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This paper is mainly a summary of recent work of the author on harmonic analysis on 

negatively curved manifolds, and we refer the reader to [10], [6] and [7] for details. 

Let ( M, g) be a complete, simply connected n dimensional Rlemannian manifold whose 

sectional curvatures I<M satisfy 

-OO < -Ki $ J{M $ -K~ < 0, 

where K 1 and ,-2 are positve constants. In this paper we are concerned with Hardy 

spaces, BMO, Carleson measure and their probabilistic aspects. Further we give a gradient 

estimates for harmonic functions and its application to Bloch functions on negatively 

curved manifolds. 

Notation Throughout this paper we fix a point o in M as a reference point. The 

constants depending only on g, n, ,-1, ,-2 and o will usually be denoted by C or C'. But 

C and C' may change in value from one occurrence to the next. For two nonnegative 

functions f and g defined on a set U, the notation f ;§ g indicate that f(x) $ Cg(x) for 

all x EU, and/::::: g means that f ;§ g and g ;§ f. 

Acknowledgement The author thanks to Professor Heyer, Professor Obata and Pro­

fessor Hirai for their invitation to the conference on "Infinite Dimensional Harmonic Anal­

ysis". 

1 Background material 

Before going to the main body of this report, let us give a brief review of results obtained 

by Anderson and Schoen ([3]), Cifuentes and Koranyi ([18]), and the author ([6], [7]). 

Let S(oo) be the sphere at infinity of M, and M Eberlein and O'Neill's compactifica­

tion MUS( oo) of M (see [23]). The following theorem plays a fundamental and important 

role in our work: 
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Theorem ASl (Anderson and Schoen [3]; [1], [31]) (1) The Martin compactification 

of M with respect to the Laplacian f:.. 9 on M is homoemorphic to M, and the Martin 

boundary consists only of minimal points. 

(2) For every z E M, there exists a unique function K,(x, Q) (Q E S(oo ), x E J\,f\ {Q}) 
such that for every Q E S ( oo), 

(1) 

(2) 

(3) 

(4) 

K,(·, Q) is positive harmonic on M, 

K.(·,Q) is continuous on M\ {Q}, 

K,(Q', Q) = 0 for all Q' E S{oo) \ {Q}, and 

K.(z, Q) = 1. 

( This function is called the Poisson kernel normalized at z.) 

(3) For every z EM and for every positive harmonic function u on M, there exists a 

unique Borel measure m~ on S(oo) such that 

(5) u(x) = f K,(x, Q)f(Q)dm~(Q), x EM 
Js(oo) 

(The measure m! is called the Martin representing measure relative to u and z.) 

Throughout this paper, we write K(x, Q) = K 0 (x, Q), and denote by w" the Martin 

representing measure relative to the constant function 1 and x E M. It is called the 
harmonic measure relative to x. In particular, let w = w0 • Note that w"(S(oo)) = 1 and 

dw"(Q) = K(x, Q)dw(Q), for all x EM. 

For notational simplicity, we denote 

](x) = f K(x, Q)f(Q)dw(Q), x EM, 
Js(oo) 

for every f E L1(S(oo),w). 
In their paper [3], Anderson and Schoen generalized to the manifold M Fatou's theorem 

on boundary behavior of bounded harmonic functions on the open unit disc. To describe 

their theorem we need some notation. For x E Mandy E M (x =f. y), let 'Yxu be the unit 

speed geodesic with 'Yxy(O) = x and 'Yxu(t) = y for some t E (0, +oo]. Since such a number 

t is uniquely determined, we denote it by txy• Anderson and Schoen defined the following 

analogue of the classical nontangential region: For Q E S(oo) and d > 0, let 

(6) Td(Q) = LJB('Yoq(t),d), 
t>O 

where B(x, r) is the geodesic ball with center x and radius r. 
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Theorem AS2 (Anderson and Schoen [3]) Let u be a bounded hannonic function on M. 
Thcnforw-a.e. Q E S(oo), the nontangential limit 

Iim u(x) 
xETd(Q) 

exists for all d > 0. 

