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by Herbert Heyer 

In the theory of functional central limit theorems one considers scaled sums of infinites­
imal arrays of cl-dimensional random vectors of the form 

k,.(t) 

Xn(t) := L Xnl 
l=l 

on a probability space (n, m, P) and studies the corresponding sequences {X,. : n E N} 
of stochastic processes Xn = {Xn(t) : t E R+} as functions in the Skorokhod space 
D (R+, Rd). One of the most profound contributions to the theory was to establish nec­
essary and sufficient conditions for a sequence {X,. : n E N} of process X,. to converge 
in distribution on D(R+,Rd) towards an increment process X := {X(t) : t ER+}- A 
classical tool used in solving the convergence problem is the Levy-Khintchlne bijection 

Px +-+ (a,B,77) (1) 

between the set I'P(Rd) of distributions of increment processes X in Rd and the set 
P(R+, Rd) of characteristic triplets (a, B, 77) consisting of shift mappings a, diffusion map­
pings B and Levy measures 77. The solution to the problem given for example in [12] 
consists in characterizing the convergence 

(2) 

of an increment process in terms of convergence conditions on the scaled sums of moments 
towards the characteristic objects in the triplet (a, B, 77). 

Functional central limit theorems of the described type can also be looked at within 
the framework of general locally compact groups G provided a Levy-Khintchine bijection 
similar to (1) is available. For Lie projective groups G this work was carried out in [8] and 
[13]. On the other hand the Levy-Khintchine bijection for Moore groups G described in [14] 
and [6] suggests the search for at least sufficient conditions for the convergence (2) in terms 
of generalized characteristic functions of G-valued random variables or synonymously, in 
terms of the Fourier transforms of their distributions on the dual of G. The definition of 
the Fourier transform of a probability measure on G therefore involves infinite dimensional 
unitary representations of G. The method of infinite dimensional Fourier transforms has 
been efficiently applied to commutative arrays and stationary increment processes in [15]. 
In their papers [9] and [10] G. Pap and the author make use of infinite dimensional Fourier 
transforms in order to propose sufficient conditions in terms of integrating families related 
to the given infinitesimal array. 
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The present article aims at surveying the methodical tools and some of the results 
achieved on the way to a solution of the problem in (2). In particular the author will elab­
orate on an axiomatic approach to the Levy continuity property which plays an important 
role in arriving at the desired functional central limits. The subsequent discussion can be 
viewed as a supplement actualizing the very useful survey (13]. 
1. The case of a Lie projective group 

For the general setting we suppose that G is a second countable locally compact group 
with neutral element e. Given an array { Xnt : n, £ E N} of rowwise independent G­
( valued) random variables and a scaling sequence {k., : n E N} consisting of increasing 
cad functions kn : R+ -> Z+ with k,,(o) = o and kn(R+) = Z+, such that the family 
{Xnt : n EN, 1 ~ £ ~ kn(t)} is infinitesimal in the sense that 

lim max P((Xnt E Ve]) = o 
n-+oo 1:5l:5kn(t) 

for all Borel neighborhoods V of e and all t ER+, we look at the sequence {X,. : n EN} 
of functional processes 

kn(·) 

Xn := II Xnt 
l=l 

(with Gas their state space). For any increment process X = {X(t) : t E R+} in G 
(normalized by X(o) = e and cadla.g) the family {µ(s, t) : (s, t) E S} of distributions 
µ(s,t) := Pxc.J-•X(t) forms a convolution hemigroup in the set M 1 (G) of all probability 
measures on G, i.e. µ(s,r) * µ(r,t) = µ(s,t) for alls ~ r ~ t,µ(t,t) = ee, and the 
mapping (s, t) >-> µ(s, t) from S = {(u, v) E Ri : u ~ v} into M 1(G) (together with 
the weak topology T..,) is ca.dla.g in each variable. X is stochastically continuous if and 
only if (s, t) >-> µ(s, t) is continuous. Returning to the initial array and to the sequence 
{ Xn : n E N} of functional processes in G we have finite dimensional convergence 

if and only if 

kn(t) • 

IT µ.,t _. µ(s, t) 
l=kn(s)+l 

for all (s,t) ES in the sense of the topology Tw on M 1(G). 

