is a non-central Bessel process with index a and 

non-centrality parameter p. 
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3.9. Remark. In this section we obtained non-central Bessel processes from central ones 

via hypergroup deformations. On the other hand we used some change of drift argument 

in the introduction for a = n/2 - 1, n E J\I, in order to obtain the same result. Both 
methods are, in fact, related from a more abstract point of view via deformations of orbit 

hypergroups; for the background and possible further examples we refer to (V2]. 

References 

[AS] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions. Wiley, 1972. 

[BH] W.R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hyper

groups. De Gruyter, 1995. 

[C] H. Chebli, Operateurs de translation generalisee et semi-groupes de convolution. 

In: Theorie du potentiel et analyse harmonique, Lecture Notes in Math., vol. 404, 

Springer-Verlag, Berlin, 197 4, pp. 35-59. 

[EK] S.N. Ethier, T.G. Kurtz, Markov Processes, Characterization and Convergence. 

Wiley, Chichester - New York, 1986. 

(I] M. Ibero, Integrates stochastiques multiplicatives et construction de diffusions sur 

un groupe de Lie. Bull. Soc. Math. France 100 {1976), 175-191. 

[J] R.I. Jewett, Spaces with an abstract convolution of measures. Adv. Math. 18 
{1975), 1 - 101. 

[Ka!] 0. Kallenberg, Foundations of Modem Probability. Springer-Verlag, 1997. 

[Kar] R.L. Karandikar, Girsanov-type formula for a Lie group valued Brownian motion. 

In: Sem. Probabilite XVII, Lecture Notes in Math. 986 (1983), pp. 198-204. 

[Ki] J.F.C. Kingman, Random walks with spherical symmetry. Acta Math. 109 (1963), 

11 - 53. 

[RV] C. Rentzsch, M. Voit, Levy processes on commutative hypergroups. Contemp. 
Math., to appear. 

[RY] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Springer
Verlag, 1994. 

[RW] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, Vol. 

II. Wiley: Chichester - New York, 1987. 

[S] R. Spector, Mesures invariantes sur les hypergroupes. Trans. Amer. Math. Soc. 
239 (1978), 147 - 166. 

[Vl] M. Voit, Positive characters on commutative hypergroups and some applications. 

Math. Z. 198 (1988), 405 - 421. 

358 



[V2) 

[V3) 

[V4) 

[WW] 

[Z) 

M. Voit, A generalization of orbital morphisms of hypergroups. In: Probability 

Measures on Groups X (Proc. Conf. Oberwolfach 1990) Plenum Press 1991, 

pp. 425 - 434. 

M. Voit, Martingale characterizations of stochastic processes on compact Lie 

groups. Probab. Math. Stat. 19 (1999), 211-227. 

M. Voit, A Levy-characterization of Gaussian processes on matrix groups. Preprint. 

H. von Weizsiicker, G. Winkler, Stochastic Integrals. Vieweg 1990. 

Hm. Zeuner, Moment functions and laws of large numbers on hypergroups. Math. 

z. 211 (1992), 369 - 407. 

359 



ON THE PRODUCT OF RIESZ SETS IN DUAL OBJECTS OF 
COMPACT GROUPS 

HIROSHI YAMAGUCHI 

ABSTRACT. Let E; be a Riesz set in the dual object of a compact group K;(i = 1, 2). 
We show that the product set E1 x E2 is a Riesz set in the dual object of K1 x K2. 
We also give a result on compact groups related to a result of Glicksberg and Graham 
concerned with "small p set". 

1. INTRODUCTION 

Let 'll' and Z be the circle group and the integer group respectively. z+ denotes the 
semigroup of nonnegative integers. By a well-known theorem of Bochner, each measure 
on 1I'2 whose Fourier-Stieltjes transform vanishes off z+ x z+ is absolutely continuous 
with respect to the Lebesgue measure on 'll'2• This shows that the product set z+ x z+ of 
the Riesz set z+ in Z is a Riesz set in T2 ~ Z x Z. This holds for locally compact abelian 
(LCA) groups. For a LCA group G, let L 1 (G) and M(G) be the usual group algebra and 
the Banach algebra of bounded regular measures on G respectively. For µ E M(G), fl 
stands for the Fourier-Stieltjes transform ofµ. Let mG denote the Haar measure of G. 

Definition 1. 1. Let G be a L CA group with the dual group G, and let p E N ( the natural 
numbers). A closed subset E of G is called a small p set if 

p 

(1.1) Vµ E ME(G) => µP = µ* ... *µ E L 1(G), 

where ME(G) = {µ E M(G): fl= OonE<}. In particular, a small 1 set is called a Riesz 
set. 

Theorem 1.1 (cf. [12, Corollary], [10, Theorem 6]). Let G1 and G2 be LCA groups, and 
let p E N. Let E1 and E2 be small p sets in G1 and G2 respectively. Then E1 x E2 is a 
small p set in GiEBG2-

A condition for a set in the dual group of a LCA group to be a small 2 set was obtained 
by Glicksberg([6]) and Graham([7]). 

Theorem 1.2 (cf. [7, Therem l(b)]). Let G be a LCA group, and let E be a closed set 
in G satisfying the following: 

(1.2) {, E G: m0(E n (-y- E)) < oo} is dense in G. 

Letµ, 11 E ME(G). Then lµI * 1111 E L1(G). In particular, E is a small 2 set. 

On the other hand, the author proved that the product set of a Riesz set in the dual 
group of a compact abelian group and a Riesz set in the dual object of a compact group 
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is a Riesz set ([16, Corollary 2.1]). In this paper, we shall show that results corresponding 
to Theorems 1.1 and 1.2 hold for (noncommutative) compact groups. In section 2, we 
state notation and our results. In section 3, we give the proofs of our results. 

2. NOTATION AND RESULTS 

We often quote notation from the book of Hewitt and Ross ([9]). Let K be a compact 
group, and let EK be the dual object of K, i.e., the set of equivalence classes of all 
continuous irreducible unitary representations of K. For a closed normal subgroup H of 
K, A(EK,H) denotes the annihilator of Hin EK (cf. [9, (28.7) Definition]). mK stands 
for the Haar measure of K. Let C(K) be the space of continuous functions on K and 
M(K) the space of bounded regular measures on K. Let L1(K) be the group algebra. 
We identify L 1(K) with the space of absolutely continuous measures in M(K), by the 
Radon-Nikodym theorem. Set M+(K) = {µ E M(K) : µ ~ O}. For µ E M(K) and 
f E L1(1µ1), we often writeµ(!) as JK f(x)dµ(x). 

For 17 E EK, u<u) denotes a continuous irreducible unitary representation of K in 17 

with the representation space Hu of dimension du. Forµ E M(K), µ denotes the Fourier 
transform ofµ, i.e., for 17 E EK and ~. TJ E Hu, 

(2.1) (µ.(17)~. TJ) = l (uri~. TJ)dµ(x), 

where U~u) = DuU£"l Du and Du is a conjugation on Hu. Let spec(µ)= {17 EEK: µ.(17) =f 
O}. Let a denote the equivalence class in EK that contains the representation u<u)_ For 
a subset E of EK, set ME(K) = {µ E M(K) : spec(µ) C E}. 

For 17, T E EK, 17 x T is defined (cf. [9, {27.35) Definition]). 17 x T is a finite subset of 
EK. For a subset P of EK, [P] denotes the smallest subset of EK that contains P and is 
closed under the operation 'x' and conjugation (cf. [9, (27.35) Definition]). 

For 17 E EK, '!"u(K) is the linear span of all functions x-+ (UJ">~, TJ), where~. T/ E Hu. 
Let T(K) be the space of trigonometric polynomials on K, i.e., T(K) is the set of finite 
linear combinations of functions x -+ (UJul ~. TJ}, where 17 E EK and ~. T/ E Hu. 

Let fft>, · · · , ~t>} be a fixed orthonormal basis in Hu, and let ul.il (1 $ i, j ~ du) be 
the coordinate function for u<u) E 17 and {~iu>, • • • .~t>}, i.e., ul;>(x) = (uJu>~y>,~t>). 
Definition 2.1. Let p be a natural number and E a subset of EK. E is called an s-small 
p set if 

(2.2) \/µ1, · · · , JJp E ME(K) => µ1 * · · · * /lp E L1(K). 
In paticular, an s-small 1 set is called a Riesz set. 

Remark 2.1. When K is a compact abelian group, "s-small p set" and "small p set" are 
same notion (cf. [13, Lemma 1]). 

Theorem 2.1. Let p E N, and let K 1 and K 2 be compact groups. Let E1 and E2 be 
s-small p sets in EK, and EK, respectively. Then E1 x E2 is an s-small p set in EK, xK, ~ 
EK, X EK,• 

By the above theorem, we obtain the following corollary. 
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Corollary 2.1. Let E 1 and E2 be Riesz sets in EK1 and EK, respectively. Then E1 x E2 
is a Riesz set in EK1 xK, ~ EK1 x EK,· 

Next we consider Theorem 1.2 for compact groups. When G is a compact abelian 
group, the condition (1.2) in Theorem 1.2 is equivalent to the following: 

(1.2)' For any 11, 12 E G, (,1 + S) n (,2 - S) is a finite set. 

Theorem 2.2. Let K be a compact group, and let A be a subset of EK satisfying the 
following condition. 

(2.3) Forany a,T EEK, (ax A) n (T x LS°) isafiniteset, 

where K = {w : w E b..} and ax A = {ax 1) : T/ E A}. Letµ, v E Mc,.(K). Then 
jµj * !vi E L1(K). In particular, A is ans-small 2 set. 

The following also holds (cf. [7, Theorem 2]). 

Theorem 2.3. Let K be a compact group, and let p, q E N. Let A be a subset of EK 
satisfying the fallowing condition. 

