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1. Introduction

Random walks associated with subgroups of an infinitly many free product G of Z/2Z bring us various
samples of algebraic central limit theorems. Let F;, 0y be a copy of Z/2Z and its generator o. Taking the left
regular representation of G on I?(G), a pair (A, ¢) of a group *-algebra A of G and a tracial state ¢(-) := (-, 5.)
is considercd an algebraic probability space, where 4, is a characteristic function of the unit e of G.

It is well-known fact that the limit distribution under ¢ associated with a discrete Laplacian

o1+o2+--+on

VN
converges to the Wigner semi-circle law zl_xx[—l.zl V4 — z2dz, of which limit process has a free Fock representation

Jim ¢ (LT ETym) (a4 ym1,2),

where A! and A are canonical creation and annihilation operators actiong on an 1-mode free Fock space I‘(C)
with a cyclic element 1.
Let us take a sequence {w;; := g:0; | ¢ # j}. The assymptotic bebavior of a Laplacian

1
1 w;
VNV -1 15#2;:5" ’

under ¢ is grasped as a special case A = 1 of a Fock representation

{(At+ A+ 2P)™1,1),
where P is a projection orthogonal to the 1, that coinsides with a rep tation obtained in the studies
of Haagerup state [14] and (2], (3] where the concept of the singleton independ was investigated. Starting

with a partial sum

1
SpN) == 3 (wi k)
g 1<i<EN
i<max{yN,1}
where v is a constant so that ¢(S2(y,N)) = 1, the limit process has a representation, for instance, if -y equals
toa constant 0 <a <1,

hm¢(s,(»,,1v) <(,/ —(4' + 4+ P)+ ;:—:(X‘+X+Y'+Y+Q+R)) 1,1>

on a 4-mode Fock space I', a free product of four 1-mode Fock spaces, where A,A1, X Xt Y V't are canonical
creations and annihilations and P,Q,R are projections orthogonal to 1 with certain mutual relations (section
4).

Considering sequences such as {w;j, = 0;0;0% | 1,5,k : diffrent each other} drives us into another general-
ization. The asymptotic behavior of

1
e z wijk
VN(N-1)(N-2) 1<iTAEN
i,j,k 1 different each other
has a representation
((A)* + B! + B+ 4%)"1,1)

on a l-mode Fock space, where A! and A are canonical creation and annihilation operators, B! and B are
‘conditional’ creation and annihilation ones, which kill the vacuum 1, acting on the subspace orthogonal to 1
where At = Bt and A = B hold. (The term ‘conditional’ is borrowed from the significant paper [7].)

1This work is supp d by JSPS R h Fellow.
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Throughout this study, the lattice path counting works effectively, which gives exact solutions to moment
problems associated with some of these limit processes, with the help of the reflection method (e.g. [16]) and
residue calculi. In the case of the last sample, a residue

1-2°

f(t) := Res:=o T
(1 —t(23+z+;+ z—s))z

gives the moment generating function F(t) = 1/(1 — t2£(¢)).

The aim of this study is to collect samples of algebraic central limit theorems for detecting new concepts of
independences in the sense of the algebraic probability theory, in a category of ‘non-free’ algebra. Such researchs
on relations between the independ and algebraic relations will bring us interpolative concepts from the
classical independence to the free independence. It is an important work to interpret these samples in terms of
interacting Fock spaces [1], giving us a united understanding of algebraic central limit theorems.

2. The Wigner semi-circle law on *Z/2Z

Let F; and o; be a copy of Z/2Z and its generator respectively. Taking the left regular representation =
of G = »F;, an infinitly many product of F;’s, a pair (A, ¢) of a group =-algebra A of G and a tracial state
() := (-8, 6.) is considered an algebraic probability space, where &, is a characteristic function of the unit e
of G.