Applying the fact that to any continuous convolution hemigroup {µ(s, t) : (s, t) E S} 
in M 1(G) there corresponds the family {T,,t: (s, t) ES} of translation operators Ts,t := 
Tµ(s,t) defined in the space .C(C0 (G), C0 (G)) of all linear operators on the space C0 (G) of 
all continuous functions on G vanishing at infinity, by 
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Ts,tf(x) := Tµ(s,t)f(x) := J f(xy)µ(s, t)(dy) 
G 

whenever f E C 0 (G),x E G, one obtains a bijection 

H(G) <-> Evol(C0 (G)) 

between the sets H(G) of continuous convolution hemigroups in M 1(G) and Evol(C0 (G)) 
of (strongly continuous, positive, left invariant) evolution families of contractions on C0 (G). 
This bijection extends to a bijection 

S(G) <-> Contr(C0 (G)) 

between continuous convolution semigroups and semigroups of contraction operators on 
C0 (G). 

For the following we assume to be known what it means that a mapping F from S or 
R+ into a Banach space E is of (continuous) finite (bounded) variation. A convolution 
hemigroup {µ(s, t) : (s, t) E S} is said to be of (continuous) weak finite variation on a 
subspace C of C 0 (G) if 

(s, t) 1-+ (Tµ(s,t) - I)f(e) 

from S into R is of (continuous) bounded variation for every f EC. 

From now on let G be a Lie projective group with Lie algebra L(G), projective basis 
{Xi : i E I} and projective (weak) coordinate system {x; : i E I} (associated with 
{ Xi : i E I}). Examples of Lie projective groups are all locally compact abelian groups, 
all compact groups, in particular the torus group TN and the solenoidal group Q1 (which 
both are not Lie groups), and all maximally almost periodic groups generated by a compact 
neighborhood of the identity. For Lie projective groups G the space D(G) of (Bruhat) test 
functions is contained in the space C2(G) of twice left differentiable functions on G. The 
bijection 

S(G) <-> P(G) 

{µ(t): t ER+}<-> (a, B, TJ) 

between S(G) and the set P(G) := RI x MI,+ x L(G) of triplets (a,B,TJ) consisting 
of vectors a, symmetric positive semidefinite matrices B and Levy measures 'f/ has been 
established in final form in [2], where also the tools for the general framework have been 
collected. The corresponding bijection 

Hwtv(G) <-> P,.,(R+, G) 

{µ(s, t) : (s, t) ES}<-> (a, B, TJ) 
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between the set HwJv(G) of continuous hemigroups {µ(s, t) : (s, t) E S} of weakly finite 
variation on G and the set P1,,(R+, G) of triplets ( a, B, 17), where a is a continuous mapping 
R+ -> R1 of finite variation with a(o) = o, B an increasing continuous mapping R+ -> 

MJ,+ with B(o) = o and 77 a measure in M 1(R+ x G) such that 77(R+ x {e}) = 0,77([0,t] x 
·) E L(G) for all t ER+, and 

t >-> I f(y)17([0, t] X dy) 

is continuous for all f E D(G)+ with f(e) = o. The set of all such measures 17 will be 
denoted by L(R+, G). While the first cited (Hunt) bijection is produced by a generating 
function, the letter one requires generating mappings and the notion of a weak backward 
equation. 

The following functional convergence result has been proved in [8]. 
1.1 Theorem. Let {µnl: n,£ EN} be an array of measures in M 1(G),{kn: n EN} a 
scaling sequence, and let D denote a dense subset of R+· It is assumed that 

(i) there exists a continuous function t >-> a(t) = (a;(t));eJ on R+ 
such that for all t ED, i EI 

lo,, (t) 

L j x;dµ,it -> a;(t) as n-> oo, 
l=l 

(ii) there exists a continuous function t >-> B(t) := (b;;(t));,;eI on R+ 
such that for all t E D,i,j EI 

kn(t) 

L j x;x;dµnt-> b;;(t) + j x;(y)x;(Y)11([0, t] x dy) as n-> oo, 
l=l G 

(iii) there exists a measure 17 E L(R+, G) such that for all t ED and bounded continuous 

functions f on G vanishing in a neighborhood of e 

kn(t) LI fdµnt-> J f(y)17([0,t] X dy), 
l=l G 

(iv) for all T > o, i EI 

Then (a,B,17) E P1,,(R+,G), and 
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kn(t) • 

IJ µnl--> µ(s, t) 
l=kn(s)+l 

for all (s, t) E S, where {µ(s, t) : (s, t) E S} E Hwfv and 

{µ(s, t) : (s, t) ES} +-> (a, B, T/), 

The proof of the theorem is based on the corresponding result for a Lie group G estab­
lished in [7). 