(2.3)' (a1 x b..) n • • • n (ap x b..) n (T1 x K) n • • • n (Tq x K) is a finite set 
for any 0'1, • • • , ap, T1, · · · , Tq E EK. 

Let µi and vi be measures in Mc,.(K) (i = 1, 2, · • • ,p;j = 1, 2, • • · , q). Then jµ1I * · · · * 
jµpj *!vii*···* lvql E L1(K). In particular, A is ans-small p + q set. 

Example 2.1. Let K = '][' x SU(2), and let Tl (e = 0, ½, 1, J, • • •) be as in [9, (29.13)]. 
Then EK~ {Tn,m: n E Z; m = 0, ½, 1, J, · · · }, where Tn,m(ei9, u) = einOTjm)_ Let a> 0, 
and set A= {Tn,m EEK: n ~ 0, m ~ an}. Then, by [9, (29.26)] and the fact that T(l) 
are self-conjugate (cf. [9, (29.25)]), A satisfies the condition {2.3} in Theorem 2.2. (In 
fact, A is a Riesz set, by [3, 3.4 Example (a)].) 

We prove Theorem 2.2 in the next section. We can prove Theorem 2.3 by an argument 
similar to that in the proof of Theorem 2.2. 

3. PROOFS OF THEOREMS 

In this section, we prove Theorems 2.1 and 2.2. In order to prove Theorem 2.1, we use 
the theory of disintegration of measures. 

Lemma 3.1. Let K 1 and K 2 be compact groups, and let p EN. Let T/n E Af+(K2), and 
let {vt>heK, be a family of measures in M(K1) with the following property (n = 
1,2, .. · ,p): 
(1) h---+ (vt) x oh)(!) is T/n-measurable for each f E C(K1 x K2), 
Then 
(2) (h1, · · · , hp)---+ (vt) x oh1 ) * · · · * (vt) x oh,)(!)(= (vt) * · · · * vt)) x ohi···h,(J)) 

is (T/1 x · · · x T/p)-measurable for each f E C(K1 x K2). 
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Proof. For / 1, • • • , fp E C(K1 x K2), we define /(z1, · · · , zp) E C((K1 x K2)P) by 

f(z1, · · · , zp) = /1(zi) · · · fp(zp), 

By (1), 

(3) (hi,··· , hp) • (vt) X oh,) X · · · X (vt) X oh,)(/)= (vt) X 0h1)(/i) · · · (vt) 
x oh,)(/p) is (1)1 x • • • x 1)p)-measurable. 

Since n=~=l /i;(zi) .. · fp;(Zp) : f;; E C(K1 X K2) (1 :::; j ::; p; n = l, 2, ... )} is dense in 
C((K1 x K2)P), (3) implies that 

(4) (h1, · · · , hp) • (vi'.) X Oh,) X · · · X (vt) X Oh,)(/) is 

(7J1 x • • • x 1)p)-measurable for each f E C((K1 x K2)P). 

We define 'lrp: (K1 x K2)P • K1 x K2 by 7rp(z1, • • • , zp) = z1 • • • Zp- Then 

(vi'.) X 0h1 ) * • • • * (vt) X Oh,)(g) 

= (vi'.) X Oh,) X · · · X (vf.) X Oh,)(g O 'lrp) 

for each g E C(K1 x K2). Thus (2) foll~ws from (4). D 

Lemma 3.2. Let K1 and K2 be metrizable compact groups, and let p E N. Let µ,. E 

M(K1 x K2), 1Jn E M+(K2), and let {vin)heK, be a family of measures in M(K1) with 
the following properties (n = 1, 2, • • • ,p): 
(l) h • (vt) x oh)(!) is 1Jn-measurable for each f E C(K1 x K2), 
(2) llvt)II :::; 1, and 
(3) µn(/) = f K, (vt) X oh)(f)d1Jn(h) for all f E C(K1 X K2), 
Let p be a measure in M(K1 x K2) defined by 

(4) p(f) = fK, · · · fK,(vt> * · · · * vt)) X Oh1, .. h,(/)d1J1(h1) · · ·d1)p(hp) 
for f E C(K1 x K2). Then p = µ 1 * · · · * µP. 

Proof. Let (a1,a2) be any element in :l:K, x :1:K,• For any ~f"•l 181 ~k"'l,~Y,l 181 d"') E 
H", 181 H"'' we have 

(p(a1, a2)(~/"1) 181 ~i"•l), ~j"') 181 d"')} 

= r (V~",) 181 ~"2)(~;"1) 181 d"2 >), ~j"') 181 ~y,)}dp(x, y) 
JK,xK, 

(5) = { ... { (vi'.)*""*Vt))xoh,, .. h,((U~"1)(~;"1>),~}"1)} 

JK2 JK2 
x (~"•> (~k"'l), ~t•l) )d1J1 (h1) · · · d1Jp(hp) 

= r "' r ((vI'.) *." *Vt>na1)(~;"1>ut,)) 
}K, }K, 

X (Vt\. (d"'l), d"2 ))d1)1 (hi)•·· d1)p(hp), 
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On the other hand, 

((µ1 * · · · * µpf(o-i, o-2)(Ef<11l ® Ek°"2l), E;"'l ® (;°"2 ) 

= f (~"tl ® V~"•l (Ef"'l ® Ek"'\ E;"'l ® Et'l)dµi * · · · * µp(x, Y) 
}K,xK2 

= 1 .. · 1 (U(u,) '°' v(u2) ("ju,) ® du2)) t:\Ut) ® "(u,)) 
:t1 ··•Xp V::,, t/1 ... J/p '-.,1 '-.,k ',.,,, '-:.l 

K1xK2 K1xK2 

dµi(Xi, Yi)·.· dµp(Xp, Yp) 

= 1 .. · 1 (if"') (d"t)) t:\cr1))(if"') ("(u2)) (:(0-2)) 
Xt ·••Xp '-:,1, ''-.,3 Yl ···Yp '---k ''-.,t 

K1XK2 K1xK2 

dµi (xi, Yi) · · · dµp(xp, Yp) 

= 1 .. · 1 1 (,,(ll X O )((ifo-1) ("(o-)) t:\o-1))(U(o-2) (du2) dcr2))) 
h1 hi x1 ··•Xp '->i , ",3 111 ·••yp ",.k ' '-..l 

K1 xK, Kt xK2 K, 
dT/i(hi)dµ2(x2, Y2) · · · µp(xp, Yp) 

(6) 

= 1 .. · 1 11 (U(o-1) ("/0-1)) t:\o-1J)d1Pl(x ) 
X1 ·••Xp '-.,1 '",3 h1 1 

K1xK2 K1xK2 K2 K1 

x (v}::~,---y, (Ek"'l), EY'l)dT/1 (hi)dµ2(x2, Y2) · · · dµp(xp, Yp) 

= { · · · { { (vtl(a-i)(V~:'._l.,,,(Ef'11l)),E;"1l) 
JK,xK2 JK,xK,JK, 

X wt~---y, (Ek"'l), EY'))dT/i (hi)dµ2(x2, Y2) ... dµp(xp, Yp) 

= { { · · · { (u~:'.:..:,(Ef"'l), vk:l(o-i)*(E;"'))) 
j K2 j K1xK2 j Ki xK2 

x <~:~\, (Ek"'i), vt•>· c,t•>))dµ2(x2, Y2) - - -µp(xp, Yp)dT/i (hi) 
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= r ''' r ({;"1 \ (vi!)*"' *llt)na1)*({;"1))) 

jK2 jK2 
x ("(u,) U(u,)• ("(u,)))d1J (h ) .. · d1J (h ) 

'>k • h, ... h, '>l I I p p 

= ( ... ( ((vi> ... *llt>f(a1)({!"'l),{J"'l) 
jK2 jK2 

X (Vt~\,({f'l), d"2))d1J1 (h1) · • · d1Jp(hp), 

where 1t>(a1)• and Vt:.~. are the adjoints of vt\ai) and Vt~\. respectively. By (5) 
and {6), we have 

(p(a1, a2)((;"1l 181 d"'l), {]"1 ) 181 {}"')) 

= ((µ1 * · · · * µPf(a1, a2)((;"1l 181 {k"'l), {j"il 181 d"2l) 

c ( ) "' "' d ,:-(ui) ,:-(u2) ,:-(u,) ,:-(u,) H H Th' · Id ,or any 0'1, 0'2 E L.JK, X L.JK, an '>i 181 '>k ' ',j 181 '>l E "' 181 "'' lS y1e s 
p = µl * ... * µp, • 

Proposition 3.1. Let K1 and K 2 be metrizable compact groups, and let p E N. Let E1 

be ans-small p set in ~K,, and let µ1, · · · , µPE ME,xEK (K1 x K2), Then lim ll«5(x,e2) * 
2 :z:~e1 

µ1 * · · · * µP - µ1 * · · · * µpll = 0, where ei is the unit element of Ki (i = 1, 2). 