To obtain the algebraic central limit theorem with respect to freely independent elements o’s,

oyt+or+---+on
Si(N)= ——————

| 1) w0

let us observe the action of each terms (e, )w(03,) - - - 7(0i..)/(VN)™ on 4., in an expansion of
(7"(0'1) +mloa) +--o r(«m))"‘
vN

(abbreviate , the rest). Since o;’s are algebraic free, only the terms with the subindices forming a non-crossing
pair partition survive in the limit N — oo. For a term oy, -+« 05, the rule

o, — N,
oi, & '\1 if |0,‘.0’i.+‘ o '0l'm| > Idih-}x "'a-'u.l and
Oi, > if lal'hal'l-u b "’l'r-l < '”in-n A -al.mlt
gives a correspondence of the terms oy, -0y, to sequences / .-+ of up-down arrows, where |o;, -+ 05, ]
denotes the reduced length of the product. Such a sequence ¢ - - €5, of arrows ¢; =" or / satisfies
Bila=k<ism}2#{ila=/h<i<m}, fork>1 and
#ila=\,\1<i<m}=#{i|a=/,1<i<m},
which is called @ sequence of Catalan type here. 7y(e; - -+ €m) denotes the heightof ¢; - - - €, defined as (g -+ €m)
=m(e) + -+ + m(em) where ;(N) = +1 and 7,(") = —1. Then, a sequence ¢, +- - €, is of Catalan type if
and only if gi(ex---€m) > 0 (k> 1) and 73(€1---€m) = 0 hold. The number of terms of corresponding to a
sequence ¢, - - - €, of Catalan type is

N(N—I)-u(N-—; 1)
of order O((v/N)™), allowing an expression
— 1 o1+o24--+0Nm) _
Mp, := A}l_t.neo¢ (( — ) ) = #{sequence ¢, - - - € of up-down arrows of Catalan type}.
Taking ™\ for a creation and ,/ for an annihilation, the right hand side coinsides with a Fock representation
{(A'+ 4)™1,1),

where At and 4 are canonical creation and annihilation operators respectively actiong on an 1-mode free Fock
space I'(C) with a cyclic element 1.

A sequence ¢; - - - €, of up-down arrows of Catalan type corresponds to ¢ Catalan path: a minimal path on

a lattice 22 from (0,0) to (m,m) laying under the diagonal line y = z + 1. The reflection method (¢f. [16][22])
shows that the number of Catalan paths with length 2m equals to

#{ minimal path from (0,0) to (m,m) } — #{ minimal path from (~1,1) to (m,m) },
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which is egivalent to

(] (z + %),.. -} (z + %)...
=[] (z + ;)m -7 (z + %),..

1 m
= constant term in (1 — z%) (z + ;)

() (42

where [2*]f(z) denotes a coefficient of z* in a Laurent series f(z). Then a residue calculus gives the moment
generating function

& e

m=0

f®)

1-27

= Ii’t:.s,:o—1
(1 —t(z+ ;)) z

1-vT-47
2t2 )
As the Cauchy transform of the limit distribution p associated with S$;(N) equals to
1.1\ _t-v&-4
i/ (z) =7
the Stieltjes inversion formula (cf.[5]) yields the Wigner law

1
dp = '2—’r-x[-z',]\/4 ~ z3dz.

3. Folding of free elements I

Let us consider elements w;j := oi0; (i # j), which are not free each other. A noticeable difference from
the previous section is that, in some cases, a muliplication by w;; fixes the reduced length of a product, e.g.,
|wiawas| = |o10s| = 2 = |was|. Thus, an observation of the action of a product w;, ;, -+-w; ;. on &, allows a
correspondens of such a product to a seq of symbols X, ./ and ~ by way of the rule

Vipjm — N
Wiyj, N if |wl'sinwl'n+xih+l o 'w"-i-l > le'nnin-n i 'w"-.v'-.'r
Wiy, & if I"-‘ini-winuinﬂ . "wiminl = Iwiu.u'iﬂ ceewigal and
wij, — if lwibjhwil-l-ljh-l-l .“.w'.ujnl < I'”l'u-l.ih-u i "“'l'-.i-.l'