2. Infinite dimensional Fourier transforms 

In this section G is assumed to be an arbitrary locally compact group. By a representa­
tion of G we always mean a continuous homomorphism U from G into the group U(1-l(U)) 
of unitary opera.tors on the complex representing Hilbert space 1-l(U). The set of all repre­
sentations of G will be denoted by Rep(G). Of particular importance is the subset Irr(G) 
of a.II irreducible representations U of G which by definition admit no nontrivial closed 
U-invaria.nt subspace of 1-l(U). The famous Gelfa.nd-Raikov theorem states that Irr(G) 
separates the points of G. We also introduce for any cardinal a the a-dimensional Hilbert 
space 1-l(a) and the sets Repa(G) and lrra(G) of all U E Rep(G) or U E Irr(G) respec­
tively with 1-l(U) = 1-l(a). For the union of the sets Repn(G) for n EN we write Rep1(G). 
The prominent class of Moore groups G is defined by the inclusion Irr(G) C Rep1(G). 
It contains all compact and all a.belian locally compact groups and has a well understood 
structure as is cited in (5). 

Now we look at the set G := Irr(G)/ ~ of unitary equivalence classes of irreducible 
representations. In the standard references [4) and [18] from which we pick most of the 
subsequent information, G is ca.lied the dual of G. For any U E G we consider the space 
1-lci) (U) of all u E 1-l(U) with !lull = 1. We note that the symbol U will be used for the 
class in G as well as for any of its representations. For a given U E G and u, v E 1-l(U) 
the corresponding coefficient of U is defined by p.,,.,(U) :=< U(•)u, v > . In the case that 
u = v we write p.,(U) instead of p.,,.,(U). The next definition concerns the reduced dual of 
G introduced as the set Gr of all U E G such that there exists a u E 1-l(l) (U) admitting 
the approximation (in the sense of the compact open topology 7;,0 ) 

Pu(U) = lim fn * J;: 
n-.oo 

for some sequence Un)n?_l in cc(G). 

Since G can be identified with the dual c•(G)" of the c•-a.lgebra. c•(G) of G where 
c•(G)" carries the hull-kernel topology, we obtain the Fell topology on G. A base of the Fell 
topology at the identity representation 1 of G is given by the family of finite intersections 
of sets of the form 

V(C,c:) := {U E G: There exists u E 1-lci)(U): lp,.(U)(x) - 11 < c: for all x EC}, 
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where C is a compact subset of G and c: > o. Furnished with the Fell topology G is a 
quasi-locally compact (Baire) space which is second countable if G is second countable. 
Gr is a closed subspace of G. The equality Gr = G can be characterized by either of the 
subsequent statements 

(i) 1 E Gr 
(ii) Every continuous positive definite functions on G can be approximated (in the sense 

of Tc0 ) by functions of the form f * j~ with f E cc(G). 

(iii) The constant function 1 on G can be approximated (in the sense of Tc0 ) by function 

of the form f * t~ with f E cc(G). 

For any cardinal a the sets Repa(G) and Repa(C*(G)) are bijectively related to each 
other. Consequently the weak topology on Repa(C*(G)) induces a topology on Repa(G) 
which supplies an equivalent definition of the topology of Ga as the subspace G consisting 
of all U E G of dimension a. 

We are now prepared to introduce the main tool of harmonic analysis on a locally 
compact group G: the Fourier transformµ of a measureµ E Mb(G) given for any U E 
Rep(G) as an element µ(U) of the space .C(1-i(U)) of all linear operators on 1-i(U), by 

< µ(U)u,v >:= J Pu,v(U)dµ 

whenever u, v E 1-i(U). Clearly, IIP,II $ l!µII, Moreover, the applicationµ 1--> µ from Mb(G) 
into the set of mappings from Rep(G) into LJ{.C(1-i(U)) : U E Rep(G)} is linear, multi­
plicative, injective and bicontinuous in the sense of the following equivalences expressed 
for a sequence (JLn)n~l and a measureµ both in M1(G): 

(i) µn--> µ (in the weak topology T,,,) 

(ii) [1,n(U)u--> µ(U)u for all U E Irr(G),u E 1-i(U). 

(iii) < /J,n(U)u, v >-->< µ(U)u, v > for all U E lrr(G), u, v E 1-i(U). 