Proof. Let 1r : Ki x K2 • K 2 be the projection, and let 1/n = 1r(Jµnl) (n = 1, 2, · · · ,p). 
Then, by the theory of disintegration of measures (cf. [1] or [14, Corollary 1.6]), there 
exists a family pt>heK, of measures in M(K1 x K 2) with the following properties: 

(1) 

(2) 

(3) 

( 4) 

h • ,\kn)(!) is 1Jn-measurable for each f E C(K1 x K2), 

Pinlll ~ 1, 

supp(,\in)) C 1r-1(h), and 

~(!) = r ,\kn)(f)d1Jn(h) for all f E C(K1 X K2), 
}K, 

By (2) and (3), there exists a measure vt) E M(Ki), with llvt>II ~ 1, such that 

(5) 
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L d E L b I . " "' ,c-(o-,) ,c-(o-,) ,c-(o-,l,o,c(o-,) H '°'H et o-1 'F 1. et 0-2 e any e ement m '-'K,· ror any '>i ®..,k , '>i '¢''>l E ,,., ""' "'' 
we have 

which yields 

0 = (P,n(o-1, u2)(ei"'l ® ek"'l), e)"'l ® et'l) 

= r (U~o-1) ® v~o-,)(do-1) ® ~k"'l), ej"') ® ~t•l)dµn(x, y) 
JK1xK2 

= r (V~<7'\ef"'l), e]"I))(~<72\d"2 \ et'))dµn(x, y) 
lx1xK2 

= { { (V~'\ef"'l),e},,.'l)dvtl(x) 
lK2lK1 

x (Vi"'l (ek"'\ e;"'))d11n(h) (by ( 4) and (5)) 

= { (Dkn\u1)et•l, ej"'))u~:·\h)d11n(h), 
}K, 

for all p E '!'(K2). Hence 

(vtl(u1)ei"'l, e)"'l) = 0 

Thus 

Since EK, is countable, we have 

(6) vt\a-1) = 0 for all 0-1 EEK,\ E1 77n-a.a. h E K2. 

Since E1 is an s-small p set, we have 

(7) vt) * · · · *Vk~) E L1(Ki) (111 X • · · X 17p)-a.a. (h1, · · · , hp) E Kr 
It follows from Lemmas 3.1 and 3.2 that (h1, • • • , hp) • (vk!) * · .. * vtl) x 8h,··•h,(J) is 
(111 x · · · x 17p)-measurable for each f E C(K1 x K2) and 

(8) µ1 * ... * µp(f) 

= { · · · { (vI!) *···*Vt)) x8h,···h,(f)d111(h1) · · -d17p(hp) lK2 lK2 
for all f E C(K1 x K2)- For x E K 1, we note that (h1, · · · , hp) • (8,, *vi!)*···* vtl) x 
8h,•··h,(J) is (771 x · · · x 17p)-measurable for each f E C(K1 x K 2). It follows from (8) that 

(9) d(x,e2) * µI * · · · * µp(f) 

= { · .. { (8x * vI'.) * ... * vt)) x 8h,···h,(f)d111(hi) · ··d17p(hp) JK, JK2 
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for all/ E C(K1 x K2). Let A= {/n} be a countable dense set in C(K1 x K2). Since 

llo., *vi'.>*···* vt> - vi'.>*···* vt>11 
= sup l{(o., * viI> * ... * vf:'>) X oh,···h, - (vi1> * ... * vf:'>) X oh,···h,}(/n)I, 

/.EA 1 • ' • 

111.11~:,1 
we note that 

(h h ) II r <1> <P> <tl CP> II t, •.• , P • u., * vh, * ... * vh, - vh, * ... * vh, 

is (111 x • • • x 1lp)-measurable. Let {sn} be a sequence in K1 such that Jim Sn= e1. Then, 
n• oo 

by (7), 

Jim llo, *Vi1> * ... *Vf:') - vi1> * ... *Vf:')11 = 0 
n• cxi" 1 P 1 P 

(111 x · · · x 1lp)-a.a. (hi,··· , hp) EK~, 

which, together with (8) and (9), yields 

Jim lloc,. ••l * µ1 *"' * µp - µ1 * ". * µPII 
n• oo ' 

= Jim sup I oc,., •• J * µ1 * · · · * µp(f) - µ1 * · · · * µp(/) I 
n• oo /EA 

11111~~1 

= Jim SUp 11 · · · 1 {(o,. * vt) * • • • * vf;1')) X oh, .. •h, -
n• oo /EA K2 K2 • 

11111~9 

(vi:>*···* vt>) X oh,···h,}(f)d111(h1) · · · d11p(hp) I 

:5 Jim 1 · .. 1 llo, * vi1> * · · · * vt> - vi1> * · · · * vf:'>lld111(h1) · · · d11p(hp) 
n• oo K2 K2 n l P 1 P 

= 0. (by the Lebesgue convergence theorem) 

Since K 1 is metrizable, the proposition is obtained. 

Similarly we get the following proposition. 

• 

Proposition 3.2. Let K 1 and K 2 be metrizable compact groups, and let p E N. Let E2 
be ans-small p set in EK., and let µ1 , • • • , µp E Mr:,K xE, (K1 x K2), Then lim llµ1 * .. · * 

1 y• e2 

µp - O(e,,1,1) * µ1 * ···*µpl! = 0. 

Proposition 3.3. Let K 1 and K2 be metrizable compact groups, and let p E N. Let E1 

and E2 bes-small p sets in EK, and EK, respectively. Then E1 x E2 is an s-small p set 
in EK,xK2 ~ EK, x EK,• 

Proof. Let~ E ME,xE,(K1 x K 2) (n = 1, 2, • • • ,p). It follows from Propositions 3.1 and 
3.2 that 

(1) 

(2) 

;~~1 1!µ1 * · · · * µP - O(x,,2 ) * µ1 * · · · * µpl! = 0, and 

lim llµ1 * · · · * µ - O(e ) * µ1 * · · · * µpl! = 0. y-+e2 P t,Y 
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Thus we have 

lim 11µ1 * · · · * µp - 1\,,,u> * µ1 * · · · * µpll 
(:r,y)• (e1,e2) 

~ lim {11µ1 * · · · * µP - 1\i:,e2) * µ1 * · · · * µPII 
(:r,y)• (e1,e2) 

+ llo(x,e,) *µI*'''* µp - O(x,y) * µ1 *' •' * µpll} 
= 0, 

which implies µ1 *•••*µPE L1(K1 x K2). This completes the proof. • 
Lemma 3.3. Let K be a compact group, and let H be a closed normal subgroup of K. 
Let II E M(K/ H), and let 1r : K • K/ H be the canonical map. Then there exists a 
measureµ E M(K) with the following : 

(1) 1r(µ) = 11, 

(2) µ(u) = 0 for u EEK\ A(EK, H), and 

(3) {u E A(EK, H) : µ(u) =fa 0} = {u E A(EK, H) : v(u) =fa 0}. 

Proof. Let II E M(K/H). For f E C(K), let [/] be a continuous function in C(K/H) 
defined by 

[/](±) = l f(xy)dmH(Y), 

and we define µ E M(K) by 

µ(!) = { [f](x)dv(x) 
jK/H 

for/ E C(K). It is easy to verify that 

( 4) 1r(µ) = II. 
Claim 1. µ(u) = 0 for u EEK\ A(EK, H). 

Let u EEK\ A(EK, H). For~. r, E Hu, we have 

(µ,(u)~, r,) = L (d"'u)~' r,}dµ(x) 

This shows that µ(u) = 0. 

= { 1 (U~:l~, r,)dmH(y)dv(x) 
jK/H H 

= { { (U~a-)~' U;°')• r,)dmH(y)dv(x) 
JK/HJH 

= f (mH(u)~, ~a-)• r,)dv(x) 
JK/H 

= 0. (by [9, 28.72(g), p.112]) 

Claim 2. Let u E A(EK, H). Then µ(u) =fa 0 if and only if v(u) =fa 0. 
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For€, 1) EH,,, we have, by the fact that u E A(EK, H), 

(P,(u)€, 7)) = r r (dx~€, 1J)dmH(y)dv(x) 
jK/HjH 

= f (~1€,ri)dv(x) 
jK/H 

= (v(u)€, TJ). 

Thus Claim 2 follows. By (4) and Claims 1 and 2, the lemma is obtained. D 

Lemma 3.4. Let K be a compact group, and let H be a closed normal subgroup of K. 
Let p E N. If E is an s-small p set in EK, then En A(EK, H) is an s-small p set in 
EK/H 9;( A(EK,H). 

Proof. We note that EK/H 9;( A(EK, H) (cf. (9, (28.10) Corollary]). 
Let Vn E MEnA(EK,H)(K/H)(n = 1,2, ... ,p), and let 1r: K • K/H be the canonical 
map. It follows from Lemma 3.3 that there exists µn E M(K) such that 

(1) 7r(~) = Vn, 

(2) J.Ln(u) = 0 for u E EK\ A(EK, H), and 

(3) {u E A(EK,H): fen(u) :/: 0} = {u E A(EK,H): Pn(u) :/: 0}. 

Then 

{u EEK : J.Ln(u) 'F 0} C En A(EK, H). 

Since Eis ans-small p set, µ 1 * • • • * /Jp belongs to L1(K), which yields that v1 * · · · * Vp = 
1r(µ1 * · · · * µp) E L1(K/H). This completes the proof. D 

The following lemma is due to (16). For a subset P of EK, A(K, P) denotes the 
annihilator of P in K. 

Lemma 3.5 (cf. (16, Lemma 3.3]). Let K be a compact group. Let µo be a nonzero mea
sure in M(K), and letµ and II be mutually singular positive measures in M(K). Let uo 
be an element in EK such that µo(u0 ) :/: 0. Then there exists a countable subset P of EK, 
with [P) = P, such that 

(i) uo E P, 

(ii) 1r(µonuo) :/: 0, and 
(iii) 1r(µ) .l 1r(v), 

where H = A(K, P) and 1r : K • K / H is the canonical map. Moreover, for any p' :::> P 
with [P'] = p', we have 

(iv) 1r' (µ) J. 1r' (v), 

where H' = A(K,P') and 1r': K • K/H' is the canonical map. 

