On Arithmetic Quantum Field Theory

Asao Arai
Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan
E-mail: arai@math.sci.hokudai.ac.jp

Abstract

We review fundamental aspects of arithmetic quantum field theory.

1991 Mathematics Subject Classification: $81 \mathrm{~T} 10,81 \mathrm{~T} 60,11 \mathrm{~A} 25$

1 Introduction

In recent developments of theoretical physics, it has been shown that number theory has connections with physics in various aspects (e.g., $[23,30]$). Among others, "statistical mechanics" of numbers may be interesting, because it is related in a direct way to the Riemann zeta function and may give a key to solve the Riemann hypothesis ([17, 18, 20, $21,22,27,28,29]$ and references therein).

Spector [28] pointed out relationships between analytic number theory and a free supersymmetric quantum field theory, and further discussed these aspects with notions of partial supersymmetry and "duality"[29]. Motivated by these works of Spector, we started in [14] a research program developing analytic number theory as a field of infinite dimensional analysis or mathematically rigorous quantum field theory. We call this type of theory an arithmetic quantum field theory. In this paper we review some fundamental results in [14].

2 Arithmetical Functions in Boson Fock spaces

2.1 Partition functions and correlation functions

Let \mathcal{H} be a separable infinite dimensional Hilbert space with inner product $(\cdot, \cdot)_{\mathcal{H}}$ (complex linear in the second variable) and $\otimes_{\mathrm{s}}^{n} \mathcal{H}$ be the n-fold symmetric tensor product Hilbert space of $\mathcal{H}\left(n=0,1,2, \cdots ; \otimes_{s}^{0} \mathcal{H}:=\mathbf{C}\right)$. Then the Boson Fock space over \mathcal{H} is defined by $\mathcal{F}_{\mathrm{B}}(\mathcal{H}):=\oplus_{n=0}^{\infty} \otimes_{\mathrm{s}}^{n} \mathcal{H}$. Let A be a nonnegative self-adjoint operator on \mathcal{H} and

$$
\begin{equation*}
H_{\mathrm{B}}(A):=d \Gamma_{\mathrm{B}}(A) \tag{2.1}
\end{equation*}
$$

be the second quantization of A on $\mathcal{F}_{\mathrm{B}}(\mathcal{H})$ (e.g., [19, §5.2], [25, p. 302, Example 2]). We denote by N_{B} the number operator on $\mathcal{F}_{\mathrm{B}}(\mathcal{H}): N_{\mathrm{B}}:=d \mathrm{\Gamma}_{\mathrm{B}}(I)$, where I denotes identity.

For $s>0$. we define

$$
\begin{equation*}
Z_{\mathrm{B}}(s ; A):=\operatorname{Tr} e^{-s H_{\mathrm{B}}(A)}, \quad \tilde{Z}_{\mathrm{B}}(s ; A):=\operatorname{Tr}\left\{(-1)^{N_{\mathrm{B}}} e^{-s H_{\mathrm{B}}(A)}\right\} \tag{2.2}
\end{equation*}
$$

provided that $e^{-s H_{B}(A)}$ is trace class on $\mathcal{F}_{\mathrm{B}}(\mathcal{H})$, where Tr denotes trace.
Remark 2.1 In statistical mechanics of quantum fieids. $Z_{B}(s: A)$ is calied the partition function of the Hamiltonian $H_{\mathrm{B}}(A)$ at temperature $1 / s$ (physically s denotes an inverse temperature). The function $\tilde{Z}_{\mathrm{B}}(s ; A)$ is not so standard. We call it the graded partition function of the Hamiltonian $H_{\mathrm{B}}(A)$ at temperature $1 / \mathrm{s}$. This type of partition function was considered in a concrete case by Spector [29].

To treat the parition functions in a unified way we introduce a more general partition function

$$
Z_{\mathrm{B}}(s, z: A):=\operatorname{Tr}\left(\Gamma_{\mathrm{B}}(z) e^{-s H_{\mathrm{B}}(A)}\right)
$$

with

$$
z \in D:=\{u: \in \mathbb{C} \mid\{w \mid \leq 1\}
$$

provided that $\epsilon^{-s H_{\mathrm{B}}(\mathcal{A})}$ is trace class on $\mathcal{F}_{\mathrm{B}}(\mathcal{H})$, where $\Gamma_{\mathrm{B}}(z):=\oplus_{n=\mathrm{C}}^{\infty} z^{n}$ acting on $\mathcal{F}_{\mathrm{B}}(\mathcal{H}$; We have

$$
Z_{\mathrm{B}}(s, 1 ; A)=Z_{\mathrm{B}}(s ; A), \quad Z_{\mathrm{B}}(s ;-\mathrm{i} ; \mathcal{A})=\tilde{Z}_{\mathrm{B}}(s ; A) .
$$

In what foilows, we assume the following.
Hypothesis (A) The operator A is strictly positive, self-adjoint and, for some $s>0$. $\epsilon^{-s, 4}$ is trace class on \mathcal{H}.

Theorem 2.1 Let $z \in D$. Then the operator $\Gamma_{\mathrm{B}}(z) e^{-s H_{\mathrm{B}}(A)}$ is trace class on $\mathcal{F}_{\mathrm{E}}(\mathcal{H}) a n d$

$$
Z_{\mathrm{B}}(s, z: A)=\frac{1}{\operatorname{det}\left(I-z e^{-s A}\right)} ;
$$

where $\operatorname{det}(I+S)$ is the determinant for $I+S$ with S a trace class operator (26, §XIIl.1\%.
Using Theorem 2.1 and the product law of the determinant $\operatorname{det}(i+\cdot)$, we can derive relations of partition functions at different temperatures:

Theorem 2.2 For all $n \in \mathbb{N}$ and $z \in D$;

$$
Z_{\mathrm{S}}(s, z ; A)=\operatorname{det}\left(\sum_{k=0}^{n-1} z^{k} e^{-k s A}\right) Z_{\mathrm{B}}\left(n s, z^{n} ; A\right)
$$

and

$$
Z_{\mathrm{B}}(s, z ; A) Z_{\mathrm{B}}(s,-z: A)=Z_{\mathrm{B}}\left(2 s, z^{2}: A \mathrm{i}\right.
$$

Remark 2.2 in general. relationships among theories at different coupling constants are referred to as "duality" 29]. Eq. (2.8) is a duality reation, where :he courling cons:ant is the inverse temperature.