The implication (iii)~(i) can be considered as a narrow version of the Levy continuity 
theorem for probability measures on a locally compact group. For the problem dealt with 
in [10] it turned out to be helpful to work with a wider version of Levy's theorem which is 
axiomatized as follows. 

2.1 Definition. G is said to admit the Levy continuity property (LCP) with respect to a 
subset r of Rep(G) if there exists a topology on r with the following property: Given a 
sequence {µn: n EN} in M 1(G) and a mapping h: r--> LJ{.C(1-i(U)) : U Er} which is 
continuous on r n Repa ( G) for all cardinals a, satisfying 

/J,n(U) -> h(U) 

whenever U Er then there exists a measureµ E M 1(G) such that 
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and 

µ(U) = h(U) 

for all U Er. 

It is shown in [5] that any Moore group G admits (LCP) with respect tor:= Rep1(G) 
the topology on r being Teo on U{Repn(G) : n EN}. 

Following the note [3] we report on a different axiomatization of the Levy continuity 
theorem. 

Let G be a second countable locally compact group and r a subset of G such that 1 E r. 
A mapping h : r -> £, := U{C('H.)/ ~: 'H. is a Hilbert space} with h(l) being a scalar 
(operator) is said to be continuous in 1 if for every c > o there exists a neighborhood V of 
1 (with respect to the Fell topology in G) satisfying the following property: If U EV n r 
then there is a representative h(U) of the class h(U) E C('H.) / ~ for some Hilbert space 1-l, 
and a vector u E 1-l with \lull = 1 such that 

I < h(U)u, u > -h(l)I < c. 

Obviously, the Fourier transformµ of any measureµ E Mb(G) considered as mapping 
r -> £, is continuous at 1. 

For subsets r of G (for groups G that are amenable and of type I) such that o-(rc) = o, 
where o- denotes a representing measure (in the direct integral decomposition) of the left 
regular representation of G, the following modification of (LCP) holds. 

2.2 Definition. Let G be a second countable locally compact group and r C G with 
1 Er. G is said to admit the modified Levy continuity property (MLCP) with respect tor 
if for any given sequence {µn : n EN} in M 1(G) and any mapping h : r -> £, which is 
continuous at 1 and satisfies 

fi.n(U) -> h(U) E £, 

for all U E r there exists a measureµ E M 1(G) such that 

and 

µ(U) = h(U) 

for all U E f. 

Following the exposition in [3] we note that if G is of type I (f.e. if G is nilpotent or 
solvable or a Moore group) then there exists a representing measure u of the left regular 
representation of G such that o-(G~) = o. If, in addition, G is amenable (f.e. if G is 
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an almost connected nilpotent or a Moore group) then 1 E suppa for every representing 
measure O', and hence G admits (MLCP) with respect to any subset r of G with a(rc) = o. 

On the other hand G admits (MLCP) with respect to G provided every neighborhood 
of 1 (in G) contains a representation U such that for any u E 1-t(U) the coefficient p.,(U) 
vanishes at infinity. Applying this fact it turns out that a noncompact, connected simple 
Lie group G with finite center admits (MLCP) with respect to G if and only if G violates 
the Kazdhan property which states that 1 is isolated in G. 
3. Convergence of scaled arrays of distributions 

A (continuous) convolution hemigroup {µ(s,t) : (s,t) ES} of probability measures 
on a locally compact group G is characterized by the fact that the corresponding family 
{µ(s, t)(U) : (s, t) E S} of operators in C(1t(U)) is a (continuous) evolution family for 
each U E Irr(G). Given a subset r of Rep(G) we define a convolution hemigroup {µ(s, t) : 
(s,t) ES} in M 1(G) to be of (continuous) :F-finite variation with respect tor if for eacb 
U E r the mapping 

(s, t) 1-+ µ(s, t)(U) - I 

from S into C(1t(U)) is of (continuous) finite variation. 

3.1 Definition. Let {µ(s, t) : (s, t) E S} be a convolution hemigroup in M 1(G) and let 
r C Rep(G). A family {(Ip : U Er} of mappings cpu E FV(R+,C(1t(U))) is called an 
integrating family related to {µ(s, t) : (s, t) ES} if for all U Er, cpu (o) = o and 

whenever (s, t) E S. 