Now we prove Theorem 2.1. Suppose there exist measures~ E ME,xE,(K1 x K2) (n = 
1, 2, • • • ,p) such that µ 1 * • • • * µP does not belong to L1(K1 x K2). Let 

µ1 * · · · * µp = µa + µ, 
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be the Lebesgue decomposition of µ1 * • • • * µP with respect to mK,xK,· Then µ, =f 0. 
Thus there exists a0 = (a1, a2) E EK, x EK, such that P,,{a0) =f 0. It follows from Lemma 
3.5 that there exists a countable subset P of EK,xK,, with [P] = P, such that 

{3.1) 

(3.2) 

{3.3) 

O"o = ( 0"1, a2) E P, 

7r(µ,f{ao) =f 0, and 

7r(lµ,I) .l 1r(mK,xK,), 

where 1r : K 1 x K2 • K 1 x K2/ A(K1 x K2, P) is the canonical map. Moreover, P can be 
chosen so that, for any p' :) P with [P'] = p', 

{3.4) 7r' (lµ,I) .l 7r' (mK,EBK,), 

where 1r' : K 1 x K2 • K 1 x K2/ A(K1 x K2, P') is the canonical map. Let T; : EK, x EK,(~ 
EK,xK,)--+ EK, be the projection {i = 1, 2), and let P; be a countable subset of EK, such 
that r;{P) c P; and [P;] = P; (i = 1, 2). Set H; = A(K,, P;), and put H = H1 x H2. 
Then H; and H are closed normal subgroups of K; and K 1 x K2 respectively. Let 11"H : 
K1 x K2 --+ K 1 x K2/ H ~ Ki/ H1 x K2/ H2 be the natural map. Since P C P1 x P2, we 
have, by {3.4), 

{3.5) 7rH(lµ,I) .l 1rH(mK,xK2 ), 

Since ao = (a1, a2) E P1 x P2 and P,,(ao) =f 0, we note that 

{3.6) 

(cf. the proof of Lemma 3.3 in [16]). It follows from Lemma 3.4 that E; n A(EK., H,) 
is an s-small p set. Since P; is countable, K;/ H; is a metrizable compact group. Hence 
(E1 n A(EK., H1)) x {E2 n A(EK,, H2)) is ans-small p set in EK,xK,/H ~ A(EK., H1) x 
A(EK,, H2)(~ Pi x P2), by Proposition 3.3. Since spec(7rH(µ,,)) c {E1 n A(EK,, Hi)) x 
{E2 n A(EK,, H2)), we have 

{3.7) 7rH(µ1 * ... * µp) = 7rH(µ1) * ... * 11"H(µp) E L1{K1 X K2/H). 

On the other hand, {3.5) shows that 7rH{µ1 * • • • * µp) = 7rH(µ 4 ) + 7rH(µ,) is the Lebesgue 
decomposition of 1rH(µ1 *· • •*µp) with respect to 7rH(mK,xK,), By {3.6), we have 7rH(µ,) =f 
0, which contradicts {3.7). This shows that E1 x E2 is an s-small p set in EK,xK,, and 
the proof is complete. 

Next we prove Theorem 2.2. We need several lemmas. 
For µ E M(K), define µ E M(K) by 

(3.8) µ(B) = µ(B) 

for Borel sets Bon K. Let a EEK, We denote by B(HCT) the space of all bounded linear 
operators on HCT. Forµ E M{K), we define Tµ E B(HCT) by 

(3.9) (Tµe, TJ) = l (D(frf;' DCTe, TJ)dµ(x) 

for e, TJ E HCT. The following can be found in the proof of [9, (28.44) Theorem]. 
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Lemma 3.6. There exists an onto linear isometry C : Hu • H,, such that µ(a) 
c-1r"c. 
Lemma 3.7. Letµ E M(K) and a EEK. Then µ(a)= D,,TµD,,. 

Proof. For E, 11 E H,,, we have 

(µ(a)E, 11) = f)u~")E, 11)aµ(x) = l (V~"lE, 11)dµ(x) 

= l (D,,ff,,"l{,D,,11)dµ(x) = l (D,,~") D,,D,,{, D,,11)dµ(x) 

= (TµD,,{, D,,11} = (D,,TµD,,{, 11). 

This completes the proof. D 

Remark 3.1. Letµ E M(K) and <J EEK. It follows from Lemmas 9.6 and 9. 7 that the 
foil owing are equivalent. 
(i) µ(a) =f o. 
(ii) µ(a) =f 0. 

Corollary 3.1. Letµ E M(K). Then spec(µ) = spec(µ)-, where spec(µ)- = {u: a E 
spec(µ)}. 

Proof For <J E EK, we note that~= <J. Thus the corollary follows from Remark 3.1. D 

The following lemma is due to (15]. 

Lemma 3.8 (cf. (15, Lemma 3.3]). Let <J E EK and A C EK. For f E 'I',,(K) and 
µ E M(K) with spec(µ) CA, we have spec(!µ) C <J x A. 

Now we prove Theorem 2.2. Letµ, v E M,:,.(K). Then 

(3.10) (u\;l µ) * (ui?v) e L1(K) 

for all a, r E EK ; u\1l E 'I',,(K), ui~l E 'I'r(K). In fact, since spec(µ) C A, we have, by 
Lemma 3.8, 

spec(u\1l µ) C <J x A. 

Similary Corollary 3.1, together with the previous lemma, yields 

spec(ui?v) Cr x 3:. 
Hence we have 

spec((u\1lµ) * (ui~>v)) c (ax A) n (r x 3:), 

which implies (3.10), since (ax A) n (r x 3:) is finite by the hypothesis (2.3). It follows 
from (3.10) that 

(3.11) (!µ) * (hi7) E L1(K) for any f,h E 'I'(K). 

371 



On the other hand, there exist sequences {In} and {hn} in 'r(K) such that lim 11/nµ -
n • oo 

lµl!I = 0 and lim llhnv- !viii= 0. Since Jim ll(fnµ) * (hnv)- lµI *!viii= 0, (3.11) yields 
n • oo n • oo 

lµI *!vi= lµI * !vi E L1(K). This completes the proof. 
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TWO DUAL PAIR METHODS 
IN THE STUDY OF GENERALIZED WHITTAKER MODELS 

FOR IRREDUCIBLE HIGHEST WEIGHT MODULES 

HIROSHI YAMASHITA 

INTRODUCTION 

Let G be a connected simple linear Lie group of Hermitian type, and let K be a maximal 
compact subgroup of G. The Lie algebras of G and Kare denoted by g0 and t0 respectively. 
The purpose of this note is to make an overview of our algebraic and geometric approach 
to the study of generalized Whittaker models for irreducible admissible representations of 
G with highest weights. We employ two kinds of dual pair methods in the course of our 
study. 

To be more precise, we write Ge, Kc (resp. g, t) for the complexifications of G, K (resp. 
g0 , t0 ) respectively. Let g = t + p be a complexified Cartan decomposition of g. The G
invariant complex structure on K\G gives a triangular decomposition g = P+ +t+p_ of g. 
It is well-known that P+ admits precisely r + 1 number of Kc-orbits Om (m = 0, 1, ... , r) 
arranged as dim 0 0 = 0 < dim 0 1 < · · · < dim Or = dim P+, where r denotes the real 
rank of G. 

These nilpotent Kc-orbits Om are essentially related to the highest weight representa
tions. In reality, the Harish-Chandra module of an irreducible admissible G-representation 
with highest weight is isomorphic to the unique simple quotient L( r) of generalized Verma 
module M(r) attached to an irreducible representation (r, V7 ) of K. Then, the associated 
variety (i.e., the support) V(L(r)) of L(r) coincides with the closure of a single Kc-orbit 
Om(r) in P+, where m(r) depends on r. On the other hand, following the recipe by 
Kawanaka [12] (see also [23]), one can construct a generalized Gelfand-Graev represen
tation rm = Ind~m)(71m) (GGGR for short; see Definition 4.1) attached to the nilpotent 
G-orbit o:,. in g0 corresponding to each Kc-orbit Om through the Kostant-Sekiguchi bi
jection. The GGGR rm is induced from certain one-dimensional representation 7/m of a 
nilpotent Lie subalgebra n(m) of g, and it is far from irreducible. 

In this note, we are concerned with the following problem. 

Problem. Describe the (g, K)-embeddings, i.e., the generalized Whittaker models, of 
L(r) into these GGGRs f m• 

As for L(r)'s isomorphic to the irreducible generalized Verma modules M(r), we already 
have a complete answer in [24, Part II]. Hence our main interest is in the case where the 
corresponding M(r) is reducible. 

In order to specify the embeddings, we use the invariant differential operator V 7 - on 
K\G of gradient type associated to the K-representation r• dual to r (Definition 2.2). 
This operator V 7 ° is due to Enright, Davidson and Stanke ([2], [3], [4]), and the K-finite 
kernel of V 7 ° realizes the dual lowest weight module L(r)*. Our first dual pair method, 
which comes essentially from a duality of Peter-Wey! type for irreducible (g, K)-modules, 
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tells us that the space Y( r, m) of 7/m-covariant solutions F of differential equation TJ,. F = 
0 is isomorphic to the space of (g, K)-homomorphisms in question. The space Y( r, m) 
can be intrinsically analyzed by an algebraic method, thanks to the Cayley transform on 
Ge which carries the bounded realization of K\G to the unbounded one. 

As consequences, it is shown that L(r) embeds into the GGGR rm with nonzero and 
finite multiplicity if and only if the corresponding Om is the unique open Kc-orbit Om(,) 
in the associated variety V(L(r)). If L(r) is unitarizable, we can specify the space Y(r) := 
Y(r, m(r)) in terms of the principal symbol at the origin Ke of the differential operator 
TJ, •. This reveals a natural action on Y(r) of the isotropy subgroup Kc(X) of Kc at a 
certain point X E Om(,)· Furthermore, we find that the dimension of Y(r) coincides with 
the multiplicity of L(r) at the defining ideal of V(L(r)). See Theorems 5.1 and 5.2. 