In statistical mechanics, correlation functions are also important objects. We denote by $a_{\mathcal{H}}(f)(f \in \mathcal{H})$ the annihilation operator on $\mathcal{F}_{\mathbf{B}}(\mathcal{H})\left(\right.$ e.g.. [19, §5.2], [25, §X.7]) $\left(a_{\mathcal{H}}(f)\right.$ is antilinear in f). For all $t>s$ and $f, g \in D\left(A^{-1 / 2}\right)\left(D\left(A^{-1 / 2}\right)\right.$ denotes the domain of .$^{-1 / 2}$), We can define

$$
\begin{equation*}
R_{\mathrm{B}}(t, z: f, g: A):=\frac{\operatorname{Tr}\left(\Gamma_{\mathrm{B}}(z) a_{\mathcal{H}}(f)^{*} a_{\mathcal{H}}(g) e^{-t H_{\mathrm{B}}(A)}\right)}{Z_{\mathrm{B}}(t, z ; A)}, \quad z \in D . \tag{2.9}
\end{equation*}
$$

This is called a two-point correlation function. In the same manner as in [19, Proposition 5.2.28], we can show that

$$
\begin{equation*}
R_{\mathrm{B}}(t, z ; f, g ; A)=\left(g, z e^{-t A}\left(1-z \epsilon^{-t A}\right)^{-1} f\right)_{\mathcal{H}}, \tag{2.10}
\end{equation*}
$$

2.2 Arithmetical aspects

By Hypothesis (A). the spectrum $\sigma(A)$ of A is purely discrete with

$$
\begin{equation*}
\sigma(A)=\left\{E_{n}(A)\right\}_{n=1}^{\infty} \tag{2.11}
\end{equation*}
$$

$0<E_{1}(A) \leq E_{2}(A) \leq \cdots, E_{n}(A) \rightarrow \infty(n \rightarrow \infty)$, counted with algebraic multiplicity. There exists a complete orthonormal system (CONS) $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ of \mathcal{H} such that $\phi_{n} \in D(A)$, $A \dot{\phi}_{n}=E_{n}(A) \phi_{n}, n \in \mathbf{N}$. We set

$$
\begin{equation*}
a_{n}:=a_{\mathcal{H}}\left(\phi_{n}\right) \tag{2.12}
\end{equation*}
$$

Then we have canonical commutation relations

$$
\begin{equation*}
\left[a_{n}, a_{m}^{*}\right]=\delta_{m n}, \quad\left[a_{n}, a_{m}\right]=0, \quad\left[a_{n}^{*}, a_{m}^{*}\right]=0, \quad n, m \geq 1, \tag{2.13}
\end{equation*}
$$

on the finite particle subspace of $\mathcal{F}_{\mathrm{B}}(\mathcal{H})$.
We denote by

$$
\begin{equation*}
\mathcal{P}:=\left\{p_{n}\right\}_{n=1}^{\infty} \tag{2.14}
\end{equation*}
$$

the set of all prime numbers with $p_{n}<p_{n+1}, n \geq 1\left(p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=\right.$ $11, \cdots)$.

By definition. an arithmetical function is a complex-valued function on \mathbf{N}. An arithmetical function f is called completely multiplicative if it satisfies

$$
f(1)=1, \quad f(m n)=f(m) f(n), \quad m, n \in \mathbf{N}
$$

Let $N \geq 2$ be a natural namber. Then, by the fundamental theorem of arithmetic. there exists a unique set $\left\{i_{1}, \cdots, i_{n}, \alpha_{1}, \cdots, \alpha_{n}\right\} \subset \mathbf{N}\left(i_{1}<\cdots<i_{n}\right)$ such that

$$
\begin{equation*}
N=\left(p_{i_{1}}\right)^{\alpha_{1}} \cdots\left(p_{i_{n}}\right)^{\alpha_{n}} . \tag{2.15}
\end{equation*}
$$

Then we define an arithmetical function $\gamma(N)$ by $\gamma(1):=0$ and

$$
\begin{equation*}
\gamma(N):=\sum_{k=1}^{n} \alpha_{k}, \quad N \geq 2 \tag{2.16}
\end{equation*}
$$

The arithmetical function defined by $\lambda(1):=1$ and

$$
\begin{equation*}
\lambda(N):=(-1)^{\gamma(N)}, \quad N \geq 2 . \tag{2.17}
\end{equation*}
$$

is called the Liouville fucntion [$1, \S 2.12$]. This function is completely multiplicative.
Using the representation (2.15) of N, we can define a vector $\Psi_{N} \in \mathcal{F}_{\mathrm{B}}(\mathcal{H})$ by

$$
\begin{equation*}
\Psi_{N}:=C_{N}\left(a_{i_{1}}^{*}\right)^{\alpha_{1}} \cdots\left(a_{i_{n}}^{*}\right)^{\alpha_{n}} \Omega_{\mathcal{H}}, \tag{2.18}
\end{equation*}
$$

where $\Omega_{\mathcal{H}}:=\{1,0,0, \cdots\}$ is the Fock vacuum in $\mathcal{F}_{\mathbf{B}}(\mathcal{H})$ and $C_{N}:=1 / \sqrt{\alpha_{1}!\cdots \alpha_{n}!}$ is a normalization constant so that $\left\|\Psi_{N}\right\|=1$. We set $\Psi_{1}:=\Omega_{\mathcal{H}}$. A key fact is the following.

Lemma 2.3 [28] The set $\left\{\Psi_{N}\right\}_{N=1}^{\infty}$ is a CONS of $\mathcal{F}_{\mathrm{B}}(\mathcal{H})$.
Lemma 2.4 For all $N \in N, \Psi_{N}$ is a unique eigenvector (up to constant multiples) of $\Gamma_{\mathrm{B}}(z)$ with eigenvalue $z^{\gamma(N)}$.

We introduce a function $F_{A}: \mathbf{N} \rightarrow(0, \infty)$ as follows: $F_{A}(1):=1$ and if $N \geq 2$ is represented as (2.15), then

$$
\begin{equation*}
F_{A}(N):=\prod_{k=1}^{n} e^{\alpha_{k} E_{i_{k}}(A)} \tag{2.19}
\end{equation*}
$$

It is easy to see that F_{A} is completely multiplicative.
Lemma 2.5 For all $N \in \mathbf{N}, \Psi_{N}$ is a unique eigenvector (up to constant multiples) of $H_{\mathrm{B}}(A)$ with eigenvalue $\log F_{A}(N)$.

By Lemmas 2.4 and 2.5, we have

$$
\begin{equation*}
Z_{\mathrm{B}}(s, z ; A)=\sum_{N=1}^{\infty} \frac{z^{\gamma(N)}}{F_{A}(N)^{s}}, \quad z \in D . \tag{2.20}
\end{equation*}
$$

By this fact and Theorem 2.1, we obtain the following.
Theorem 2.6 For all $z \in D$,

$$
\begin{equation*}
\sum_{N=1}^{\infty} \frac{z^{\gamma(N)}}{F_{A}(N)^{s}}=\frac{1}{\prod_{n=1}^{\infty}\left(1-z e^{-s E_{n}(A)}\right)} \tag{2.21}
\end{equation*}
$$

Remark 2.3 Formula (2.21) may be regarded as a general form unifying arithmetical formulas known under the name of Euler products [1, Chapter 11]. See Section 2.3 below.