µ(s, t)/\(U) =I+ j µ(s, r-)A(U)cpu (dr) 

l•,tJ 

If a convolution hemigroup {µ(s, t) : (s, t) E S} admits an integrating family for r c 
Rep(G) then {µ(s, t) : (s, t) E S} is of :F-finite variation with respect to r. Conversely, 
if {µ(s, t) : (s, t) E S} is a convolution hemigroup of :F-finite variation with respect to 
r then it admits an integrating family for r. Moreover, let {µ(s, t) : (s, t) E S} be a 
convolution hemigroup of continuous :F-finite variation with respect tor C Rep(G). Then 
the integrating family { cpu : U Er} related to {µ(s, t) : (s, t) ES} is uniquely determined, 
and cpu E C(R+, £(1-t(U))) for all U Er. 

In the classical situation of G = Rd (ford;::: 1), where Irr(G) ~ Rd, any convolution 
hemigroup {µ(s,t): (s,t) ES} in M1 (G) can be characterized by a triplet (a,B,11) in 
P(R+, G) such that 

µ(s, t)A(U) = exp{i < U, a(t) - a(s) > -½ < U, (B(t) - B(s))U > 

+ j (ei<U,y> - 1 - i < U, h(y) > )1/()s, t) x dy)} 
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for all U E Irr(G)((s, t) ES), where h denotes a truncation function on G. It turns out 
that {µ(s, t) : (s, t) ES} is of F-finite variation if and only if a is of finite variation, and in 
this case the integrating family {ipu: U E frr(G)} related to {µ(s, t) : (s, t) ES} consists 
of functions ipu E FV(R+, .C(1t(U))) given by 

ipu(T) = log µ(o,T)"(U) 

whenever T E R+· In terms of increment processes associated with hemigroups the above 
stated Levy-Khintchine correspondence 

{µ(s, t) : (s, t) ES} +-+ (a, b, r,) 

between the sets H(G) and P(R+,G) is proved in [12}. 
A similar description of the integrating family can be given in the case of Moore groups 

G which are known to be Lie projective. The necessary argument relies on Section 5 of [5} 
and the method developed in [14). In the special case of abelian locally compact groups a 
comparison of the various versions of convolution hemigroups of finite variation has been 
carried out in [1). 
Results for specified limits 
3.2 Theorem. For every n E Z+ let {µ,.(s, t) : (s, t) E S} be a convolution hemigroup 
admitting an integrating family { ip~ : U E Irr( G)}. Suppose that for every U E Irr( G) 

(i) there exists a dense subset D of R+ such that for all t E D 

'P~ (t) -> 'P~ (t), 

(ii) for the sequence of moduli of continuity 

limsupwr(Vy,!{i 8)-> o as 8-> o 
n-+oo 

whenever T > o. 

Then 
µ,.(s, t) --+ µo(s, t) 

for all (s, t) E S, and {µo(s, t) : (s, t) E S} is a convolution hemigroup of continuous 
F-finite variation with respect to frr(G). 

3.3 Theorem (Convergence). Let {µne : n, £ E N} be an array in M 1 ( G) and { kn : 
n EN} a scaling sequence. Moreover, let {µ(s, t) : (s, t) ES} be a convolution hemigroup 
in M 1(G) admitting an integrating family {ipu : U E Irr(G)}. Suppose that for every 
U E Irr(G) 
(i) there exists a dense subset D of R+ such that for all t E D 

kn(t) 

L (JJ.nL(U) - I) --+ 'Pu (t), 
l=l 
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(ii) 
kn(t) 

limsup sup L 11.unt(U) - Ill -> o as o-> o 
n-+oo 0~~~~1T t=kn(s)+l 

whenever T > o. 

Then 
kn(t) • 

IJ µnl-> µ(s, t) 
l=kn(s)+l 

for all (s, t) E S, and {µ(s, t) : (s, t) E S} is a convolution hemigroup of continuous F-finite 
variation with respect to Irr(G). 

Results for unspecified limits 

Here we assume that G is a locally compact group admitting (LCP) for some fixed 
r C Rep(G). 

3.4 Theorem. For every n EN let {µn(s, t) : (s, t) ES} be a convolution hemigroup in 
M 1(G) admitting an integrating family {,p~: U Er}. Suppose that for every U Er 

(i) there exists a dense subset D of R+ such that for all t E D the sequence { ,p~ : n E N} 

converges in C(H.(U)), 

(ii) limSUPn-,oo) WT(V<p!{i c5)-> o as c5-> o whenever T > o. 