If G is one of the classical groups G = SU(p, q), Sp(2n, JR) and S0*(2n), the theory 
of reductive dual pair gives realizations of unitarizable highest weight modules L(r) (cf. 
[11], [7], [3]). The generalized Whittaker models for such an L(r) can be described more 
explicitly by using the oscillator representation of the pair (G, G') with a compact group 
G' dual to G. This is our second dual pair method. The case SU(p, q) has been studied 
by Tagawa [20] motivated by author's observation in 1997 for the case Sp(n, JR). In this 
note we focus our attention on the remaining case S0*(2n). 

The full detail of this overview will appear elsewhere (see (27]). 
We organize this note as follows. 
Section 1 concerns our first dual pair method. Namely, we provide with a kernel theorem 

(Theorem 1.2) which will be utilized for describing the generalized Whittaker models in 
later sections. We introduce in Section 2 the differential operator V,. on K\G of gradient 
type associated to r•, after [ 4]. Section 3 is devoted to characterizing the associated variety 
and multiplicity of irreducible highest weight module L(r) by means of the principal 
symbol of 1),,.. (Theorem 3.3). After introducing the GGGRs rm in Section 4, we state 
our main results (Theorems 5.1 and 5.2) in Section 5. Also, we discuss the case of classical 
group S0"(2n) more explicitly in 5.2, through our second dual pair method. 

1. THE FIRST DUAL PAIR METHOD - KERNEL THEOREM 

In this section, let G be any connected semisimple Lie group with finite center. We 
employ the same notation as in Introduction. Conventionally, the complexification in 
g of any real vector subspace s0 of g0 will be denoted by s by dropping the subscript 
0. We write U(m) (resp. S(ti)) for the universal enveloping algebra of a Lie algebra m 
(resp. the symmetric algebra of a vector space tl ). A U(g)-module X is called a (g, K)
module if the subalgebra U(t) acts on X locally finitely, and if the t0-action gives rise to 
a representation of K on X through exponential map. 

The group G acts on the space e00 (G) of all smooth functions on G by left translation 
L and by right translation R as follows: 

(1.1) gL f(x) := f(g- 1x), gR f(x) := f(xg) (g E G, x E G; f E e00 (G)). 

Through differentiation one gets two U(g)-representations on e00 (G) denoted again by 
L and R respectively. Let er(G) be the space of all functions in e 00 (G) which are left 
K-finite and also right K-finite. Then er (G) becomes a (g, K)-module through Lor R. 

The following well-known lemma says that a duality of Peter-Wey! type holds for irre
ducible (g, K) modules. 

Lemma 1. 1. Let X be an irreducible (g, K)-module, and let f be in er ( G). Then the 
(g, K)-module U(g)L f generated by f through L is isomorphic to X if and only if the 
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corresponding U(g)R f through R is isomorphic to the dual (g, K)-module X' consisting 
of all K -finite linear forms on X. 

For an irreducible (g, K)-module X, we fix once and for all an irreducible finite
dimensional representation ( r, VT) of K which occurs in X, and fix an embedding iT : V,. '--t 

X as K-modules. Then the adjoint operator i; of i, gives a surjective K-homomorphism 
from X' to v;, where (r", v;) denotes the representation of K contragredient tor. 

We now consider the C00-induced representation lndi(r*) acting on the space 

(1.2) C~(G) := {<P: GE:,. v; I <P(kg) = r'(k)<P(g) (g E G, k EK)}, 

endowed with G- and U(g)-module structures through right translation R. Equip C;"?(G) 
with a Frechet space topology of compact uniform convergence of functions on G and each 
of their derivatives. Then the G-action on C;"?(G) is smooth. By the Frobenius reciprocity, 
there corresponds (to i;) a unique (g, K)-embedding A,. from x• into C;"?(G) through 

(1.3) AT.(rp)(g) = {;,(7l''(g)rp) (g E G; 'PE X'). 

Here i'; denotes the unique continuous extension of i; : x• -+ v; to any irreducible 
admissible G-module H* with K-finite part x•. 

Let Hom8,K ( X, C00 ( G)) be the space of (g, K)-homomorphisms from X into C00 ( G) 
(under the action L). The right action Ron C00 (G) naturally gives a G-module structure 
on this space of (g,K)-homomorphisms. For each element Win Hom8 ,K(X, C 00 (G)), 
one can define FE C~(G) by 

(1.4) (F(g),v) = ((Woi,)(v))(g) (g E G, v EV,). 

Here ( • , • } stands for the dual pairing on v; x VT. Then it is easily seen that the 
assignment W >--+ F sets up a G-embedding 

(1.5) Hom8,K(X, C00 (G)) <-t C~(G). 

Lemma 1.1 together with our argument in [25, I, §2] allows us to prove the following 
kernel theorem. 

Theorem 1.2. Under the above notation, if'D is any continuous G-homomorphism from 
C;"?(G) to a smooth Frechet G-module M such that 

(1.6) AT. (X') = {FE C~(G) I F is right K-finite and VF= O}, 

then the full kernel space Ker'D of V in C;"?(G) coincides with the image of the G
embedding (1.5). Hence one gets 

(1.7) Hom8,K(X, C 00 (G)) ~ Ker'D as G-modules. 

This claim can be deduced also from the work of Kashiwara and Schmid (cf. [10] and 
[19]) on the maximal globalization of Harish-Chandra modules, by noting that Ker 'D gives 
the maximal globalization of the irreducible (g, K)-module x•. 
Example 1.3. We mention that an operator 'D satisfying the requirement in Theorem 1.2 
has been constructed when x• is the (g, K)-module associated with: (a) discrete series 
([18], [9]) and more generally Zuckerman cohomologically induced module ([22], [l]), with 
parameter "far from the walls", or (b) highest weight representation ([2], [4]; see also 
Theorem 2.5). In each of these cases, 'D is given as a G-invariant differential operator of 
gradient type acting on C~(G), where r• is the unique extreme K-type of x•. 

We will apply the above kernel theorem later in order to describe the generalized Whit
taker models for irreducible admissible highest weight representations. 
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2. DIFFERENTIAL OPERATORS OF GRADIENT TYPE 

From now on, let us assume that G is of Hermitian type as in Introduction. We 
consider the irreducible highest weight (g, K)-modules L(r) with extreme K-types r. In 
this section we construct, following [4], the differential operators 'D7 - of gradient type on 
K\G whose K-finite kernels realize the dual lowest weight (g, K)-modules L( r)• (Theorem 
2.5). 

2.1. Generalized Verma modules. First, we fix some notation concerning simple Lie 
algebras of Hermitian type (cf. [24, Part I, §5] and [8, 3.3]). Take the complexification 
Ge of G, and the analytic subgroup Kc of Ge with Lie algebra e = 20 ®a C. Then there 
exists a unique (up to sign) central element Z0 ofe0 such that ad Z0 restricted to Po gives 
an Ad(K)-invariant complex structure on p0• One gets a triangular decomposition of g 
as follows: 

(2.1) 
g = P- EB e EB P+ such that 

[e, P±l c P±, [P+, P-l c e, !P+, P+l = [P-, P-l = {o}, 

where P± denotes the eigenspace of ad Z0 on g with eigenvalue ±J=T respectively. 
Let to be a compact Cartan subalgebra of g0 contained in 20 . We write t.. for the root 

system of g with respect to t. For each 'Y E t.., the corresponding root subspace of g will 
be denoted by g(t;'Y)- We choose root vectors X 1 E g(t;'Y) ('YE t..) such that 

(2.2) x, - X_-y, H(X-y + x_,) E !o + HPo, [X,, X--rl = H,, 

where H, is the element of J=Tto corresponding the coroot 'Yv := 2'Y/('Y,Y) through the 
identification t• = t by the Killing form B of g. Let t..c (resp. t..n) denote the subset of 
all compact (resp. noncompact) roots int... 

Take a positive system t,.+ oft.. compatible with the decomposition (2.1): 

(2.3) P± = E9 g(t; ±'Y) with t..t := t. + n t..n, 
,e.o.;t 

and fix a lexicographic order on J=T fo which yields t.. +. Using this order we define a 
fundamental sequence ('Y1 , "(2 , .•. , 'Yr) of strongly orthogonal (i.e., 'Yi± 'Yi ¢:. t. U {O} for 
i =I= j) noncompact positive roots in such a way that 'Yk is the maximal element of t.. +, 
which is strongly orthogonal to 'Yk+l, ... , 'Yr· Then r is equal to the real rank of G. 

Let ( r, VT) be any irreducible finite-dimensional representation of K with t..t-highest 
weight >. = >.(r). We consider the generalized Verma U(g)-module induced from r: 

(2.4) M(r) := U(g) ®u(t+P+l VT. 

Here r is extended to a representation of the maximal parabolic subalgebra e + P+ by 
the null P+-action on VT. M(r) admits a natural (g,K)-module structure. Let N(r) 
be the unique maximal proper (g, K)-submodule of M(r). Then the quotient L(r) := 
M(r)/N(r) gives an irreducible (g,K)-module with t..+-highest weight>.. 