By definition, for a product w;,j, « - w;,_j.,
¢(wl'|ix b 'w"mjm) =1
holds provided that the sequence iyj; «+ +imjm of subindices forms a non-crossing pair partition with iy # ji
(k =1,...,m), and as seen in the previous section, only such products survive in the limit N — oco. Those
ducts correspond to €1+ €m of symbols N, / and — of Catalan type with inner singletons (2J:

q

Deflnition 3.1. A sequence ¢; ++-€m of symbols N, ,/ and ~ is called Catalan typc with inncr singlctons
provided that
(i) the rest sequence ¢;, - - - ¢;, removed all —'s from ¢, -+ €,, is of Catalan type.
(ii) 72(€41---€m) > 0 holds if e =, where n2(€1 - - - €m) denotes the heightof €y -+ € defined as nz(eg + -+ €m)
=n(a)+ - +mlem), 12(N) = +2, 12(”) = —2 and n2(~) = 0. — is called an inner singleton here.
Since the number of terms in an expausion of

Sa(N)™ 2=

L T wy "
VNN =) Eien hd
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corresponding to the same sequence €;---€m of Catalan type with inner singletons, which is equivalent to
nothing but the number of sequences i3j; «++imjm of subindices forming non-crossing pair partitions with

ix # jx (k=1,...,m), equals to
N
1 - m
m.( ) = O(N™),
the m-th moment has an expression

lim $(S2(N)™) = #{sequence ¢; - -  €m of Catalan type with inner singletons}.

&

on an l-mode free Fock space I‘(C) Then, taking N,  and -~ for A!, A and P respectively yields a Fock
representation for assymptotic behavior of S;(N):

Theorem 3.2.

Al, A and P denote a creati ihilation and a projecti th I to the 1 respecticely, acting

N:Onoo ((\/N(N—l l<'§J:<qu) ) = ((A' + A+ P)ml, 1) .

In the investigation of the Haagerup state [2], a general representation
((A'+ A+ 2P)™1,1)

with a parameter X. A description
m—2
((A'+ A+ AP)™1,1) = E #{€1-++€m : of Catalan type with k inner singletons } - A*
k=0
is connected with a lattce path counting on Z? by way of the rule

N — Q4 (my)=2(z+1,9) = (=+2,y),
v — Qo (=)o (zy+1) 2 (2,9+2) and
~ — Q: (z,9) 2 (2, y+1) 2 (z+1,y+1).

A sequence ¢; - - €, of Catalan type with inner singletons corresponds to a lattice path w; ««-w,, from (0,0)
to (m,m) which consist of moves 24, _ and @y, walking under the line y = z + 1 without accrossing the
diagonal y = z. Let ! be the largest number that n;(e; - ¢m) = 0 holds, then by definition, e =, & =/
and 2 <! < m. In the part €41+ €m—1, —’s occur with no restrictions: only Definition 3.1 (i) holds,
named of Catalan type with singlet The cor ding path wiy - - » W~y lays under the line y = z without
accrossing the line y = z — 1, connecting (2,0) with (m — {+1,m — [ —1). Putting

m-2
= 2 #{e; -+ €m : of Catalan type with k inner singletons } - A* and
k=0

2 #{e1---€m : of Catalan type with k singletons } - A*,

the decomposition
€ €m = €€ €4 Ema N
implies a recurrence formula

m~2

(3.1) Fpn= 2 Fl—-lfm—l-h

=0

which is nothing but a condmonal moment-cumulant formula [7] with a cumulant Ry(,/,\) = 1. Since —'s
have no restrictions in the sequence ¢; - -+ ¢, of Catalan type with singletons, it follows that

#{e1-++em : of Catalan type with k singletons }
= (’:) #{e1---€m—s : of Catalan type}

'm 1 m—k
= (L) - constant term in (1 ~ z%) (z + ;) .
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Hence

fm

m " 1 m—k
Z (k)Ak - constant term in (1 — z%) (z + -:)

k=0

i

constant term in (1 — z%) (z+§+)‘)
g2 m

Res,=o{(1 z)(z+l+x) }
z z

fO) =) fmt™

It

Then the generating function

m=0
is given by
= 1-22 1 ™
fly = &R‘“;:o{( . )(z+;+,\) }¢
2
= Res;— 1-2

It —t(z;l- §+X))z

1-x— J(A+2e-1) (A -2)t-1)
262 .