This result was extended by Ancona [1], Mouton [38] and the author (7]: Ancona 
proved an analogue of Fatou-Doob theorem, Mouton verified Calderon-Stein type theorem 

and the author obtained an analogue of a local version of Fatou-Doob theorem. 

2 Admissible maximal functions and Hardy spaces 

In [6], we studied another analogue to M of the classical nontangential region. In order 

to describe it, let us mention some terminologies: For p E M, v E TpM and o > 0, let 
C(p, v, o) be the cone about the tangent vector v of angle o defined by 

C(p,v,o) := {x EM: Lp(v,'Ypx(0)) < o}, 

where LP denotes the angle in TpM and 'Ypx(t) is its tangent vector at t. 

For z EM\ {o} and t ER, we denote 

C(z, t) = C(?o,(t0 , + t), 'Yoz(t0 , + t), 7!'/4), and z(t) = 'Yo,(t0 , + t), 

and let 

.6.(x, t) = C(x, t) n S(oo). 

Our analogue is the following: 

Definition 2.1 ([6)) For Q E S(oo) and a ER, let 

(7) ra(Q) = {z EM: Q E .6.(z,a)}, 

and we call this set an admissible region at Q. 

Using this notion, we can define an analogue of nontangential maximal function, ad­

missible maximal functions, as follows: For a function u on M, let 

Na(u)(Q) = sup lu(x)I, Q E S(oo), a ER. 
xera(Q) 

Furthermore we can define Hardy type spaces in terms of our maximal functions: 

H~ = {f E L1(S(oo),w): Na(!) E LP(S(oo,w)}, 1 :<; p :<; oo 
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and we denote 

\lf\lHg := IINo(J)IILP(w)· 
It is easy to prove that (H~, \I· IIHg) is a Banach space and that for every a,!3 ER, 

H~ = HJ;, and moreover for every f EH~= HJ;, 

where Co,/3 is a positive constant depending only on n, .li:1 , 1,,2 , a and {3 (see [10)). Therefore 

in this paper we deal only with HG, and we denote 

w = m, and 11 · IIH• =II· IJHg-

We study also atomic Hardy spaces in the sense of Coifman and Weiss and probabilistic 

versions of Hardy spaces. Let us describe them. First we are concerned with atomic Hardy 

spaces. For any Q E S(oo), we define b.1(Q) to be the "ball" in S(oo) centered at Q of 

radius log(l/r), 

Ai(Q) := b.(1'oQ(t),O) (= C(1oQ(t),i'oQ(t),1r/4) nS(oo)), 

It is easy to see that the function 

p0(Q, Q') := (inf{e-t : Q' E At(Q)} + inf{e-1 : Q E At(Q')}) /2, Q, Q' E S(oo) 

is a quasi-distance in the sense of [19] such that (S(oo),p,w) is a space of homogeneous 

type. Therefore the abstract theory in [19] can be transplanted to our case. For instance, 

some covering lemmas, theorems on atomic Hardy spaces and BMO on spaces of homoge­

neous type hold true for (S(oo),w,p). Now let us mention the definition of atomic Hardy 

spaces on S( oo ). In [19], atomic Hardy spaces and BMO on a space of homogeneous type 
are defined in terms of its quasi-distance. However in our case, we can prove that the 

family of balls defined by pis equivalent to {b.t(Q)}, that is, 

(8) A1og(l/r)+k,(Q) C {Q': p(Q,Q') < r} C A1og(J/r)-k2 (Q). 

where k1 and k2 are positive constants depending only on M. 
For this reason, one can define atomic Hardy spaces and BMO in terms of {Ai{Q)} 

which are equivalent to those defined by the quasi-distace p: a function a on S(oo) is 

called an atom if the support of a is contained in a "ball" Ar(Q), fs(oo) adw = 0, and 

llallL=(w) :S: w(Ar(Q))-1 . Since w(S(oo)) = 1, we regard also the constant function 1 

as an atom. The atomic Hardy spaces H!tom is defined as the set of all functions h in 