Note that M(r) = U(p_)VT is canonically isomorphic to the tensor product S(p_) ® 
VT = S(P-) ®c VT as a K-module, where S(p_) (~ U(p_), since P- is abelian) denotes 
the symmetric algebra of P- looked upon as a K-module by the adjoint action. This 
isomorphism yields a gradation of the K-module M(r): 

00 

(2.5) M(r) = E9 Mi(r) with Mj(r) := Si(p_)VT ~ Si(p_) ® VT. 
j=O 
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Here we write Si(l1-) for the K-submodule of S(l1-) consisting of all homogeneous ele
ments of S(11-l of degree j. Observe that the submodule N(r) is graded: 

00 

(2.6) N(r) = E9 N;(r) with N;(r) := N(r) n M;{r). 
i=O 

Since M(r) = S(11-)VT is finitely generated over the Noetherian ring S(11-), so is the sub
module N(r), too. This implies that, if N(r) f, {O}, there exist finitely many irreducible 
K-submodules W1 , ... , Wq of N(r) such that 

q 

(2.7) N(r) = I:s(11-)Wu with Wu c si•(11-)VT ~ si•(11-) © ½ 
u=l 

for some positive integers iu (u = 1, ... , q) arranged as 

(2.8) 

We call i{r) the level of reduction of M(r). 
For unitarizable L(r)'s, Joseph (5] gives a simple description of the maximal submodule 

N(r) as follows. Assume that L(r) is unitarizable and that N(r) f, {O}. Then the level 
i(r) of reduction of M(r) turns to be an integer such that 1 ~ i(r) ~ r, where r is the 
real rank of G. Let Qi(T) be the irreducible K-submodule of Si(T)(l1-) with lowest weight 
-'Yr - ... - 'Yr-i(T)+l· Then the tensor product Qi(T) © VT has a unique irreducible K
submodule W1 , called the PRV(Parthasarathy, Rao and Varadarajan)-component, with 
extreme weight>. - 'Yr - ... - 'Yr-i(T)+l· We regard W1 as a K-submodule of M;(T)(r). 

Theorem 2.1 ([5, 5.2, 6.5 and 8.3], see also (3, 3.11). Under the above assumption and 
notation, the maximal submodule N(r) of M(r) is a highest weight (g, K)-module gener
ated over S(l1-) by the PRY-component W1 • 

2.2. A realization of the dual lowest weight module L(r)•. For each irreducible 
representation (r, VT) of K, let L(r)• be the irreducible lowest weight (g, K)-module which 
is dual to L(r). Since L(r)* contains the extreme K-type (r•, V/) with multiplicity one, 
there exists a unique (up to constant multiple) (g, K)-embedding AT. form L(r)• into 
C~(G). We are going to introduce a differential operator of gradient type whose K-finite 
kernel coincides with the image AT. (L(r)*). 

For this, we take a basis X1, .•• , X, of the IC-vector space 11+ such that B(X;, X\) = t5;k 
(Kronecker's ,5), where X; E 11- denotes the complex conjugate of X; E 11+ with respect 
to the real form g0• Set 

(2.9) XQ := Xf' ·· ·X:• E U(11+) and T := °X71 • • -X~• E U(11-) 

for every multi-index a= (a1, ••• , a,) of nonnegative integers a 1, ... , a,. We call !al := 

a 1 + · · • + a, the length of a. For each positive integer n we define the gradients ,;;,n and 
v' of order n on C~(G) as follows. 

{2.10) v,n F(x) := L r © (XQl F(x), 
IQl=n 

(2.11) v' F(x) := L X"' © (X"')L F(x), 
IQl=n 

377 



HIROSHI YAMASHITA 

for x E G and FE C;?(G). It is then easy to see that 'vnF and v'F are independent 
of the choice of a basis X 1 , ..• , X., and that the operators 'vn and v' give continuous 
G-homomorphisms 

(2.12) 'vn: C~(G) • C~(-nl(G), v': C~(G) • C~(+nJ(G). 

Here r*(±n) denotes the K-representation on the tensor product sn(P±)® v; respectively. 
Let W,. (u == 1, ... , q) be, as in (2.7), the irreducible K-submodules of 5i, (P-)VT C 

N(r) which generate N(r) over S(p_) when N(r) ¥= {O}. For each u, the adjoint operator 
P,. of the embedding 

(2.13) 

gives a surjective K-homomorphism: 

(2.14) 

where P+ is identified with the dual space of p_ through the Killing form B, which is 
nondegenerate on P+ x P-· 

Definition 2.2. Keep the above notation. 
(1) Let VT. be a continuous G-homomorphism from C;?(G) to Cf(G) defined by 

(2.15) 

for x E G and FE C;?(G). Here we write p == p(r*) for the representation of Kon 

(2.16) 

and VT. should be understood as VT. == 'v1 if N(r) == {O}, or equivalently M(r) == L(r). 
We call VT. the differential operator of gradient type associated to r•. 

(2) Put for XE P+ and v• Ev;, 
q 

(2.17) u(X, v*) :== E P,,(xi, ® v*) E w· :== EBt=l wi. 
tt=l 

We call u the principal symbol of VT" at the origin. Here u should be understood as 
u(X, v*) == 0 for every X E P+ and every v• E V/, when VT. == 'v1• 

Remark 2.3. A function F E C~(G) gives an anti-holomorphic section of the vector 
bundle on K\G associated to r• if and only if 'v1 F == 0. Hence the elements of Ker VT. 
are necessarily anti-holomorphic. The converse is true when N(r) == {O}. 

Remark 2.4. If L(r) is unitarizable, one sees from Theorem 2.1 that 

1 ( =i(T)) {2.18) VT. == 'v EB P, 0 'v . 

Here i(r) is the level of reduction of M(r), and the K-homomorphism Pi is defined 
through the PRY-component W1 C SiM(p_) ® VT. 

The following theorem, equivalent to [4, Prop.7.6] due to Davidson and Stanke, realizes 
the lowest weight module L( r )* by means of VT •. 

Theorem 2.5. The image of the (g, K)-embedding AT. from L(r)* into C~(G) coincides 
with the K -finite kernel of the differential operator VT. of gradient type. 
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3. ASSOCIATED VARIETY AND PRINCIPAL SYMBOL 

This section concerns the relationship between the associated variety ( with multiplicity) 
of L( r) and the principal symbol u of the differential operator 'D-r• of gradient type. The 
result is summarized as Theorem 3.3. 

For every integer m such that 0 $ m $ r = JR.-rank G, we set 
r 

(3.1) Om:= Ad(Kc)X(m) with X(m) := I: X-,. (see (2.2)). 
k=r-m+I 

where X(O) should be understood as 0. The following proposition is well-known. 

Proposition 3.1. The subspace P+ splits into a disjoint union of r + 1 number of Kc
orbits Om (0 $ m $ r): P+ = llo<m<r Om, and the closure Om of each orbit Om is equal 
to Uk::;mOk for every m. - -

Let L( r) be the irreducible highest weight (g, K)-module with extreme K-type ( r, V-r). 
The annihilator Anns(p.)L(r) of L(r) in S(p.) = U(p.) defines an affine algebraic variety 

(3.2) V(L(r)) :={XE P+ I D(X) = 0 for all DE Anns(p.)L(r)} c P+, 

which is called the associated variety of the (g, K)-module L(r). Here S(p_) is identified 
with the ring of polynomial functions on P+ through the Killing form B of g. By noting 
that the ideal Anns(p.JL(r) is stable under Ad(Kc), we see from Proposition 3.1 that 
there exists a unique integer m(r) (0 $ m(r) $ r) such that 

(3.3) V(L(r)) = Om(-rl• 

In particular, the variety V(L(r)) is irreducible. 
Now let Im be the prime ideal of S(p_) that defines the irreducible variety Om (0 $ 

m $ r). If M is a finitely generated S(p.)-module, the multiplicity mult1m (M) of M 
at Im is defined to be the length of the localization M1m as an S(P-)1m•module. The 
associated variety V(L(r)) with the multiplicity mult1m<•> (L(r)) is called the associated 
cycle of L(r). 

For each X E P+, let m(X) be the maximal ideal of S(p_) which defines the variety 
{X} of a single element X. We set 

(3.4) W(X, r) := L(r)/m(X)L(r). 

Then we see that dim W(X, r) < oo, and that the isotropy group Kc(X) of Kc at X 
acts on W(X, r) naturally. Let u be the principal symbol of 'D-r• as in Definition 2.2. 
The map v• >-+ u(X, v•) gives a Kc(X)-homomorphism u(X, •) from V/ to w•. Hence 
Ker u(X, •) is a Kc(X)-submodule of v,.•. 

The following lemma relates the above kernel of u with the Kc(X)-module W(X, r). 

Lemma 3.2. For each X E P+, the natural map 

{3.5) V,. '-+ M(r) • L(r) = M(r)/N(r) • W(X,r) = L(r)/m(X)L(r) 

from V-r onto W(X, r) induces a Kc(X)-isomorphism 

{3.6) W(X,r)* '.:::'. Keru(X, ·)CV/ 

through the contravariant functor Home(•, IC). 

By applying the argument of Vogan in [21, Section 2] in view of Lemma 3.2, we can 
deduce the following theorem. 
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Theorem 3.3. Let L( r) be any irreducible highest weight (g, K)-module with extreme K -
typer, and let a- : I'+ x V/ -+ w• be the principal symbol of the differential operator 'Dr• 
of gradient type associated to r•. Then it holds that 

(3.7) V(L(r)) ={XE P+ I Kero-(X, ·) # {O}}. 

Moreover, if X is an element of the unique open Kc-orbit Om(r) of V(L(r)), the dimension 
ofKero-(X, ·) is equal to the multiplicity of S(p_)-module L(r)/Im(r)L(r) at the prime 
ideal Im(r)• 

As for the unitarizable highest weight modules L(r), some results of Joseph [15, Lem.2.4 
and Th.5.6] (due to Davidson, Enright and Stanke [3] for g classical) assure that the prime 
ideal Im(r) annihilates L(r). Thus we obtain 

Corollary 3.4. One has multrmc,/L(r)) = dim W(X, r) (X E Om(T)) for every irre
ducible unitarizable highest weight module L( r). 

Remark 3.5. We can get the same kind of characterization of the associated cycle also for 
irreducible (g, K)-modules of discrete series, by using the results of (9] and [26]. We will 
discuss it elsewhere. 