In view of (3.1), the generating function
o
F(t) = Z Ft™
m=0
has a functional equation
F(t) -1 = f(t)F(t),

and hence

14— (0 +2)e- 1) (-2 -1)
2(A+ )t :
The Cauchy transform G(t) of the distribution u» associated with the operator At + A + AP under the tracial

state (-1,1) is given by
1 1
o0 = ()

t+A—/(A+2-t)(A-2-1t)
2(1 + At) ’
Again, the Stieltjes inversion formula yields a non-symmetric deformation of the semi-circle law:

Theorem 3.3. The distribution , associated with the operator At + A + AP under the tracial state (-1,1) is
given by

F(t) =

I

(3.2) =

IiAi A <1,
B = 1
(1-55) st in ¥ 21,
where
- 1 VA+2-z}(z-2+2)
(3.3) dpiy = Z_KX[A—Z.A-Q-II(Z) 142z dz

for any A € R.

119



Samples of algebraic central limit theorems based on Z/22

Remark. In the study of Haagerup state {15, the same distribution (3.3) is obtained only for -1 < XA < 0.

Moreover, a coordinate exchange
t=14+ Az and B=X
give a connection with the free Poisson distribution (cf. (7])

(1 —p)‘so+7-l'p.p, 0 Sps 1,
T8 =

78,8, 1<58
where

B-(-1-PF,
i

. 1
digs = HoXia-vBrRa+vAR|(t)
= Mdg,.

According to a relation between the Cauchy transform of a distribution and its orthogonal polynomials

(¢f[32)), a continued fractional expression

1
g (‘) = C2
t— bl - T3
t—by— sy
of the Cauchy transform of a ind recurrence relations among its monic orthogonal polynomials

{Pa(t)},
p(t)=1  pft)=t-b,
Pal(t) = (£ = n)pa-a(t) —capnz(t)  (n22).
In the case of G(t) in (3.2), a direct calculation gives an unf: ble expression (cf.[7])

1
6(t) = TN ’
t+A—
f A 1+ At
t+A—--.
however, a small trick removes the difficulty. Note that G(t) is a solution of a quadratic equation in G,
(3.4) t+2A-(1+AX)G)G=1.
Put (1 + M)G(t) = ag(t) + B where a and f are constants, and suppose that g(t) is a solution of
(3.5) ((—b-cg)g=1
which implies g(¢) has a suitable continued fractional expression
1
g(t) =
(*) b —".T__
t—b- t—b—-.-

Substitution of g into (3.4) and comparison with (3.5) give the solution
a=1, B=2A, b= and c=1,

hence : 1 1
t) = = s
9= 3 =ew T
b-d-
1 1
G(t) = = .
== PR
t—A_t_,\_...

iated with du, are determined by
mt)=1, m(t) =t
pa(t) = (t = A)paca(t) = pa-2(t) (n22),

Thus, the monic orthogonal poly:
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with the Jacobi parameters [1]

(3.6) @y =0, anp = A (n>2),
wy =1 (n21),

which declares that Theorem 3.2 gives nothing but an interacting Fock representation with the Jacobi param-
eters (3.6).

4. Folding of free elements II
Let us start with a partial sum of S;(N),

1
Sa(7,N) == 7 :<.-§<~ (wij + wji)
i<max{YN,1}

where v denotes the variance v = YN((2—4)N —1) so that ¢(Sz(7, N)?) = 1. Contrast to the previous section,
the asymmetricity on the subindices causes more rich phenomena, depending on the growth rate of 4 to N. We
observe the three cases:

(A) IN=1,

(B) YN 2 oo and vy = 0 as N -+ oo,

(C) 7 equals to a constant 0 < a < 1.