We introduce a function $\varrho(N, m): \mathbf{N} \times \mathbf{N} \rightarrow\{0\} \cup \mathbf{N}$ by

$$
\begin{equation*}
\varrho(1, m):=0, \quad \varrho(N, m):=\sum_{k=1}^{n} \alpha_{k} \delta_{i_{k} m} \tag{2.22}
\end{equation*}
$$

if $N \geq 2$ is expressed as (2.15) ($N, m \in \mathbf{N}$).
Theorem 2.7 Let $t>s$. Then, for all $m \in \mathbf{N}$ and $z \in D$,

$$
\begin{equation*}
\sum_{N=1}^{\infty} \frac{z^{\gamma(N)} \varrho(N, m)}{F_{A}(N)^{t}}=\frac{z}{e^{t E_{m}(A)}-z} Z_{\mathrm{B}}(t, z ; A) . \tag{2.23}
\end{equation*}
$$

Let $N \geq 2$ be given as (2.15). Then, each divisor m of N is of the form

$$
\begin{equation*}
m=p_{i_{1}}^{\tau_{1}} \cdots p_{i_{n}}^{\tau_{n}} \tag{2.24}
\end{equation*}
$$

with $0 \leq r_{j} \leq \alpha_{j}, j=1, \cdots, n$. We define a vector $\Psi_{N, m} \in \mathcal{F}_{\mathrm{B}}(\mathcal{H})$ by

$$
\begin{equation*}
\Psi_{N, m}:=C_{N, m} a_{i_{1}}^{* r_{1}} \cdots a_{i_{n}}^{* r_{n}} \Omega_{\mathcal{H}}, \tag{2.25}
\end{equation*}
$$

where $C_{N, m}>0$ is a normalization constant. For an $m \in \mathbf{N}$ and $N \in \mathbf{N}$, we mean by $m \mid N$ that m is a divisor of N. The set $\left\{\Psi_{N, m}\right\}_{m \mid N}$ of vectors is orthonormal. We introduce

$$
\begin{equation*}
\mathcal{F}_{\mathrm{B}}^{(N)}(\mathcal{H}):=\mathcal{L}\left\{\Psi_{N, m}\right\}_{m \mid N} \tag{2.26}
\end{equation*}
$$

where $\mathcal{L}\{\cdot\}$ means the subspace spanned algebraically by the vectors in the set $\{\cdot\}$. We set $\mathcal{F}_{\mathrm{B}}^{(1)}:=\left\{\alpha \Omega_{\mathcal{H}} \mid \alpha \in \mathrm{C}\right\}$. We denote by P_{N} the orthogonal projection from $\mathcal{F}_{\mathrm{B}}(\mathcal{H})$ onto $\mathcal{F}_{\mathrm{B}}^{(N)}(\mathcal{H})$.
Proposition 2.8 Let $z \in D$. Then, for all N,

$$
\begin{equation*}
\operatorname{Tr}\left(P_{N} \Gamma_{\mathrm{B}}(z) e^{-s H_{\mathrm{B}}(A)} P_{N}\right)=\sum_{m \mid N} \frac{z^{\gamma(m)}}{F_{A}(m)^{s}} \tag{2.27}
\end{equation*}
$$

2.3 Connections with analytic number theory

A basic object in analytic number theory is the Dirichlet series

$$
\begin{equation*}
D(s, f):=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}} \tag{2.28}
\end{equation*}
$$

for an arithmetical function f and $s \in \mathbf{C}$, provided that the infinite series converges. The Riemann zeta function

$$
\begin{equation*}
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad s>1 \tag{2.29}
\end{equation*}
$$

is a special case of $D(s, f)$. We first show that $\zeta(s)$ and $D(s, \lambda)$ can be represented as partition functions of $H_{\mathrm{B}}(A)$ with a suitable A. For this purpose, we consider the case where \mathcal{H} is given by

$$
\begin{equation*}
\ell^{2}:=\oplus_{n=1}^{\infty} \mathbf{C}=\left\{\psi=\left.\left\{\psi_{n}\right\}_{n=1}^{\infty}\left|\psi_{n} \in \mathbf{C}, n \geq 1, \sum_{n=1}^{\infty}\right| \psi_{n}\right|^{2}<\infty\right\} . \tag{2.30}
\end{equation*}
$$

On this Hilbert space we define an operator $\omega_{\mathcal{P}}$ as follows:

$$
\begin{align*}
D\left(\omega_{\mathcal{P}}\right) & =\left\{\psi=\left.\left\{\psi_{n}\right\}_{n=1}^{\infty} \in \ell^{2}\left|\sum_{n=1}^{\infty}\right|\left(\log p_{n}\right) \psi_{n}\right|^{2}<\infty\right\} \tag{2.31}\\
\left(\omega_{\mathcal{P}} \psi\right)_{n} & =\left(\log p_{n}\right) \psi_{n}, \quad \psi \in D\left(\omega_{\mathcal{P}}\right), n \geq 1 \tag{2.32}
\end{align*}
$$

Then $\omega_{\mathcal{P}}$ is strictly positive and self-adjoint. Moreover, the spectrum of $\omega_{\mathcal{P}}$ is purely discrete with

$$
\begin{equation*}
\sigma\left(\omega_{\mathcal{P}}\right)=\left\{\log p_{n}\right\}_{n=1}^{\infty} \tag{2.33}
\end{equation*}
$$

with the multiplicity of each eigenvalue $\log p_{n}$ being one. A normalized eigenvector of $\omega_{\mathcal{P}}$ with eigenvalue $\log p_{n}$ is given by

$$
\begin{equation*}
e_{n}:=\left\{\delta_{n j}\right\}_{j=1}^{\infty} \in \ell^{2} . \tag{2.34}
\end{equation*}
$$

Theorem 2.9 For all $s>1$ and $z \in D$:

$$
\begin{equation*}
Z_{\mathrm{B}}\left(s, z: \omega_{\mathcal{P}}\right)=\sum_{N=1}^{\infty} \frac{z^{\gamma(N)}}{N^{s}} . \tag{2.35}
\end{equation*}
$$

Appiying Theorem 2.6 with $A=\omega_{\mathcal{p}}$, we obtain the following.
Corollary 2.10 For all $s>1$ and $z \in D$,

$$
\begin{equation*}
\sum_{N=1}^{\infty} \frac{z^{\gamma(N)}}{N^{s}}=\frac{1}{\prod_{p \in \mathcal{P}}\left(1-z p^{-s}\right)} . \tag{2.36}
\end{equation*}
$$

An application of Theprem 2.7 gives the following.
Corollary 2.11 For all $s>1, n \in \mathbf{N}$ and $z \in D$.

$$
\begin{equation*}
\sum_{N=1}^{\infty} \frac{z^{\gamma(N)} \underline{\varrho}(N, n)}{N^{s}}=\frac{z}{p_{n}^{s}-z} Z_{\mathrm{B}}\left(s, z: \omega_{\mathcal{P}}\right) . \tag{2.37}
\end{equation*}
$$