Remark 3.6. For classical groups Sp(2n, JR), U(p, q) and 0*(2p), Nishiyama, Ochiai and 
Taniguchi (17, Th.7.18 and Th.9.1] have described the associated cycle and the Bernstein 
degree of unitarizable highest weight module L(r) by using the theory of reductive dual 
pairs (G,G') with compact G'. They deal with the case where the dual pair (G,G') is 
in the stable range with smaller G', through detailed study of K-types of L(r). On the 
other hand, the above corollary gives another simple method for describing the multiplicity 
mult1mC•> (L(r)) by means of the Kc(X)-module W(X, r) (cf. 5.2). 

4. CAYLEY TRANSFORM AND GENERALIZED GELFAND-GRAEV REPRESENTATIONS 

In this section, we introduce the generalized Gelfand-Graev representations of G at
tached to the Cayley transforms of nilpotent Kc-orbits Om = Ad(Kc)X(m) (m = 
0, ... ,r) in 1'+· 

For this, we consider an .slrtriple in g: 
r r 

(4.1) X(m) = L X7., H(m) := L H,,., Y(m) := 
k=r-m+I k=r-m+I 

and the Cayley transform c = Ad(c) on g defined by the element 

(4.2) c :=exp(~· t (X-r• - X_1.)) E Ge. 
k=l 

We put 

r 

:E x_,,., 
k=r-m+l 

{ 

X'(m): = -Rc-1(X(m)) = ~(H(m)-X(m) + Y(m)), 

(4.3) H'(m): = c-1(H(m)) = X(m) + Y(m), 

A Y'(m): = Rc-1 (Y(m)) = --2-(H(m) + X(m) - Y(m)). 

Then (X'(m), H'(m), Y'(m)) forms an .sl2-triple in the real form g0 of g. Set o;,. := 
Ad(G)X'(m). We note that the nilpotent G-orbit o:,. in g0 corresponds to the Kc-orbit 
Om in I'+ C i, through the Kostant-Sekiguchi correspondence (cf. [8, Th.3.1]). 
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Now, let T/m be the one-dimensional representation (i.e., character) of abelian Lie sub
algebra n(m) := c([t, Y(m)]) defined by 

(4.4) TJm(U) := -HB(U, Y'(m)) = -B(c-1U, X(m)) for U E n(m). 

Then, we can form a C00-induced G- and (g, K)-representation rm acting on the space 

(4.5) C00 (G; TJm) := {f E C00 (G) I UR f = -TJm(U)f (U E n(m))} 

by left translation L. Note that 

(4.6) C00 (G; TJr) c C00 (G; T/r-1) C · · · C C00 (G; TJo) = C00 (G), 

since one sees n(m) C n(m') and T/m•ln(m) = T/m form$ m'. 

Definition 4.1. We call (fm,C00 (G;TJm)) the generalized Gelfand-Graev representation 
(GGGR for short) of G attached to the nilpotent G-orbit o;,. = Ad(G)X'(m) in g0 . 

Remark 4.2. The GGGRs attached to arbitrary nilpotent orbits have been constructed 
in full generality by Kawanaka [12] for reductive algebraic groups. See also [23] for the 
GGGRs of real semisimple Lie groups. 

In order to describe the generalized Whittaker models for L(r), we need the bounded 
and unbounded realizations of Hermitian symmetric space K\G. To be more precise, let 
P± := exp P± be the connected Lie subgroups of Ge with Lie algebras P±, respectively. 
Note that the exponential map gives holomorphic diffeomorphisms from P± onto P±. 
Consider an open dense subset P+KcP- of Ge, which is holomorphically diffeomorphic 
to the direct product P+ x Kc x p_ through multiplication. For each x E P+KcP-, let 
P+(x), kc(x), and p_(x) denote respectively the elements of P+, Kc, and P_ such that 
x = P+(x)kc(x)p_(x). Set ((x) := log p_(x) E P-· 

Proposition 4.3 (cf. [13, Chapter VII]). (1) One has GcUG C P+KcP-, where c is the 
Cayley element of Ge in (4.2). 

(2) The assignment x i-t ((x) (x E G) sets up an anti-holomorphic diffeomorphism 
from K\G onto a bounded domain {e(x) IX E G} in P-· 

(3) Similarly, x >-t ((xc) (x E G) induces an anti-holomorphic diffeomorphism from 
K\G onto an unbounded domain { e(xc) I X E G} in P-. 

5. GENERALIZED WHITTAKER MODELS 

For any irreducible finite-dimensional K-module (r, V7 ), let L(r) = M(r)/N(r) (see 
2.1) be the irreducible highest weight (g, K)-module with extreme K-type r. Consider 
the GGGRs (rm, C00 (G; TJm)) (m = 0, ... , r) induced from the characters T/m : n(m) -+ C. 
We say that L(r) has a generalized Whittaker model of type T/m if L(r) is isomorphic to a 
(g, K)-submodule of C00 (G; TJm)- In this section, we give an answer to the problem posed 
in Introduction. 

5.1. Main results. We are going to describe the generalized Whittaker models for L(r) 
by specifying the vector space of (g,K)-homomorphisms from L(r) into C00 (G; TJm)- To 
do this, let 1)7 • : C~(G) -+ Cf(G) be, as in Definition 2.2, the G-invariant differential 
operator of gradient type whose kernel realizes the maximal globarization of lowest weight 
module L(r)*. We set 

(5.1) Y(r,m) :={FE C'{:(G) I 1J7 .F = 0, URF = -TJm(U)F (U E n(m))}. 
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Then the kernel theorem (Theorem 1.2) gives a linear isomorphism 

(5.2) Homg,K(L(r),C00 (G;11m)) ~ Y(r,m) 

through the correspondence (1.4). Thus our task amounts to specifying the space Y(r, m) 
for each r and m. 

Let Om(r) be the unique open Kc-orbit in the associated variety V(L(r)) of L(r). 
Among the generalized Whittaker models for L(r), those of type 1/m(r) are most important. 
We obtain the following result on the corresponding linear space Y(r, m) with m = m(r). 

Theorem 5.1. Let (r, Vr) be an irreducible finite-dimensional representation of K. Set 
m = m(r) and Y(r) := Y(r, m) for short. Then, 

(1) Y(r) is a nonzero, finite-dimensional vector space. 
(2) For any F E Y(r), there exists a unique polynomial function cp on P- with values 

in v; such that 

(5.3) F(x) = expB(X(mU(xc))r*(kc(xc))cp(((xc)) (x E G). 

(3) Let u : P+ x v; • w• be the principal symbol of the differential operator Dr
of gradient type, defined by (2.17). For v• E v;, we write F •• for the function in ( 5.3) 
corresponding to the constant polynomial cp : P- 3 Z >-+ v• E v;. Then the assignment 
v• >-• Xr(v*) := F •• (v• E Ker o-(X(m), • )) yields an injective linear map 

(5.4) Xr: Kero-(X(m), · ) '-+ Y(r). 

(4) Assume that L(r) is unitarizable. Then the linear embedding Xr in (3) is surjective. 
Hence one gets 

(5.5) Hom9,K(L(r), C00 (G; 7Jm)) ~ Y(r) ~ Ker u(X(m), • ) ~ W(X(m), r) 

as vector spaces, where W(X(m), r) = L(r)/m(X(m))L(r) is as in (3.4). Moreover, 
the dimension of the vector spaces in (5.5) equals the multiplicity multr= (L(r)) of the 
S(p_)-module L(r) at the unique associated prime Im, by Corollary 3.4. 

As for Y(r, m') with m' f m(r), we can deduce the following 

Theorem 5.2. The linear space Y( r, m') vanishes ( resp. is infinite-dimensionaQ if m' > 
m(r) (resp. m' < m(r)). 

These two theorems are the main results of this note. 

Remark 5.3. (1) Theorem 5.1 (4) recovers, to a great extent, our earlier work [24, Part 
II] on the generalized Whittaker models for the holomorphic discrete series. 

(2) The vanishing of Y(r, m') (m' > m(r)) in Theorem 5.2 follows also from a general 
result of Matumoto [16, Th.1]. 

5.2. The second dual pair method: case of S0*(2n). Let G be the group S0*(2n) 
consisting of all matrices in SL(2n, C) satisfying 

( In O ) t- _ (In O ) 
g O -In g - 0 -In and t (0 In) (0 In) 

g In 0 g = In 0 1 

where In denotes the identity matrix of size n. The totality of unitary matrices in G forms 
a maximal compact subgroup K. In this subsection, we describe the space W(X(m), r) 
in (5.5) by using the oscillator representation of the pair (G, G') with G' = Sp(k). 
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5.2.1. First, we note that, under a natural identification, Kc = GL(n, C) acts on the 
space P+ = Altn of all complex alternating matrices of size n by 

(5.6) g · X = gX1g, g E GL(n, IC), X E Altn. 

For every positive integer k, we realize the compact group G' = Sp(k) as 

(5.7) G' = {g E U(2k) I 1gJkg = Jk} with Jk = ( -3,k ~). 
The group Kc X Ge acts on the vector space Af := Mn,2k by 

(5.8) (g,g') · Z := gZg'- 1 , (g,g') E Kc x Ge, Z EM, 

where Ge = Sp(k, IC) is the complexification of G', and Mp,q denotes the space of all 
complex matrices of size p x q. 

We set 1/;(Z) := ½ZJk 1Z for Z E M. Note that 1/; : M • P+ is a Kc x Ge-equivariant 
polynomial map of degree two, where the Ge-action on P+ is trivial. For each Y E P-, let 
hy be a polynomial on M defined by 

(5.9) hy(Z) := B(1/;(Z), Y) (B the Killing form of g). 