L1(S(oo),w) such that h has an atomic decomposition 
00 

(9) h = LAia;, 
j=I 
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where >.i ER, and a/s are atoms and I:;:1 IAil < oo. We set 

for h E Hl,om· 
Let BMO(w) be the set of all functions f E L1(S(oo),w) such that 

11/IIBMO = sup (,/(Q)) 1 If - mt,..(qifldw + 11/llu(w) < 00, 
QES(oo),rER W r t..(Q) 

where 

mt..(Qi/ = w(A:(Q)) L.(Q) fdw. 

Theorem CW ([19]). The dual of H;_,0 m is regarded as the space BMO(w) in the following 

sense: If h = I; >.iai E H;_,om• then for each e E BMO(w) 

(h, £) := lim >.i 1 foidw 
m • oo X 

is a well defined continuous linear functional and its norm is equivalent to 1£1sMO· More­

over, every linear continuous functional on H!,om has this form. 

In this paper we will also deal with probabilistic analogues of Hardy spaces. To define 
them, we need to recall some facts on Brownian motion on M and its Markov properties: 
Let W be the set of all continuous maps from [O,oo) to M, and let Zt(w) = w(t), w E W. 

Since by Yau [47] the life time of Brownian motion on Mis equal to +oo, so there exists 
a system of probability measures { P.,}.,eM on W such that (P.,, Zt) is a Brownian motion 
starting at x. From Sullivan [43] or Kifer [31] it follows the following facts: 

(I) There exists a limit Z00 (w) := limt• ooZt(w) for almost sure w E W with respect 
to P.,, x EM. Moreover, Z00 (w) E S(oo) for P.,-a.s. w E W. 

(II) For every x EM and for every Borel subset F of S{oo), 

w"(F) = P.,({w E W: Z00 (w) E F}). 

For every f E L 1(w), ](x) = E,,[f(Z00 )) for all x E Mand limt• oo ](Zt) = f(Z00 ) 

P.,-a.s., where E,,[ ] denotes the expectation with respect to P,, (x E M). We denote 

P = Pa and E[] = E0 [ ]. Let 

{ [ _ P]lh } 
~rob := f E LP(w) : 11/IIH• = E sup lt(Zt)I < oo , 

prob 0$t<oc 
1::,; p < 00. 
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Let B (resp. 81) be the smallest a-field for which all random variables Z., s ~ 0 (resp. 

Z., 0 ::; s ::; t) are measurable. For a probability Borel measure µ on M, let Pµ(A) = 
fs(oo)P.,(A)dµ(x), AC W. We denote by (W,.P,.rf,Pµ) the usual Pµ augmentation of 
(W,B,81,Pµ) in the sense of [41, III 9]. In particular, (W,.P',F;",Pz) denotes the P.,­

augumentation of (W, B, 81, Pµ)- Put j: := n _,rµ and F'1 := n .rf', where the intersection 

is taken over all probability Borel measuresµ on M. Then (Z1, W, J:, J:1, Pz : x EM) is a 

strong Markov process. If fact, considering that Mis diffeomorphic to Rn, it is a honest 
FD diffusion in the sense of [41, III 3, III 13]. 

It is known that the usual Pz-augumentation (W,.P',J=;"',Pz) satisfies the so-called 

usual condition (see [41, III 9]). Moreover, for every harmonic function u on M, the 

process u(Z1) is a continuous local (Pz, .r;")-martingale. Denote by (W, .r, Ft, P) the usual 

P0 -augumentation (W, .r0 , .rr, P0 ). As usual, Hardy spaces of martingales are defined as 
follows: 

MP := {x E L1(W, W, P) : l!XIIMP := E [ sup !E[Xl✓iJ!P] I/p < oo}, 
0$t<oo 

(1::; p < oo), where and always E[·IC] denotes the conditional expectation with respect to 

Panda sub a-field C of .r. Note that Meyer's previsibility theorem ([41, VI 15, Theorem 
15.4]) implies that for every X E L1(W, P), the process (E[X/.rt])1~ 0 is an (.r1)-continuous 

martingale. 