The operator $\omega_{\mathcal{p}}$ may be regarded as as a special case of a more general operator associated with a completely multiplicative function. Let f be a completely multiplicative function such that $0<f(n)<1$ for all $n \geq 2$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} f\left(p_{n}\right)<\infty \tag{2.38}
\end{equation*}
$$

and define an operator A_{f} on ℓ^{2} by

$$
\begin{align*}
D\left(A_{f}\right) & =\left\{\psi=\left.\left\{\psi_{n}\right\}_{n=1}^{\infty}\left|\sum_{n=1}^{\infty}\right| \log f\left(p_{n}\right)\right|^{2}\left|\psi_{n}\right|^{2}<\infty\right\} \tag{2.39}\\
\left(A_{f} \psi\right)_{n} & =\left[-\log f\left(p_{n}\right)\right] \psi_{n}, \quad \psi \in D\left(A_{f}\right), n \geq 1 \tag{2.40}
\end{align*}
$$

Then A_{f} is a strictly positive self-adjoint operator and $e^{-A_{f}}$ is trace class on ℓ^{2}. It is easy to see that

$$
\begin{equation*}
F_{A_{j}}(N)=\frac{1}{f(N)}, \quad N \in \mathrm{~N} . \tag{2.41}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
Z_{\mathrm{B}}\left(1, z ; A_{j}\right)=\sum_{n=1}^{\infty} z^{\gamma(n)} f(n), \quad z \in D . \tag{2.42}
\end{equation*}
$$

Applying Theorem 2.6, we obtain the following fact.
Corollary 2.12 Let f be as above. Then, for all $z \in D$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} z^{\gamma^{(n)}} f(n)=\frac{1}{\prod_{p \in \mathcal{P}}(1-z f(p))} \tag{2.43}
\end{equation*}
$$

Theorem 2.7 gives the following.
Corollary 2.13 Let f be as above. Then, for all $n \in \mathbf{N}$ and $z \in D$,

$$
\begin{equation*}
\sum_{N=1}^{\infty} z^{\gamma(N)} \varrho(N, n) f(N)=\frac{z f\left(p_{n}\right)}{1-z f\left(p_{n}\right)} Z_{\mathrm{B}}\left(1, z ; A_{j}\right) . \tag{2.44}
\end{equation*}
$$

Applying Proposition 2.8, we have for all $s>1$

$$
\begin{equation*}
\operatorname{Tr}\left(P_{N} z^{N_{\mathrm{B}}} e^{-s H_{\mathrm{B}}\left(\omega_{\mathrm{P}}\right)} P_{N}\right)=\sum_{m!N} \frac{z^{\gamma(m)}}{m^{s}}, \quad z \in D . \tag{2.45}
\end{equation*}
$$

3 Arithmetical Functions in Fermion Fock Spaces

3.1 Partition functions and correlation functions

Let \mathcal{K} be a separable infinite dimensional Hilbert space and $\otimes_{\alpha s}^{n} \mathcal{K}$ be the n-fold antisymmetric tensor product Hilbert space of $\mathcal{K}\left(n=0,1,2, \cdots ; \boldsymbol{\otimes}_{\mathrm{as}}^{0} \mathcal{K}:=\mathbf{C}\right)$. Then the Fermion Fock space over \mathcal{K} is defined by $\mathcal{F}_{\mathrm{F}}(\mathcal{K}):=\oplus_{n=0}^{\infty} \otimes_{\alpha s}^{n} \mathcal{K}$.

Let T be a nonnegative self-adjoint operator on \mathcal{K} and

$$
\begin{equation*}
H_{\mathrm{F}}(T):=d \Gamma_{\mathrm{F}}(T) . \tag{3.1}
\end{equation*}
$$

be the second quantization of T in $\mathcal{F}_{\mathbf{F}}(\mathcal{K})$. The number operator on $\mathcal{F}_{\mathbf{F}}(\mathcal{K})$ is defined by $N_{\mathrm{F}}:=d \Gamma_{\mathrm{F}}(I)$.

Let $s>0, z \in D$ and

$$
\begin{equation*}
Z_{\mathrm{F}}(s, z ; T):=\operatorname{Tr}\left(\Gamma_{\mathrm{F}}(z) e^{-s H_{\mathrm{F}}(T)}\right), \tag{3.2}
\end{equation*}
$$

provided that $e^{-s H_{\mathrm{F}}(T)}$ is trace class on $\mathcal{F}_{\mathrm{F}}(\mathcal{H})$, where $\Gamma_{\mathrm{F}}(z):=\oplus_{n=0}^{\infty} z^{n}$ acting on $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$. In what follows, we assume the following.

Hypothesis (\mathbf{T}) For some $s>0, e^{-s T}$ is trace class on \mathcal{K}.
Theorem 3.1 For all $z \in D, \Gamma_{\mathrm{F}}(z) e^{-s H_{F}(T)}$ is trace class on $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$ and

$$
\begin{equation*}
Z_{\mathrm{F}}(s, z ; T)=\operatorname{det}\left(I+z e^{-s T}\right) . \tag{3.3}
\end{equation*}
$$

By Theorems 2.1 and 3.1, we have interesting relations between bosonic and fermionic partition functions:

Corollary 3.2 Consider the case $\mathcal{H}=\mathcal{K}$ and A be an operator on \mathcal{H} obeying Hypothesis (A) in Section 2. Then, for all $z \in D$,

$$
\begin{equation*}
Z_{\mathrm{B}}(s,-z ; A)=\frac{1}{Z_{\mathrm{F}}(s, z ; A)} . \tag{3.4}
\end{equation*}
$$

Theorem 3.3 For all $n \in \mathbf{N}$ and $z \in D$,

$$
\begin{align*}
Z_{\mathrm{F}}\left(n s,-z^{n} ; T\right) & =\operatorname{det}\left(\sum_{k=1}^{n-1} z^{k} e^{-s k T}\right) Z_{\mathrm{F}}(s,-z ; T), \tag{3.5}\\
Z_{\mathrm{F}}(s,-z ; T) Z_{\mathrm{F}}(s, z ; T) & =Z_{\mathrm{F}}\left(2 s,-z^{2} ; T\right) \tag{3.6}
\end{align*}
$$

Remark 3.1 Relation (3.6) is a form of duality of fermionic partition functions. A special case is discussed in [29].

Corollary 3.4 Consider the case $\mathcal{H}=\mathcal{K}$ and A be an operator on \mathcal{H} obeying Hypothesis (A). Then

$$
\begin{equation*}
Z_{\mathrm{B}}\left(2 s, z^{2} ; A\right) Z_{\mathrm{F}}(s, z ; A)=Z_{\mathrm{B}}(s, z ; A) \tag{3.7}
\end{equation*}
$$

Remark 3.2 Relation (3.7) is also a form of duality of fermionic and bosonic partition functions. For a special case, see [29].