Then there exists a family {,pu E FV(R+,C(1i(U))) n C(R+,£(1-i(U))): UE r} such 
that 

locally uniformly for all U Er. 

If, in addition, 

(iii) the mapping U 1-> ,pu from r n Rep0 (G) into C(R+, C(H.(a))) is continuous for each 

a, 

(iv) the mapping U 1-> V'Pu from r n Rep0 ( G) into C (R+, R+) is locally bounded for each 

a, 

then there exists a convolution hemigroup {µ(s, t) : (s, t) E S} of continuous F-finite 
variation with respect to r such that 

µn(s, t) -> µ(s, t) 

for all (s, t) E S, and { ,pu : U Er} is an integrating family related to {µ(s, t) : (s, t) E S}. 

3.5 Theorem (Convergence). Let {µnl: n,e EN} be an array in M 1 (G) and {kn: 
n E N} a scaling sequence. Suppose that for every U E r 
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(i) there exists a dense subset D of R+ such that for all t E D 

(ii) 

{
kn(t) } tt ({4.e(U) - I) : n EN converges in £('H.(U)), 

kn(t) 

limsup sup L llflnt(U) - Ill -+ o as o-> o 
n-t-OO o7~;~1T l=kn(s)+l 

whenever T > o. 

Then there exists a family {iP E FV(R+,£('H.(U))) n C(R+£('H.(U))) : U Er} such 
that 

kn(t) 

sup II L (/J,nl(U) - I) - rpu (t)II-+ o 
tE[o,T] l=l 

for all U E r whenever T > o. 

If, in addition, conditions (iii) and (iv) of Proposition 3.4 hold, then 

kn(t) • 

IJ µ,,.e -> µ(s, t) 
l=kn(•)+l 

for all (s, t) ES, and {µ(s, t) : (s, t) ES} is a convolution hemigroup of continuous .F-finite 
variation admitting { rpu : U E r} as its related integrating family. 

For the technical background and proofs of the results we refer the reader to (10]. The 
main idea is to reduce the study of convolution hemigroups on G via Fourier transform 
to the study of evolution families of operators and related operator-valued integrating 
functions which are chosen to be of finite variation. These integrating functions are applied 
in order to obtain integral representations of the given evolution families the integral 
involved being a (Bogdanowicz) generalization of the (bilinear) Lebesgue-Bochner-Stieltjes 
integral for operator-valued integrands and integrators. 

4. Convergence of scaled arrays of random variables 

In this section we wish to reformulate the previous results in terms of increment processes 
and scaled products of random variables taking their values in a second countable locally 
compact group G which is also a complete separable metric group. Let X := {X(t) : t E 
R+} be an increment process in second countable G and let {µ(s, t) : (s, t) ES} denote the 
associated convolution hemigroup of distributions µ(s, t) of increments X(s)-1 X(t) of X. 
The process Xis said to be of (continuous) finite .F-variation with respect tor C Rep(G) 
if the convolution hemigroup {µ(s, t) : (s, t) E S} is of F-finite variation with respect 
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to r in the sense of Section 3, and to admit an integrating family for r c Rep( G) if 
{µ(s, t) : (s, t) E S} does. 

Results for specified limits 

4.1 Theorem. For every n EN let Xn = {Xn(t): t ER+} be a cad.lag increment process 
in G which is of .1'-finite variation with respect to Irr(G) and admits an integrating family 
{cp~: U E frr(G)}. Moreover, let {µ(s,t): (s,t) ES} denote any convolution hemigroup 
of .1'-finite variation with respect to Irr(G) and let {cpu : U E Irr(G)} be some integrating 
family related to {µ(s, t) : (s, t) E S}. We assume the conditions (i) and (ii) of Theorem 
3.2 to be satisfied. 

Then there exists a G-valued stochastically continuous cadlag increment process X = 
{X(t): t ER+} of continuous .1'-finite variation with respect to Irr(G) such that 

in distribution on D(R+, G), and Px(a)-'X(t) = µ(s, t) whenever (s, t) ES. 