A product w;, j, ++-w;,,j,, is connected with a sequence ¢; - - - €, of symbols K, K¢, K¢, &2, 0, 0, U4, Ve
and ¥/, by way of the following rule:

Wipjm 2 &N i YN < jm,
Wi N if jm SN <im,
Wigj N, if imyjm <N,

in the case of iy < YN < ji,

° .
wy; — N, if [0ie Wi pajags ** Wimiml > Wisgajugs *** Winjmh
L d 1 3 . - eaa P
Wigjy, & , (if |"’l'ni|.win+:inu b ""t'-inl = |"’u+|n+| w!u:mlv and
. .
Wi & oy if [ iy ia Wingainer ** Wimjm | < Wingjigs = Wimim s

in the case of jx < YN < 1y,

. .
Wig Ny Wi Wi Wingal > Wi Wingmb
o . T T
Winj, €+ if lwinihw"uninu Wil = [Wigingn Wipjmls and
° .
Wij, — Ve if I‘”I'Ain"'innil.u Wil < Iwiauinﬂ s Winjnl

in the case of iy, jx < YN,

. .
Van Ny Wi Wieial > Wi Wingah
— H = lws s eeewp s
Wiy ja ~ if lw"tihwl'n+1in+| i 'winiu' = |w‘h+l1h+l Winjm I! and
. .
Wiyj, oy if 'wl'hihwl'n+xin+: b 'wi...j...l < |wl'n+1ih+| . 'w‘.mjnl'

For instance, the product w;,waawaswy (a,b > yN) corresponds to 3/, &2 &7 0.
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Consider an action of the symbols &¢, &, K¢, 2, 0, ¥, VA4, Ve and ¥/, on a sequence K = K; - - - Kyn Of
o's and e’s given by

Rox=eox, Nr=oer, Nea=eex,
K 1=oo, K 1=oe, K 1= e, RNo=XK0=X0=0,
OKg Ky, ifmy=o0, Ky+ Kpmy f K1Ky = 0w,
= ® o K=
0, otherwise , 0, otherwise ,
0Ky Km, ifny =0, Ky -Rm, if K1K2 = @0,
k= S k=
0, otherwise , 0, otherwise ,
K, ifry =, K3 e Bmy il mikg = se,
U= :/. K=
0, otherwise , o, otherwise ,

where 0 is a fixed point of all symbols and 1 an initial point. The reduction rule among w;;’s, such as
WiaWaz = 0103, is reflected faithfully in the above rule. The equation w;,;j, - w;,, j, = e corresponds to
€ -+-€ml = 1 particularly. 72(e; -+ €m) denotes the height of €; -+ €m given as the length of the sequence
1+++€ml of 0’s and e’s, putting the length of 1 = 0 and that of 0 = —oo
The action of the symbols prod adirect binatorial expression on a free Fock space. Let I’ = I'(a, b, z,y)
be a unital algebra over C freely generated by a, b,z,y with the unit 1, taken for a free product of four 1-mode
Fock spaces, I' = I'(Ca) » T(Cb) * I'(Cz) * I'(Cy), equipped with a canonical inner product. An interpretation

e & a, 0o b, 0 -z, oce & y,

induces operators A1, A,P, X' X Y1 Y ,Q,R corresponding to K, /e, ™, &, %6y &0, Lo, & and 2
respectively, acting on I, under the rule defined below: foru € T,

1 _J o, ifu=av, wET,
Alu=ay, Au = { 0, otherwise,
. fu=zu', v €r,

1 0, otherwise,

v, fu=yu', vE€T,

0, otherwise,
Pau = au, Pbu =0, Pzu = zu, Pyu =0, P1=0,
Qzu = bu, Quu =0, Qau = yu, Qbu =0, Q1=0,
Rzu =0, Ryu = au, Rau =0, Rbu = zu, R1=0.

4.1. The case of (A): YN =1.

Since a morphism wy; = g; (and then, wy — g ‘) yields an isomorhism from the subgroup of G = *Z/2Z
generated by {wi;} to a group freely generated by {g;}, S2(1/N, N) induces the free central limit theorem. A
1-mode Fock representation is given by