Let $u, v \in \mathcal{K}$ and $z \in D$. Then a fermionic two-point correlation function is defined by

$$
\begin{equation*}
R_{\mathrm{F}}(s, z ; u, v ; T):=\frac{\operatorname{Tr}\left(\Gamma_{\mathrm{F}}(z) e^{-s H_{\mathrm{F}}(T)} b_{\mathcal{K}}(u)^{*} b_{\mathcal{K}}(v)\right)}{Z_{\mathrm{F}}(s, z ; T)} \tag{3.8}
\end{equation*}
$$

where $b_{\mathcal{K}}(u)(u \in \mathcal{K})$ the annihilation operator on $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$ (e.g., [19, §5.2]). It is easy to see (e.g., cf. [19]) that

$$
\begin{equation*}
R_{\mathrm{F}}(s, z ; u, v ; T)=\left(v, z e^{-s T}\left(1+z e^{-s T}\right)^{-1} u\right)_{\kappa} . \tag{3.9}
\end{equation*}
$$

3.2 Arithmetical aspects

By Hypothesis (T), the spectrum of T is purely discrete with

$$
\begin{equation*}
\sigma(T)=\left\{E_{n}(T)\right\}_{n=1}^{\infty} \tag{3.10}
\end{equation*}
$$

$0<E_{1}(T) \leq E_{2}(T) \leq \cdots, E_{n}(T) \rightarrow \infty(n \rightarrow \infty)$, counted with algebraic multiplicity. There exists a CONS $\left\{u_{n}\right\}_{n=1}^{\infty}$ of \mathcal{K} such that $u_{n} \in D(T), T u_{n}=E_{n}(T) u_{n}, n \in \mathbf{N}$. We set

$$
\begin{equation*}
b_{n}:=b_{\kappa}\left(u_{n}\right) . \tag{3.11}
\end{equation*}
$$

Then we have canonical anti-commutation relations

$$
\begin{equation*}
\left\{b_{n}, b_{m}^{*}\right\}=\delta_{m n}, \quad\left\{b_{n}, b_{m}\right\}=0, \quad\left\{b_{n}^{*}, b_{m}^{*}\right\}=0, \quad n, m \geq 1, \tag{3.12}
\end{equation*}
$$

where $\{X, Y\}:=X Y+Y X$. In particular, $b_{n}^{2}=0, b_{n}^{* 2}=0, n \in \mathbf{N}$.
For $N \in \mathbf{N}$ we define $\nu(N)$ by $\nu(1):=1$ and

$$
\begin{equation*}
\nu(N)=n, \quad N \geq 2, \tag{3.13}
\end{equation*}
$$

if N is represented as (2.15) [1, p.247].
A natural number $m \geq 2$ is called square free if it is written as a product of mutually different prime numbers. As a convention, 1 is defined to be square free. We denote by \mathcal{S}_{0} the set of square free elements in N :

$$
\begin{equation*}
\mathcal{S}_{0}:=\{m \in \mathbf{N} \mid m \text { is square free }\} . \tag{3.14}
\end{equation*}
$$

For each $N \in \mathbf{N}$, we define a set $S_{0}(N)$ as follows:

$$
\begin{align*}
\mathcal{S}_{0}(1) & :=\{1\}, \tag{3.15}\\
\mathcal{S}_{0}(N) & :=\left\{m \in \mathcal{S}_{0} \mid m \text { is a divisor of } N\right\}, \quad N \geq 2 . \tag{3.16}
\end{align*}
$$

Let $N \geq 2$ be given as (2.15). Then each element m of $\mathcal{S}_{0}(N)$ is of the form

$$
\begin{equation*}
m=p_{i_{1}}^{q_{1}} \cdots p_{i_{n}}^{q_{n}}, \tag{3.17}
\end{equation*}
$$

where $q_{j}=0$ or $q_{j}=1(j=1, \cdots, n)$. Corresponding to this, we define a vector $\Phi_{N, m}$ by

$$
\begin{equation*}
\Phi_{N, m}:=b_{i_{1}}^{*}{ }^{q_{1}} \cdots b_{i_{n}}^{*}{ }^{q_{n}} \Omega_{K}, \tag{3.18}
\end{equation*}
$$

where $\Omega_{\mathcal{K}}:=\{1,0,0, \cdots\}$ is the Fock vacuum in $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$.

Let

$$
\begin{equation*}
\mathcal{F}_{F}^{(1)}(\mathcal{K}):=\left\{c \Omega_{\mathcal{K}} \mid c \in \mathrm{C}\right\}, \quad \mathcal{F}_{\mathrm{F}}^{(N)}(\mathcal{K}):=\mathcal{L}\left\{\Phi_{N, m} \mid m \in \mathcal{S}_{0}(N)\right\}, \quad N \geq 2 . \tag{3.19}
\end{equation*}
$$

Then $\mathcal{F}_{\mathrm{F}}^{(N)}(\mathcal{K})$ is finite dimensional with $\operatorname{dim} \mathcal{F}_{\mathrm{F}}^{(N)}(\mathcal{K})=2^{\nu(N)}$. We denote by R_{N} the orthogonal projection from $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$ onto $\mathcal{F}_{\mathrm{F}}^{(N)}(\mathcal{K})$.

Let $N \geq 2$ be of the form (2.15),

$$
\begin{equation*}
\mathcal{K}_{N}:=\mathcal{L}\left\{u_{i_{k}} \mid k=1, \cdots, n\right\} \tag{3.20}
\end{equation*}
$$

and T_{N} be the restriction of T to \mathcal{K}_{N}. Then we can show that

$$
\begin{equation*}
\operatorname{Tr}\left(R_{N} \Gamma_{\mathrm{F}}(z) e^{-s H_{\mathrm{F}}(T)} R_{N}\right)=\operatorname{det}\left(1+z e^{-s T_{N}}\right) \tag{3.21}
\end{equation*}
$$

Let $m \in \mathcal{S}_{0}, m \geq 2$ and

$$
\begin{equation*}
m=p_{i_{1}} \cdots p_{i_{r}} \tag{3.22}
\end{equation*}
$$

be its factorization in prime numbers $\left(i_{j} \neq i_{k}, j \neq k\right)$. Then we define a vector Φ_{m} in $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$ by

$$
\begin{equation*}
\Phi_{m}:=b_{i_{1}}^{*} \cdots b_{i_{r}}^{*} \Omega_{\mathcal{K}} . \tag{3.23}
\end{equation*}
$$

For $m=1$, we set $\Phi_{1}:=\Omega_{\mathcal{K}}$. For $m \notin \mathcal{S}_{0}$, we define $\Phi_{m}:=0$.
Lemma 3.5 [28] The set $\left\{\Phi_{m}\right\}_{m \in \mathcal{S}_{0}}$ is a CONS of $\mathcal{F}_{\mathrm{F}}(\mathcal{K})$.
The Möbius function $\mu: \mathbf{N} \rightarrow\{0, \pm 1\}$ is defined as follows: $\mu(1):=1, \mu(m):=0$ if $m \notin \mathcal{S}_{0}$ and $\mu(m):=(-1)^{r}$ if m is written as the product of mutually different r prime numbers. We have

$$
\begin{equation*}
\mu(m)=(-1)^{\gamma(m)}, \quad m \in \mathcal{S}_{0} . \tag{3.24}
\end{equation*}
$$

Lemma 3.6 For all $m \in \mathcal{S}_{0}, \Phi_{m}$ is an eigenvector of N_{F} with eigenvalue $\gamma(m)$.
Lemma 3.7 For all $m \in \mathcal{S}_{0}, \Phi_{m}$ is an eigenvector of $H_{F}(T)$ with eigenvalue $\log F_{T}(m)$, where F_{T} is defined by (2.19) with $A=T$.