For X E L1(W, .r, P), let N'(X) := E[X!a(Z00 )], where a(Z00 ) is the sub a-field 

of .r generated by the random variable Z00 • Then by (I) there exists a unique element 

f E L 1(w) such that N'(X) = f(Z00 ), P-a.s. Denote the function f by NX. 

Now we can mention another probabilistic analogue of Hardy spaces: 

H~art := {N(X) : X E MP}, 1 $ p < 00 1 

and as a norm on H~art, we consider IIN(X)IIH~ ... := IIXIIMP· 

For two normed spaces (A, II !IA) and (B, 11 IIB), we denote by A j B that AC B and 

llxllB ::; Cllxl!A for every x E A, where C is a constant independent of x. Further we set 
A ~ B if A =5 B and B ~ A. 

In 1987, we announced in [6] the following Theorems 2.1 and 2.2 (see [10] for detailed 
proofs). : 

Theorem 2.1 ([6]; see also [10]) 
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Let k be a constant such that for every Q1, Q2 E S(oo) and r ER, Llr(Q1)nllr(Q2) # 0 
implies Llr{Q2) C Ll,-k(Qi). {This constant always exsits.) 

Theorem 2.2 {[6]; see also [10]) Consider the following geometric condition: 

(.B) For every Q E S(oo), t > k and z E C('yoq(t),0), 

If our manifold M satisfies the condition ((3), we have HJ,0 m(w) ::S H 1(w). 

When M is rotationally symmetric at o or the dimension of M is two, the condition 

((3) is satisfied. However recently, Cifuentes and Koranyi proved the following 

Theorem CK2 (Cifuentes and Koranyi [18]) The manifold M satisfies always the con­

dition (/3). 

Therefore combining our Theorems 2.1 and 2.2 with Theorem CK2, the following 

theorem is obtained: 

Theorem 2.3 (Arai [6], Cifuentes and Koranyi [18]) 

3 Carleson measure 

In this section we study a condition on a measure µ on M in order that the Martin integral 

operator, 

K[f](z) = r K(z,Q)f(Q)w(Q) (= l(z)), z EM, 
Js(oo) 

is bounded from V'(w) to V'(M,µ). This problem was studied by L. Carleson in the 

classical Euclidean case, and he found a necessary and sufficient condition called now 

"Carleson condition". We study a version to AI of "Carleson condition": 

Definition 3.1 For a set AC S(oo) and r > 0, let 

Sr[A] := {z EM\ B(o, r): Ll(z, 0) c A}. 
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A given complex Borel measure µ on M is said to be a Carleson measure on M if for 

every r > 0, 
lµl{Sr[~i{Q)]) 

liµllc,r := sup {~ (Q)) + lµl(M) < oo, 
QES(oo),t>l W t 

where lµI -is the total variation ofµ. We wirte liµIJc = IJµllc,1 • 

As an analogue of the classical Carleson-Hormander's theorem, we obtain the following 

Theorem 3.1 {[10]) Letµ be a complex Borel measure on M. Then the following are 

equivalent: 

(i) µ is a Carleson measure on M. 

(ii) llµllc,r < oo for some r > 0. 
(iii) For every 1 s p < oo, the Martin integral operator K is bounded from HP(w) to 

ll'(M, jµI). 

(iv) For every l < p < oo, the operator K is bounded from ll'(w) to ll'(M, lµI). 