Jm 4(5; (%N)m) = (4 + 4)™1,1),

4.2. The case of (B): 1N>land7~)0asN—boo.

An eflect of folding free el s, h , the asymmetricity on the subindices causes a d
from the previous section. Consider a product WraWabWhe = € With a,b < 7N and z < N. This type of products
have no contribution to the limit distribution, as the number of such indices (a,5,z) has smaller order than
\/17‘ . This observation shows that a product w;,;, - --w;,, ;. containing a factor w;, j, with ix,jx <N has no
contribution in the limit N — oo, exactly,
Lemma 4.1. For a equation € ---€¢ml = 1, let Ty be the number of products w;,j, -+ wi,,.j,, = e of wi;’s
(1 £i# 3 < N) corresponding to €; -+ - €. Then,

Xty = zu, X

Yty = yu, Yu=

0, ifk>0,

lim —-——TN
Noveo (/U)™ ( lz)m, k=0,
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where k denotes the total number of \’s, **’s and /4’s appear in €; +«+€m.
Proof. By definitions, the number of choice of subindices i,j,’s assymptotically equals to
ON)F (1 - 7N (aN)3,
hence the assertion. ]
As a result, a Fock representation on I'(a, b, z,y) is obtained.

Theorem 4.2. The assymptotic behavior of S3(v, N) with YN > 1 and v —+ 0 as N — oo has a representation
on the Fock space I'(a, b, z,¥),
1 m
H m) _ (Xt t
J._lgj(s,(q,w) ) = <(‘/§(x +X4+Y 1Y +Q +R)) 1,1).

Suppose that €;---€,1 = 1 holds. Like the innner singletons, °*’s and *’s occur only at the height
> 0, however, by definition, - and %2 should appear pairwise at the same height, which brings us another
combinatorial description. Let us consider the Fock space I'(a,b,z,y) defined above. Putting z = (z + y)/v2
and ¢ = (a + b)/V?2, the action of Z! = X' + Y1, Z = X + Y and O = Q + R is given by

Ztu = v2zu, Zzu = V2u, Ozu = cu, Ocu = zu (u € I'(a, b, z,v)).
Hence we have .
1 b 1
—=(Xt+X+Yt+Y +R) 1 1>=<zt z ——0”‘1.1)
<(ﬁ(++ +Q+R)) 1, (Z'+2+750)
Let us consider more general situation
((Z' + Z + 20)™1,1)
with a parameter A, which is connected with the weighted walks, starting the origin 1 and returning there after
m-step, on an induced subgraph of the binary tree. (The weights are given in the figuer below.)

Let Fr, be the number of m-step walks leaving and returning to 1, allowed reaching 1 several times in the
middle of the walks. Samely let fn, be the number of m-step walks leaving and returning to z without reaching
1, allowed reaching z several times in the middle of the walks. By the self-similarity of the graph, one has for
m>2,

m—2

fm = Z (flc + /\Fh)fm—k—h
=0
m-2

Fo = Y faFm-i-z,
k=0
where fo = Fo = 1. Putting the moment functions, F(t) = 3  Frnt™ and f(t) = Y, fmt™, one has
[y -1 = £(f(t) + AF(R)f(t),

F(t)-1 = F@t)>.

Hence
XEF(t) + (1~ A)EF(t)? - F(t)+1 =0,
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and the Cauchy transform G(t) of the distribution duy associated with Theorem 4.2 is given as a solution of
AUG() + (1 - AH)G(t)? —tG(t) + 1 =0.

Remark. Putting A? = 1/2, dpy coinside with the distribution in Ezamples 1.5 (1.16) and (1.17) of [23], up
to the variance, where the anti-commutation ab + ba of semi-circle elements a,b which are free each other is
observed. Indeed what we have done in the case of (B) is a calculation of the anti-commutation of semi-circle
elements. Intuitively, this is because, in the limit we have

S(7,N) ~ (01 + ---+ﬂ-,N) (07N+1 + “‘+0'N) + (¢1N+1 + ---+a~) (01 +oe +0-,N)
' VAN VN VN AN )
which is noting but the anti-commutation of semi-circle elements that are free each other.
4.3. The case of (C): v equals to a constant 0 < a < 1.

In this case, such a product w o wepwyy with a,b < yN and YN < z,y < N contributes to the limit
distribution; the symbols &\, &’ and }/, appear.