It follows from Lemmas 3.6 and 3.7 that

$$
\begin{equation*}
Z_{\mathrm{F}}(s, z ; T)=\sum_{m=1}^{\infty} \frac{z^{\gamma(m)}|\mu(m)|}{F_{T}(m)^{s}}, \quad z \in D \tag{3.25}
\end{equation*}
$$

where we have used that $\mu(m)=0$ for all $m \notin \mathcal{S}_{0}$ and $|\mu(m)|=1$ for all $m \in \mathcal{S}_{0}$. By (3.25) and Theorem 3.1, we obtain the following.

Theorem 3.8 Let $z \in D$. Then

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{z^{\gamma(m)}|\mu(m)|}{F_{T}(m)^{s}}=\prod_{n=1}^{\infty}\left(1+z e^{-s E_{n}(T)}\right) \tag{3.26}
\end{equation*}
$$

Theorems 3.8 and 2.6 imply the following.

Corollary 3.9 Let $z \in D$. Then,

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{z^{\gamma(m)}|\mu(m)|}{F_{T}(m)^{s}}=\frac{1}{\sum_{n=1}^{\infty} \frac{(-z)^{\gamma^{(n)}}}{F_{T}(n)^{s}}} \tag{3.27}
\end{equation*}
$$

We introduce a function η on $\mathbf{N} \times \mathbf{N}$ by

$$
\begin{align*}
\eta(1, n) & :=0 \tag{3.28}\\
\eta(m, n) & :=\sum_{k=1}^{r}(-1)^{k-1} \delta_{i_{k} n} \tag{3.29}
\end{align*}
$$

if $m \in \mathcal{S}_{0}$ is expressed as (3.22). If $m \notin \mathcal{S}_{0}$, then $\eta(m, n):=0$ for all $n \in \mathbf{N}$.
Theorem 3.10 Let $z \in D$ and $n \in \mathbf{N}$. Then

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{z^{\gamma(m)} \eta(m, n)}{F_{T}(m)^{s}}=\frac{z}{e^{s E_{n}(T)}+z} Z_{\mathrm{F}}(s, z ; T) . \tag{3.30}
\end{equation*}
$$

The left hand side of (3.21) is equal to $\sum_{m \in \mathcal{S}_{0}(N)} z^{\gamma(m)} / F_{T}(m)^{s}$. Hence we obtain

$$
\begin{equation*}
\sum_{m \mid N} \frac{z^{\gamma(m)}|\mu(m)|}{F_{T}(m)^{s}}=\operatorname{det}\left(1+z e^{-s T_{N}}\right) . \tag{3.31}
\end{equation*}
$$

3.3 Connections with analytic number theory

Consider the case where $\mathcal{H}=\ell^{2}$ and $T=\omega_{\mathcal{p}}$. Let $z \in D$ and $s>1$. Then we have

$$
\begin{equation*}
Z_{\mathrm{F}}\left(s, z ; \omega_{\mathcal{P}}\right)=\sum_{m=1}^{\infty} \frac{z^{\gamma(m)}|\mu(m)|}{m^{s}} \tag{3.32}
\end{equation*}
$$

Let f be a completely multiplicative function as in Section 2.3 and $z \in D$. Then, by (2.41), we have

$$
\begin{equation*}
Z_{\mathrm{F}}\left(1, z ; A_{f}\right)=\sum_{m=1}^{\infty} z^{\gamma(m)}|\mu(m)| f(m) \tag{3.33}
\end{equation*}
$$

By Theorem 3.8, we obtain the following.
Corollary 3.11 For all $z \in D$,

$$
\begin{equation*}
\sum_{m=1}^{\infty} z^{\gamma(m)}|\mu(m)| f(m)=\prod_{p \in \mathcal{P}}(1+z f(p)) . \tag{3.34}
\end{equation*}
$$

Theorem 3.10 gives the following.
Corollary 3.12 For all $n \in \mathrm{~N}$ and $z \in D$,

$$
\begin{equation*}
\sum_{m=1}^{\infty} z^{\gamma(m)} \eta(m, n) f(m)=\frac{z f\left(p_{n}\right)}{1+z f\left(p_{n}\right)} Z_{\mathrm{F}}\left(1, z ; A_{f}\right) \tag{3.35}
\end{equation*}
$$

Jordan's totient function $J_{s}(N)(s \geq 0, N \in \mathbf{N})$ is defined by $J_{s}(1):=1$ and, for $N \geq 2$.

$$
\begin{equation*}
J_{s}(N)=N^{s} \prod_{p \mid N ; p \in \mathcal{P}}\left(1-\frac{1}{p^{s}}\right) \tag{3.36}
\end{equation*}
$$

[1. p.48]. The special case

$$
\begin{equation*}
\varphi(N)=J_{1}(N) \tag{3.37}
\end{equation*}
$$

is Euler's totient function [1, p.25, p.27]. We have

$$
\begin{equation*}
\operatorname{det}\left(1-e^{-s\left(\omega_{\mathcal{P}}\right)_{N}}\right)=\prod_{p \mid N ; p \in \mathcal{P}}\left(1-\frac{1}{p^{s}}\right), \quad s \geq 0, N \geq 2 \tag{3.38}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
J_{s}(N)=N^{s} \operatorname{det}\left(1-e^{-s\left(\omega_{\mathcal{P}}\right)_{N}}\right), \quad s \geq 0, N \geq 2 \tag{3.39}
\end{equation*}
$$

which, together with (3.21), implies that

$$
\begin{equation*}
J_{s}(N)=N^{s} \operatorname{Tr}\left(R_{N}(-1)^{N_{\mathrm{F}}} e^{-s H_{\mathrm{F}}\left(\omega_{\mathrm{P}}\right)} R_{N}\right), \quad s \geq 0, N \in \mathbf{N} . \tag{3.40}
\end{equation*}
$$

This gives an expression of Jordan's totient function in terms of Fock space objects. Formula (3.31) implies the well known identity [$1, \mathrm{p} .48$]:

$$
\begin{equation*}
J_{s}(N)=\sum_{m \mid N} \mu(m)\left(\frac{N}{m}\right)^{s}, \quad s \geq 0, N \in \mathbf{N} \tag{3.41}
\end{equation*}
$$