(v) For some 1 < p < oo, the operator K is bounded from ll'(w) to ll'(M, !µ!)­
Furthermore, for every r > 0, there is a constant c; depending only on M, o and r 

such that 

We give also a kind of an analytic characterization of Carleson measures. Let G(x, y) 
be Green's function on M (see [3] or [4]). For a Borel measureµ on M, the function 

G[µ](x) = L G(x,y)dµ(y), x EM 

is called the Green potential of µ. In this section we study boundary behavior of the 

Green potentials of the following weighted measures: for a nonnegative Borel measure µ 

on M, let 

1Lo(A) = 1 G(:w)dµ(w), Ac M. 

A nonnegative function f on M is said to be asymptotically bounded if there exists a 

positive constant R > 0 such that SUPxeM\B(o,R) f(x) < oo. Then we have the following 

Theorem 3.2 {[10]) Letµ be a nonnegative Borel measure on M. Suppose that µ(H) < 
oo / or every compact set H in M. Then the fallowing statements are equivalent: 

(i) G[µo] is asymptotically bounded on M. 

(ii) µ is a Carleson measure and satisfies the following condition (F): 
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(F) There exist positive constants r and C such that 

(10) f G(z,w)dµ(w)::;CG(o,z) foreveryzEM\B(o,r). 
lacz,I) 

For f E L1(w), Jet 

dµ,(w) = G(o,w)j'v'}(w)l2dV(w), 

where dV is the volume measure with respect to the metric g, and jv'}(w)J is the norm 

of the gradient of j with respect tog, that is, in a local coordinate neighborhood, 

where (ii(w)) is the inverse matrix of the metric (9i;(w)). This is an analogue to M of 

the classical Littlewood-Paley measure. 

It is easy to see that for f E L1(w), µ1(M) < oo if and only if f E L2(w). 
As a corollary of Theorem 3.2 we obtain the following characterization of BMO func­

tions in terms of Carleson measures and Green potentials: 

Theorem 3.3 ([10]) Let f E L 2(w). Then the following are equivalent: 

(i) f E BMO(w) 
(ii) µ1 is a Carleson measure on M. 

(iii) The Green potential 

G1(x) := 1 G(x,w)jv'i(w)l2dV(w) 
M 

is asymptotically bounded. 

(iv) The potential G1 defined in (iii) is bounded on M. 

Remark. As known, in the classical Euclidean case, the part "(i)<=;> (ii)" was obtained 

by Pefferman and Stein [24]. In the case of the Bergman ball in en, analogous results to 
Theorem 3.3 were proved in Jevtic [27]. See also [8] and [9]. 

4 A gradient estimate for harmonic functions and 

Bloch functions. 

In this section we will apply Theorem 3.3 to Bloch function theory on Rlemannian man­

ifolds. 
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Classicaly Bloch functions were defined on the open unit disc D in C as follows: a 

holomorphic function f on D is said to be a Bloch function on D if 

(11) sup(l - lzl)l/'(z)I < oo. 
zED 

This means that f is a Bloch function if and only if the norm of gradient IV /I with 

respect to the Poincare metric is bounded. Now the notion of Bloch functions is naturally 

extended to Riemannian manifold (R, h) : 

Definition 4.1 Let f be a harmonic function on R. Then f is said to be a harmonic 

Bloch function on M if 

11/IIB := sup IV J(x )I < oo, 
xen 

where IV/I is the norm of gradient off with respect to the metric h, i.e. IV/(x)l 2 = 
Li,j hii(x)(8f(x)/8x;)(8f(x)/8xj), where (hii(x)) is the inverse matrix of the Rieman­

nian metric (hii(x)). 

In particular, if (R, h) is a Kahler manifold, then a function u is said to be a holo­

morphic Bloch function on M if u is a harmonic Bloch function and holomorphic on 

R. 

In [32], Krantz and Ma defined Bloch functions on a bounded strongly pseudoconvex 

domain with smooth boundary. See Timoney [44] for Bloch functions on symmetric 

domains. If (R,h) is a bounded smoothly strongly pseudoconvex domain endowed with 

the Bergman metric, it is easy to see that our definition of Bloch functions is equivalent 

to one by Krantz and Ma. 