4.2 Theorem. Let { Xnt : n, £ E N} be an array of rowwise independent random variables 
with values in G, and let {kn: n ;:=: 1} be a scaling sequence. Moreover, let {µ(s,t) : 
(s, t) E S} denote any convolution hemigroup in M 1(G) admitting an integrating family 
{cpu: U E Irr(G)}. We assume that for every U E Irr(G) 

(i) there exists a dense subset D of R+ such that for all t E D 

(ii) 

kn(t) 

L (E(U o Xnt) - I) ..... cpu (t), 
t=l 

k,.(t) 

limsup sup L IIE(U o Xnt) - Ill--> o as 8--> o 
n-+oo 0~~~~~T l=kn(s)+l 

whenever T > o. 

Then there exists a G-valued stochastically continuous cadlag increment process X = 
{X(t): t ER+} of .1'-finite variation with respect to Irr(G) such that 

kn(·) 

II Xnt ..... X 
l=l 

in distribution on D(R+, G), and Px(s)-'X(T) = µ(s, t) whenever (s, t) E S. 
Results for unspecified limits 

Similar to Section 3 we need also here the additional hypothesis that G admits (LCP) 
for some fixed r c Rep(G). 
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4.3 Theorem. For every n E N let Xn := {Xn(t) : t E R+} be a cadlag increment 
process in G which is of F-finite variation with respect to r and admits an integrating 
family { <p~ : U E r}. Suppose that for every U E r conditions (i) and (ii) of Theorem 3.4 
are satisfied. 

Then there exists a family {<pu : U E r} of mappings <pu E FV(R+,.C(ri(U))) n 
C(R+, .C(rl(U))) such that 

locally uniformly for all U Er. 
If, in addition, conditions (iii) and (iv) of Theorem 3.4 are fulfilled, then there exists 

a stochastically continuous cadlag increment process X = {X(t) : t ER+} of continuous 
F-finite variation with respect to r such that 

in distribution on D(R+, G), and { <pu : U E r} is an integrating family related to the 
convolution hernigroup of distributions of increments X(s)-1 X(t) of X. 

4.4 Theorem. Let { Xnt : n, £ E N} be an array of rowwise independent random variables 
with values in G, and let { kn : n ~ 1} be a scaling sequence. Suppose that for every U E r 
(i) there is a dense subset D of R+ such that for all t E D the sequence 

{
kn(t) } 
~ (E(U o Xnt) - I) : n E N 

converges in .C(rl(U)), 

(ii) 
kn(t) 

limsup sup L JIE(U o Xnt) - Ill --> o as o--> o 
n~oo oS•StST 

t-,s;• l=kn(s)+l 

whenever T > o. 

Then there exists a family { <pu U E r} of mappings <pu E FV(R+, .C(rl(U))) n 
C(R+, .C(rl(U))) such that 

locally uniformly for all U E r. 
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If, in addition, conditions (i) and (ii) of Theorem 3.4 are fulfilled, then there exists a 
stochastically continuous cadlag increment process X = {X(t) : t E R+} of continuous 
.r-finite variation with respect tor such that 

in distribution on D(R+, G), and { cpu : U E f} is an integrating family related to the 
convolution hemigroup of distributions of increments X(s)-1 X(t) of X. 

5. Suggestions for further research on the subject 
An open problem in functional limit theory for locally compact groups is the specifi­

cation of sufficient conditions enforcing the limiting process to be a diffusion. For Lie 
projective groups diffusion hemigroups and their corresponding increment processes have 
been characterized in [8] and [1]. We recall the following 

5.1 Definition. A convolution hemigroup {µ(s, t) : (s, t) ES} on a locally comact group 
G is said to be a diffusion hemigroup if for all T > o and for every neighborhood V of e 

Under Lipschitz conditions one shows that a convolution hemigroup on G is a diffusion 
hemigroup if and only if the corresponding increment process is a diffusion process in the 
sense that it has continuous paths. 

For convolution semigroups {µ(t) : t E R+} on G and their corresponding stationary 
increment processes the analoguous diffusion property 

valid for every neighborhood V of e defines Gaussian semigroups and Gaussian processes 
respectively. 

In the sequel we shall sketch theorems on the convergence towards a Gaussian semigroup 
and on the martingale characterization of Gaussian semigroups, two results whose possible 
extensions to diffusion hemigroups by means of infinite dimensional Fourier transforms 
would be of great value for the development of functional central limit theory. 