4 Arithmetical Aspects of Boson-Fermion Fock Spaces

4.1 Some general aspects

Let \mathcal{H} and \mathcal{K} be Hilbert spaces as before. Then the Boson-Fermion Fock space associated with the pair $\langle\mathcal{H}, \mathcal{K}\rangle$ is defined by the tensor product Hilbert space

$$
\begin{equation*}
\mathcal{F}_{\mathrm{BF}}(\mathcal{H}, \mathcal{K}):=\mathcal{F}_{\mathrm{B}}(\mathcal{H}) \otimes \mathcal{F}_{\mathrm{F}}(\mathcal{K}) \tag{4.1}
\end{equation*}
$$

Let A and T be nonnegative self-adjoint operators on \mathcal{H} and \mathcal{K} respectively. Then the operator

$$
\begin{equation*}
H(A, T):=H_{\mathbf{B}}(A) \otimes I+I \otimes H_{\mathbf{F}}(T) \tag{4.2}
\end{equation*}
$$

on $\mathcal{F}_{\mathrm{BF}}(\mathcal{H}, \mathcal{K})$ is nonnegative and self-adjoint.
We assume the following.
Hypothesis (AT) The operators A and T satisfy Hypothesis (A) in Section 2 and Hypothesis (T) in Section 3 respectively.

Under this assumption, $\epsilon^{-s H(A, T)}$ is trace class and we can define a partition function

$$
\begin{equation*}
Z(s, z, w ; A, T):=\operatorname{Tr}\left(\Gamma_{\mathrm{B}}(z) \otimes \Gamma_{\mathrm{F}}(w) e^{-s H(A, T)}\right), \quad z, w \in D . \tag{4.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
Z(s, z, w ; A, T)=Z_{\mathrm{B}}(s, z ; A) Z_{\mathrm{F}}(s, w ; T), \quad z, w \in D \tag{4.4}
\end{equation*}
$$

If one can represent the left hand side of (4.4) in various ways, (4.4) may produce nontrivial arithmetical relations for eigenvalues of A and T. Moreover, different expressions of $\operatorname{Tr}\left(X e^{-s H(A, T)}\right)$ with X an operator on $\mathcal{F}_{\mathrm{BF}}(\mathcal{H}, \mathcal{K})$ may yield interesting arithmetical relations. These are basic ideas to search for arithmetical relations by quantum field theoretical methods.

We carry over the notation in the preceding sections. Let $N \geq 2$ be of the form (2.15) and $m \in \mathcal{S}_{0}(N)$. Then we can write

$$
\begin{equation*}
m=\left(p_{i_{1}}\right)^{q_{1}}\left(p_{i_{2}}\right)^{q_{2}} \cdots\left(p_{i_{n}}\right)^{q_{n}}, \tag{4.5}
\end{equation*}
$$

where $q_{j}=0$ or $q_{j}=1$. Based on these factorizations, we define a vector

$$
\begin{equation*}
\Omega_{N, m}:=C_{N, m}\left[\left(a_{i_{1}}^{*}\right)^{\alpha_{1}-q_{1}} \cdots\left(a_{i_{n}}^{*}\right)^{\alpha_{n}-q_{n}} \Omega_{\mathcal{H}}\right] \otimes\left[\left(b_{i_{1}}^{*}\right)^{q_{1}} \cdots\left(b_{i_{n}}^{*}\right)^{q_{n}} \Omega_{K}\right], \tag{4.6}
\end{equation*}
$$

where $C_{N, m}>0$ is a normalization constant. For $N=1$ and $m=1$, we set $\Omega_{1,1}:=$ $\Omega_{\mathcal{H}} \otimes \Omega_{\mathcal{K}}$.
Lemma 4.1 [28] The set $\left\{\Omega_{N, m} \mid N \geq 1, m \in S_{0}(N)\right\}$ is a CONS of $\mathcal{F}_{\mathrm{BF}}(\mathcal{H}, \mathcal{K})$.
The following fact is easily proven.
Lemma 4.2 Let $N \in \mathbf{N}, m \in \mathcal{S}_{0}(N)$ and $z, w \in D$. Then $\Omega_{N, m}$ is an eigenvector of $\Gamma_{\mathrm{B}}(z) \otimes \Gamma_{\mathrm{F}}(w)$ with eigenvalue $z^{\gamma(N)-\gamma(m)} w^{\gamma(m)}$.

For each $N \in \mathbf{N}$, we define a function $Y_{A, T}(N, \cdot)$ on $\mathcal{S}_{0}(N)$ by

$$
\begin{equation*}
Y_{A, T}(N, m):=\prod_{k=1}^{n} e^{\left(\alpha_{k}-q_{k}\right) E_{i_{k}}(A)+q_{k} E_{i_{k}}(T)}, \quad m \in S_{0}(N) \tag{4.7}
\end{equation*}
$$

when N and m are represented as (2.15) and (4.5) respectively. Note that

$$
\begin{equation*}
Y_{A, T}(N, m)=F_{A}\left(\frac{N}{m}\right) F_{T}(m) . \tag{4.8}
\end{equation*}
$$

Lemma 4.3 Let $N \in \mathbf{N}$ and $m \in \mathcal{S}_{0}(N)$. Then $\Omega_{N, m}$ is an eigenvector of $H(A, T)$ with eigenvalue $\log Y_{A, T}(N, m)$.
Theorem 4.4 Let $z, w \in D$. Then

$$
\begin{equation*}
Z(s, z, w ; A, T)=\sum_{N=1}^{\infty} \sum_{m \mid N} \frac{z^{\gamma(N)-\gamma(m)} w^{\gamma(m)}|\mu(m)|}{Y_{A, T}(N, m)^{s}} . \tag{4.9}
\end{equation*}
$$

Corollary 4.5 Let $z, w \in D$. Then

$$
\begin{equation*}
\sum_{N=1}^{\infty} \sum_{m \mid N} \frac{z^{\gamma(N)-\gamma(m)} w^{\gamma(m)}|\mu(m)|}{Y_{A, T}(N, m)^{s}}=Z_{\mathrm{B}}(s, z ; A) Z_{\mathrm{F}}(s, w ; T) . \tag{4.10}
\end{equation*}
$$

Remark 4.1 If we put into the right hand side of (4.10) the formulas established in Sections 2 and 3 , then we obtain explicit formulas, which are nontrivial.
Remark 4.2 By rescaling as $T \rightarrow t T / s(t>0)$ in (4.10), we can obtain relations at different temperatures $1 / s$ and $1 / t$. Hence (4.10) include "duality relations".