Lemma 4.3. For a equation ¢ :-+¢,,1 = 1, let Ty be the number of products w;,;, ---w;, j,, = € of w;j's
(1 <i#j < N) corresponding to ¢; - - - ¢m. Then,
lim In  _ a 3 l1-a g
Nooo (JU)»  \2-a 2-a
where k denotes the total number of J’'s, ©?’s and /4 's appear in €; *++ €.

Proof. Just repeat the proof of Lemma 4.1 in the case of (C). w}
Then, again a Fock representation on I'(a, b, z,y) is in hand, which interpolates the distributions in Theorem
3.2 and Theorem 4.2.

Theorem 4.4. The assymptotic behavior of S2(7, V) with 4 =constant a (0 < a < 1) has a representation on
the Fock space I'(a, b, z,y),

’Ji_l’nwaﬁ((Sz(‘y,N))"‘) = <(,/2—L-(A' +A+P)+ ,/;—:g(x' +X+rt +Y+Q+R)) 1,1>.

5. Multi-folding of free elements

deonhble fold; ] . 1

In the previous sections, we saw that the g of free gives for conditionally
free central limit theorems. However multi-folding of free elements suggests more general concept of indepen-
dence. For instance, let us ider el ts wiji = 0i050% (¢ # j # k # i). Note that the difference of
reduced length of w; j, &, Wisjoky * ** Wip jm ke B0 Wigjuky <« W5, 5, &, €quals to £3 or 1. Then, for a product
;y50ky *** Wi, je ks ODE associate a sequence of symbols At, 4, BY, B's by way of the rule

Wi jmkm A',
wigk, & AL 0k Wik Wikl = Wigaigakg * Winjmkal = 43,
Wik, & B ik Wi kg Wimimke ] = Wik Winimkal = +1,
Wik, & By i Wik Wigia ke T Yininke] = Wikt Wininka| = —1, and
Wik, Ay 0L Wik Wik = [Wissidesakgs Wi ik | = =3
Suppose that wi j.k, - Wi, k. = €, that is the sequence of sub indices #1571k -+ -imjmkm forms a non
crossing pair partition, which implies m is to be an even number. Let €; - - ¢ be the corresponding sequence
of At, A, B!, B defined above. By definitions, such a seq €1 +++€m corresponds to a restricted Catalan path
on 2? from (0,0) to (3|m/2),3[m/2)) in the following way: each symbol ¢, is taken for a three step walk,
Al Qys: (lry) - (::+ lry) = (z+2,9) = (z +3,9),
B! Q1 (2,9) 2 (2,9 +1) 2 (z+ Ly +1) = (2 +2,5+1),
B +— Q:(z9) = (zy+1) 2 (z,y+2) =2 (z+1,y+2) and
A — Qs:(z,y) = (z,9+1) = (2,9 +2) = (z,9 + 3),
and the corresponding lattice path consists of the walks 13 and Q.), walking under the line y = z + 1 with

out accrossing the diagonal y = z. Note that the walks 4, and ., may start only from the trianguler areas
under the line y = z — 1 and y = z — 2 respectively.
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Let us observe the assymptotic behavior of

Sy(N) = !

— Z Wijke
VNN =N ~2) | i fahpicn
From the argument above, it is casily seen that all odd moments vanish and the 2m-th moment has an expression
r}.im $(S3(N)*™) = #{Catalan path on Z* from (0,0) to (3m,3m) consisting of Q43,4 }.
—o0

Summing up, we have an combinatorial description.

Theorem 5.1. Let At and A be canonical creation and annihilation operators on a 1-mode Fock space I'(C),
and B! and B be operators killing the vacuum 1, acting on the subspace orthogonal to 1 where At = Bf and
A = B holds. Then the assymptotic behavior of S3(/N) has a combinatorial description

Jim 4(S(N)™) = (A + B' + B+ £)"L,1)

Remark. According to [7], Jacobi parameters associated with conditionally free central limit distributions are
of the form
wi=p, wn=¢(n22), an=0(n20).

Contrast to the conditionally free case, above example has aperiodic Jacobi parameters,

w = 1, wy = 3, w3 = 6, wy = 8/3, wg = 217/48, ceey

a,=0 (n>0).
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