Let {µ(t) : t E R+} be a convolution semigroup on G and {µ(t)A(U) : t E R+} the 
associated semigroup of operators µ(t)"(U) in .C(?-f.(U)) whenever U E Rep(G). For any 
U E Rep(G) one introduces the infinitesimal generator(N(U),N(U)) of the representing 
semigroup {µ(t)"(U): t ER+}- It turns out that the domain N(U) of N(U) contains the 
space ?-f.0 (U) of U-differentiable vectors of 1-f.(U), and 1-f.o(U) contains the Garding space 
?-f.1(U). If U E Rep1(G) then ?-f.1(U) = ?-f.0 (U) = 1-f.(U). For arbitrary U E Rep(G) the 
operator N(U) admits a Levy-Khintchine representation on 1-f.o(U), and {µ(t) : t ER+} 
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is uniquely determined by the family {Res1i,(U)N(U) : U E Irr(G)}. The author of 
[15] studies the convergence of sequences of convolution semigroups towards a limiting 
convolution semigroup on G. In particular he achieves the following central limit result. 

5.2 Theorem. Let G be a Lie projective group, and let {tint : n, e E N} be a commutative 
infinitesimal array in M 1(G) satisfying the condition that 

kn 

lim "tln,t(Vc) = O 
n-+o:> L.-J 

l=l 

whenever V is a neighborhood of e. Suppose, moreover, that 

kn 

limsup LI < fi,nt(U)u - u, u > I < oo 
n--+oo l=l 

for all U E Irr(G) and u E H.0 (U). 

Then the sequence {µn : n E N} of row products 

kn • 

µn := II µnl 
l=l 

is uniformly tight, and for any of its nondegenerate limit points µ there exists a Gaussian 
semigroup {µ(t): t ER+} on G such that µ(1) = µ. 

Next we describe a martingale characterization of a Gaussian semigroup or process in 
terms of its representing semigroup as it is shown in [16]. 

For any Hilbert space 1-{, we consider C(H)-martingales {Z(t) : t ER+} (with respect 
to a filtration {F(t) : t E R+}) defined by the property that for all u,v E 1-{, the C­
valued process{< Z(t)u,v >: t ER+} is a martingale with respect to {F(t) : t E 
R+}). Now, let {µ(t) : t ER+} be a convolution semigroup with representing semigroup 
{µ(t)"(U) : t E R+} for U E Rep(G). Let r be a subset of Rep(G) such that for all 
U Er and all t ER+ the operator µ(t)"(U) is invertible in C(H(U)), and that the Fourier 
mappingµ>-+µ from Mb(G) into the set of mappings from r into U{C(?-i(U)) : U Er} 
is injective. Then a stochastic process X = {X(t) : t E R+} in G is a (stationary) 
increment process corresponding to {µ(t) : t E R+} if and only if for each U E r the 
process {µ(t)"(U)- 1U o X(t) : t ER+} is an C(H(U))-valued martingale with respect to 
the canonical filtration of X. One notes that this equivalence holds provided G is almost 
periodic in the sense that Rep1(G) separates the points of G, and r := Irr(G) nRep1(G). 
If, moreover, G is a Moore group, it clearly holds for S := Irr(G). 

5.3 Theorem. Let G be a compact group for which a faithful representation FE Rep1(G) 
exists. Given a convolution semigroup {µ(t) : t E R+} on G and a stochastic process 
X = {X(t) : t ER+} in G with filtration {F(t) : t E R+} which has continuous paths, 
the following statements are equivalent: 

(i) Xis a Gaussian process corresponding to {µ(t): t ER+}-
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(ii) For each U E {F,F®F} the process {µ(t)"(U)- 1U oX(t): t ER+} is an .C('H(U))­
valued martingale with respect to the filtration of X. 

As for the hypothesis on G in the theorem it should be noted that a compact group 
G admits a faithful finite dimensional representation if and only if G is isomorphic as a 
topological group to a (compact) group of orthogonal ( or unitary) matrices, or equivalently 
to G being a Lie group. Further equivalences can be found in [11]. 

In the proof of the implication (ii)=>(i) of the theorem the author of [16] applies the 
fact that for any convolution semigroup {µ(t) : t E R+} on a locally compact group G 
and any cadlag process {X(t): t ER+} in G the process {µ(t)"(U)- 1U o X(t): t ER+} 
is an .C('H(U))-valued local L2-martingale (for U E Rep(G)) if and only if the process 
{U o X(t) - N(U)J: U o X(s)ds: t ER+} has that property. 

In the case of an arbitrary locally compact group G admitting a faithful real represen­
tation in Rep1(G) a result similar to Theorem 5.3 can be found in (17]. 
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