4.2 Connections with analytic number theory

We consider the case where $\mathcal{H}=\mathcal{K}=\ell^{2}$ and $A=T=\omega_{\mathcal{P}}$. Then we have $Y_{\omega_{\mathcal{p}}, \omega_{\mathcal{P}}}(N, m)=$ N. Hence Corollary 4.5 gives

$$
\begin{equation*}
\sum_{N=1}^{\infty} \sum_{m \mid N} \frac{z^{\gamma(N)-\gamma(m)} w^{\gamma(m)}|\mu(m)|}{N^{s}}=Z_{\mathrm{B}}\left(s, z ; \omega_{\mathcal{P}}\right) Z_{\mathrm{F}}\left(s, w ; \omega_{\mathcal{P}}\right), \quad s>1 \tag{4.11}
\end{equation*}
$$

This yields well known relations

$$
\sum_{N=1}^{\infty} \frac{2^{\nu(N)}}{N^{s}}=\frac{\zeta(s)}{D(s, \lambda)}, \quad \sum_{N=1}^{\infty} \frac{\lambda(N) 2^{\nu(N)}}{N^{s}}=\frac{D(s, \lambda)}{\zeta(s)}, \quad s>1 .
$$

Let f be the completely multiplicative function considered in Section 2.3 and

$$
H:=H\left(A_{f}, A_{f}\right)
$$

Then we have for all $s>1$

$$
\begin{equation*}
\operatorname{Tr}\left(\Gamma_{\mathrm{F}} e^{-s H}\right)=1, \quad \operatorname{Tr}\left(\Gamma_{\mathrm{B}} e^{-s H}\right)=1 \tag{4.12}
\end{equation*}
$$

which are supersymmetric identities [6,28]. These relations imply the following:

$$
\begin{equation*}
\sum_{m=1}^{\infty} \mu(m) f(m)=\frac{1}{\sum_{n=1}^{\infty} f(n)}, \sum_{m=1}^{\infty}|\mu(m)| f(m)=\frac{1}{\sum_{n=1}^{\infty} \lambda(n) f(n)} \tag{4.13}
\end{equation*}
$$

By Corollary 4.5 with rescaling $T \rightarrow t T / s$, we obtain

$$
\begin{equation*}
\sum_{N=1}^{\infty} \sum_{m \mid N} \frac{z^{\gamma(N)-\gamma(m)} w^{\gamma(m)}|\mu(m)|}{N^{s} m^{t-s}}=Z_{\mathrm{B}}\left(s, z ; \omega_{\mathcal{P}}\right) Z_{\mathrm{F}}\left(t, w ; \omega_{\mathcal{P}}\right), \quad t>s>1 \tag{4.14}
\end{equation*}
$$

Remark 4.3 General theories on Boson-Fermion Fock spaces have been developed in [$3,5,6,7,9,11,13,15,16]$. See also [2, 4, 8, 10] for related aspects. Applications of these theories to arithmetic quantum field theories may yield interesting results in analytic number theory.

References

[1] T. M. Apostol, " Introduction to Analytic Number Theory", Springer-Verlag, New York, 1976.
[2] A. Arai, Supersymmetry and singular perturbations, J. Funct. Anal. 60 (1985), 378-393.
[3] A. Arai, Path integral representation of the index of Kähler-Dirac operators on an infinite dimensional manifold, J. Funct. Anal. 82 (1989), 330-369.
[4] A. Arai, Supersymmetric embedding of a model of a quantum harmonic oscillator interacting with infinitely many bosons, J. Math. Phys. 30 (1989), 512-520.
[5] A. Arai, A general class of infinite dimensional Dirac operators and related aspects, in "Functional Analysis \& Related Topics" (Ed. S. Koshi), World Scientific, Singapore, 1991.
[6] A. Arai, A general class of infinite dimensional Dirac operators and path integral representation of their index, J. Funct. Anal. 105 (1992), 342-408.
[7] A. Arai, Dirac operators in Boson-Fermion Fock spaces and supersymmetric quantum field theory, J. Geom. Phys. 11 (1993), 465-490.
[8] A. Arai, Supersymmetric extension of quantum scalar field theories, in "Quantum and Non-Commutative Analysis" (Ed. H.Araki et all), Kluwer Academic Publishers, Dordrecht, 1993.
[9] A. Arai, On self-adjointness of Dirac operators in Boson-Fermion Fock spaces, Hokkaido Math. Jour. 23 (1994), 319-353.
[10] A. Arai, Operator-theoretical analysis of a representation of a supersymmetry algebra in Hilbert space, J. Math. Phys. 36 (1995), 613-621.
[11] A. Arai, Supersymmetric quantum field theory and infinite dimensional analysis, Sugaku Expositions 9 (1996), 87-98.
[12] A. Arai, Trace formulas, a Golden-Thompson inequality and classical limit in Boson Fock space, J. Funct. Anal. 136 (1996), 510-547.
[13] A. Arai, Strong anticommutativity of Dirac operators on Boson-Fermion Fock spaces and representations of a supersymmetry algebra, Math. Nachr. 207 (1999), 61-77.
[14] A. Arai, Infinite dimensional analysis and analytic number theory, Hokkaido University Preprint Series \#450, 1999.
[15] A. Arai and I. Mitoma, De Rham-Hodge-Kodaira decomposition in ∞-dimensions, Math. Ann. 291 (1991), 51-73.
[16] A. Arai, and I. Mitoma, Comparison and nuclearity of spaces of differential forms on topological vector spaces, J. Funct. Anal. 111 (1993), 278-294.
[17] I. Bakas and M. J. Bowick, Curiosities of arithmetic gases, J. Math. Phys. 32 (1991), 1881-1884.
[18] J-B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series) 1 (1995), 411-457.
[19] O. Bratteli and D. W. Robinson, "Operator Algebras and Quantum Statistical Mechanics $2^{\prime \prime}$, Second Edition, Springer-Verlag, Berlin, Heidelberg, 1997.
[20] P. Contucci and A. Knauf, The low activity phase of some Dirichlet series, J. Math. Phys. 37 (1996), 5458-5475.
[21] B. Julia, On the "statistics" of primes, J. Phys. France 50 (1989), 1371-1375.
[22] B. Julia, Statistical theory of numbers, in "Number Theory and Physics" (J.-M. Luck, P. Moussa and M. Waldschmidt, editors), Springer-Verlag, Berlin, Heidelberg, 1990.
[23] J.-M. Luck, P. Moussa and M. Waldschmidt (editors), "Number Theory and Physics", Springer-Verlag, Berlin, Heidelberg, 1990.
[24] M. Reed and B. Simon, "Methods of Modern Mathematical Physics Vol.I: Functional Analysis", Academic Press, New York 1972.
[25] M. Reed and B. Simon, "Methods of Modern Mathematical Physics Vol.II: Fourier Analysis, Self-adjointness", Academic Press, New York, 1975
[26] M. Reed and B. Simon, "Methods of Modern Mathematical Physics Vol.IV: Analysis of Operators", Academic Press, New York, 1978
[27] D. Spector, Multiplicative functions, Dirichlet convolution, and quantum systems, Phys. Lett. A 140 (1989), 311-316.
[28] D. Spector, Supersymmetry and the Möbius inversion function, Commun. Math. Phys. 127 (1990), 239-252.
[29] D. Spector, Duality, partial supersymmetry, and arithmetic number theory, J. Math. Phys. 39 (1998), 1919-1927.
[30] M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson (editors), "From Number Theory to Physics", Springer-Verlag, Berlin, Heidelberg, 1992.