If the Ricci curvature of R is nonnegative, then from Yau and Chen's results it follows 

that the class of Bloch functions is equal to the class of harmonic functions with linear 

order growth (see [34] and [30]). 

Theorem 4.1 ([10]) Suppose f E B.MO(w). Then J is a harmonic Bloch function on 

M. Indeed 

(12) sup IIV }(x)II ~ Cll/llaMo, 
xEM 

where C is a positive constant depending only on .M and o. 

In particv.lar, there exists a unbounded harmonic Bloch function on M. 

Let T be the unit circle. Denote by BMOA(T) the set of all functions f in BMO(T) 

such that the Poisson integral off is holomorphic in the open unit disc D. Then it is 

known that if f E Brv10A(T), then its Poisson integral is a holomorphic Bloch function 
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on D (cf. [40]). Krantz and Ma [32] extended this fact to bounded strongly pseudoconvex 

domains with smooth boundaries. Our proof of Theorem 4.1 is different from their proofs. 

It should be noted that the inequality (12) is closely related to Jerison and Kenig [28, 

Lemma 9.9] for harmonic functions with respect to the Euclidean Laplacian. 

m, 

Let u(z) = :E:m z15• (z ED). Then u is a holomorphic Bloch function, and for large 

lu(rew)I 
Jim sup ---;==========;c==c==c= > 0.685llulls a.e. 0 E [0, 27!') 

r--+l ✓log(l - r)- 1 logloglog(l - r)-1 

(see [40, p.194]). 

In 1985, Makarov proved the following 

Theorem M (Makarov [36]; see also Pommerenke [40, p.186]) Let u be a holomorphic 

Bloch function on D. Then for almost every 0 E [0, 271'), 

lu(rew)I 
Jim sup--;,===================== < llull B· 

r--+I ✓log(l - r)-'log log log(l - r)-1 -

Also a probabilistic version of Theorem M was obtained by Lyons [35]: 

Theorem L (Lyons (35]) Let u be a holomorphic Bloch function on D. Let X 1 be 

hyperbolic Brownian motion on D. Then 

limsup lu(Xi)I < llulls-
1• 00 ✓log(l- lX1l)- 1 logloglog(l-lXd)-1 -

We will generalize Theorem L to our manifold M. We begin with characterizing Bloch 
functions in terms of Brownian motion: 

Theorem 4.2 ([10]) For a harmonic function u on M, the following (i) and (ii) are 
equivalent: 

(i) u is a harmonic Bloch function on M. 

(ii) The stochastic process { u(Zi)}t satisfies that 

2 {Ex[lu(ZT)-u(Zo)l2] } 
llulls,prob := !~ Ex[T] : T ET,,, Ex[T] > 0 < oo, 

where T,, is the set of all (F;')-stopping times. Furthermore, !lulls :S llulls,prob :S v2llulls-
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In the case of the open unit disc in C, a martingale characterization of holomorphic 

Bloch functions was given in Muramoto [39]. We will prove Theorem 4.2 by simplifying 

and exploiting the method in [39] by combining an idea in Lyons [35]. 

Now we describe on our genealization of Thoerem L: 

Theorem 4.3 ([10]) Let u be a harmonic Bloch functions on M. Then 

limsup lu(Zt)I < CllullB P-a.s. 
Hoo Jd(o,Zt)Ioglogd(o,Zt) -

As an immediate consequence of Theorem 4.3 we have the following 

Corollary 4.4 ([10]) Let M = {x E Rn: lxl < 1} and let g be the hyperbolic metric on 

M. Then for a harmonic Bloch function u on ( M, g), 

limsup lu(Zt) - u(o)I < CllulJa a.s.P0 

Hoo J!og(l - IZ1l)-1 Iogloglog(l - lZtl)-1 -
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