Let IC[M] denote the ring of polynomial functions on the complex vector space M. One 
can define a (g, K)-representation won C[M] in the following fashion. First, the P- action 
on C[M] is given by multiplication: 

(5.10) w(Y)f(Z) := hy(Z)f(Z), YE P-, 

for/ E C[M]. Second, P+ acts by differentiation: 

(5.11) w(X)f(Z) := 1,,(hx(8)f)(Z), X E P+· 

Here hx( 8) stands for the constant coefficient differential operator on M defined by the 
polynomial hx, and the constant K depends only on the Lie algebra g0 of G. Third, the 
complexification Kc acts on IC[M] holomorphically as 

(5.12) w(g)f(Z) := (detg)-k f((g-', e) · Z), g E Kc. 

On the other hand, C[M] has a natural Ge-module structure through 

(5.13) R(g')f(Z) := /((e,r') · Z), g' E Ge. 
Then it is easily seen that these two representations w and R commute with each other. 
The resulting (g, K) x Ge-representation (w, R) on C[M] will be called the Fock model 
of the (infinitesimal) oscillator representation of the pair ( G, G') ( cf. [3, §7]). 

5.2.2. Let (CT, Vu) be an irreducible finite-dimensional representation of the compact 
group G'. Extend CT to a holomorphic representation of Ge in the canonical way. We 
set 

(5.14) 

which turns to be a (g, K)-module through the representation w on IC[M]. Let I:(k) 
denote the totality of equivalence classes of irreducible finite-dimensional representations 
CT of G' such that L[CT] =I- {O}. Then one gets a natural isomorphism 

(5.15) C[M] ~ EB L[CT] 181 Vu as (g, K) x Ge-modules. 
uEE(k) 

The following theorem states the theta correspondence associated to ( G, G'). 
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Theorem 5.4 ([11], [6], (7]; cf. (3]). (1) L[er] is an irreducible unitarizable highest weight 
(g, K)-module for every er E E(k). In particular, (5.15) gives the irreducible decomposition 
of the (g, K) x Ge-module C[M]. 

(2) Let er,, er2 E E(k). Then, Vu1 ~ Vu2 as Ge-modules if and only if L[eri] ~ L[er2] as 
(g, K)-modules. 

Let T[er] denote the extreme K-type of highest weight (g, K)-module L[er], i.e., L[er] = 
L(T[er]). We note that the correspondence er t+ T[er] can be explicitly described in terms 
of their highest weights. For this, see the articles cited in the above theorem. 

For each m = 0, ... , r = [n/2], the Kc-orbit Om in P+ consists of all the matrices in 
P+ = Altn of rank 2m. Let E,,t(i,j) denote the (i,j)-matrix unit of size s x t whose 
(k, !)-matrix entry ek1 is equal to 1 if (k, l) = (i,j); ek1 = 0 otherwise. We take an element 
X(m) E Om explicitly as 

m 

(5.16) X(m) := 2)En,n(i, m + i) - En,n(m + i, i))/2. 
i=l 

It is easily verified that the image 1/!(M) of the Kc x Ge-equivariant map 1/J: M-+ P+ 
is a Kc-stable, irreducible algebraic variety described as 

(5.17) 1/!(M) = Om, with mk := min(k, r), 

where M and 1/J depend on k. By (5.10) and (5.15), we find that, for any er E E(k), the 
associated variety of L[er] is equal to the closure of the Kc-orbit Om, = Ad(Kc)X(mk), 

5.2.3. We consider the maximal ideal: 

(5.18) m := m(X(mk)) = L (Y - B(X(mk), Y))S(p_) c S(p_) (cf. (3.4)), 
YEP-

for each positive integer k. Form = 0, ... , r, let Kc(m) := Kc(X(m)) be the isotropy 
subgroup of Kc at X(m) E Om. We want to describe the Kc(mk)-modules 

(5.19) W[er] := W(X(mk), T[er]) = L[er]/mL[er] ~ Homa;,(Vu, C[M]/w(m)C[M]). 

Namely, our task is to decompose the quotient Kc(mk) x Ge-module C[M]/w(m)C[M]. 
To do this, we note that w(m)C[M] is equal to the ideal of C[M] generated by all matrix 

entries of the following polynomial function of degree two: 

(5.20) M 3 Z ~ 1/!(Z) - X(mk) E P+· 

We write Vk for the corresponding affine algebraic variety of M: 

(5.21) 

Clearly, Vk is stable under the action of Kc(mk) x Ge. 
We define a subgroup Gc(k - r) of Ge by 

{ 

{{I2(k~k(th~ un~ gr~up)) } 

(5.22) Gc(k - r) := 0 hu O h12 , I 
O O Ik O E Ge h;j E Mk-r,k-r 

0 h21 0 h22 

if k Sr, 

if k > r. 

Note that if k > r, the group Gc(k - r) is naturally isomorphic to Sp(k - r, C). 
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Lemma 5.5. (1) If k ~ r, one has 

(5.23) 

where I,,t(l) := I:)=1 E,,t(i, i) E M,,t (l = 0, ... , min(s, t)). 
(2) If k > r = n/2 with even integer n, the variety Vk is described as 

(5.24) V G, (Ir,k(r) 0 ) ~ G' /G' (k ) 
k = C. Q Ir,k(r) - C C - r ' 

where Ge(k- r):::: Sp(k - r, C) (cf. (5.22)) coincides with the isotropy subgroup of Ge at 

th t . (Irk(r) 0 ) . M M 
e ma rix 'o Ir,k(r) in = 2r,2k• 

(3) If k > r = (n - 1)/2 with odd integer n, Vk consists of two Ge-orbits. In fact, we 
set 

(5.25) 

Then Vk decomposes as 

(5.26) vk = Ge . M1,2(k-r) = Ge . (0 ... 0, 0 ... or 11 Ge . (1 0 ... 0, 0 ... or, 
where M1,2(k-r) := {(z1, z2r I Z1, z2 E M1,k-r }. 

The above lemma implies in particular that the affine variety Vk is irreducible. This 
allows us to deduce the following proposition by applying [14, Lemma 4]. 

Proposition 5.6. The ideal w(m)C[M] of C[M] coincides with the defining ideal of Vk 
in C[M]. Hence one gets a natural isomorphism 

(5.27) C[M]/w(m)C[M) :::: C[Vk) as Kc(mk) x Ge-modules, 

where C[Vk) denotes the affine coordinate ring of Vk. 

5.2.4. We are now in a position to specify the Kc(mk)-modules W[u) for every u E 
:E(k) (k = 1, 2, ... ). Let us introduce a Ge(k - r)-stable subvariety Uk of vk as l {Jn,2k(2k)} (k ~ r = [n/21) 

{5.28) Uk:= { (Ir,8r) Ir,~r))} (k > r = n/2 with n even), 

M1,2(k-r) (k > r = (n - 1)/2 with n odd). 

Then it follows from Lemma 5.5 that vk = Ge · Uk, and that the Ge-orbits X in vk are 
in one-one correspondence with the Ge(k - r)-orbits X n Uk in Uk. 

Now Proposition 5.6 together with {5.19) allows us to deduce the following 

Proposition 5.7. Under the above notation, let C[Uk] be the coordinate ring of Ge(k-r)
stable variety Uk viewed as a Gc(k - r)-module in the canonical way. Then one has a 
linear isomorphism 

(5.29) W[u] :::: Homa'c(k-r)(Vu, C[Uk]) :::: (V; ® C[Uk])°'dk-r) (u E :E(k)). 

In particular, it holds that 

(5.30) W[ l ~ { (Vu•f'c(k-r) if n is even and k > r, 
u - v; if k ~ r. 
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Here (V; ® IC[Uk]JG'c(k-r) denotes the subspace of v; ® C[Uk] of G'c(k - r)-fixed vectors. 

Remark 5.8. For the case k > r with odd n, C[Uk] decomposes into a direct sum of the 
irreducible representations V(l) (l = 0, 1, ... ) of G'c(k - r) = Sp(k - r, IC) with highest 
weights (/, 0, ... , 0): C[Uk] ::: EB1~0 V(l). 

At the end, we are going to clarify how the isotropy subgroup Kc(mk) acts on the space 
W[a] ::: Homa'c(k-r)(V.,, C[Uk]), To do this, we note that the elements g of the subgroup 
Kc(m) (0 :5 m :5 r) of Kc are written as follows. 

(5.31) g = (901 :::) E Kc= GL(n,C) with 911 E Sp(m,C). 

Define a group homomorphism 

(5.32) a: Kc(mk) • Ge, g M a(g), 

by putting 

a(g) := (POI I~r P02 g ) 
P21 0 P22 0 
0 0 0 Ik-r 

(5.33) with 911 = (Pu P12) . 
P21 P22 

Here Pii is a matrix of size k, and a(g) should be understood as g11 if k :5 r. Note that 
the elements of a(Kc(mk)) commute with those of the subgroup Gc(k - r). 

Now we can deduce 

Theorem 5.9. If n is even or k :5 r, it holds that 

(5.34) W[a]::: (det( · tk ® (a• o a), (V;f'c(k-r)) as Kc(mk)-modules. 

In particular, W[a] is an irreducible Kc(mk)-module if k :5 r. 

Next we consider the remaining case: k > r with odd n. Then, fJ(g) := g22 (g E Kc(r)) 
defines a group homomorphism /3 from Kc(r) to GL(l, C) =ex. The group Kc(r) acts 
on C[Uk] ::: IC[M1,2(k-r)] naturally through the left multiplication composed with /3. We 
denote by v the resulting representation of Kc(r) on C[Uk]- Note that v as well as a• o a 
commutes with the Gc(k - r)-action. 

Theorem 5.10. If k > r with odd n, the reductive part of Kc(r) acts on W[a] ::: (V; ® 
C[Uk]JG'c(k-r) by the representation det( • )-k ® (a• o a)® v. 

Similar descriptions of W[a] can be obtained for the groups G = SU(p, q) and Sp(n, JR.) 
also. For this we refer to [20] and [27, Section 5]. 
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