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Abstract White noise analysis has an aspect of harmonic analysis arising from the 
infinite dimensional rotation group O(E) which is formed by all the linear isomorphisms 
of a basic nuclear space EC L2 (Rd). In fact, the white noise measureµ is kept invariant 
under the action of the group O*(E*) consisting of the adjoint transformations g• of 
the members g in O(E). 

In this report, pru:ticular attentions will be paid to a subgroup generated by the 
so-called whiskers. A whisker, we mean, is a continuous one-parameter subgroup {gt} 
of O(E), where each member g1 comes from a diffeomorphism of the time (or space­
time) parameter space of the white noise. The most important whisker is the time 
shift. With this choice of a whisker, one can define a one-parameter unitary group 
{Ut} acting on the Hilbert space L2(E*,µ) and speak of the spectral multiplicity. This 
notion enables us to consider a sort of degree of complexity of random evolutional 
phenomena that propagate as the time or space-time parameter moves. 

Another interesting subgroup of O(E) is the conformal group C(d) generated by 
certain various whiskers involving the shift. The group structure of C(d) is well known, 
since it is locally isomorphic to the Lie group SO(d + 1, 1), so that it is ready to 
be applied to white noise theory. Indeed, this group C(d) plays important roles, in 
particular, in the investigations of reversibility and of variations of a random field X ( C) 
when C is deformed by the action of the group C(d). 

Together with some other significant examples of whiskers, we can carry on an 
essentially infinite dimensional harmonic analysis in line with the white noise 
analysis. 

§1. Introduction and background 
The subject of harmonic analysis on white noise space has undergone a vast development: 

Laplacians, Fourier transform and operator theory in general. While, complexity or complex 
systrm is proposing interesting future directions in various fields in science. We shall, in 
this note, focus our attention to random phenomena, namely random complex systems and 
in fact, tht•y can be discussed in line with white noise analysis. Note that the white noise 
anal~·sis has an aspect of an infinite dimensional harmonic analysis that arises from the 
infinite dimensional rotation group. Thus, our present aim is to investigate complex random 
systems expressed in terms of white noise by appealing to the theory of infinite diemsional 
rotation group. 

We shall briefly reYiew the white noise space and the rotation group as background. 
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White noise is a measure space (£•, µ), where E* is a space of genralized functions on 
Rd and it is taken to be the dual space of some nuclear space E, and where µ is a measure 
011 £• d<>terminecl by a characteristic functional 

Set (L2 ) = L2(E',11.). Then, we have a Fock space: 

A Gel'fand triple 
(S) C (L2) C (S)* 

defines the space (S)* of generalized white noise functionals. 
To have a visualized expression of (S)*-functional 'Pis an S-transform (Kubo-Takenaka) 

defined by 

(S9)(,;) = C{,;) J exp[(x,,;)]cp(x)dµ(x). 

The S-transform is usuful to define operators, like annihilation operator 81 and creation 
operator a;, that act on the space (S)*. Indeed, S is a bijective mapping from (S)* to its 
range. 

We thm come to the rotation group O(E) of E. Let g be a linear homeomorphism of E 
such that 

[[g,;I\ = [[,;I\, ,; E E. 

Then, g is called a rotation of E. The collection O(E) of all rotations of E forms a group 
under the usual product. Also, the compact-open topology is introduce to O(E), so that it 
is a topological group. 

Definition. The topological group O(E) is called the rotation group of E. If E is not 
specified, it is called an infinite dimensional rortation group and is denoted by 0 00 • 

Let g' be the adjoint operator of g. Necessarily g' is a continuous linear operator acting 
on the space E•. 

Proposition. The group O'(E') is isomorphic to O(E) under the correspondence g* t-+ g-1 . 

With the help of the characteristic functional we can prove 

Theorem 1. The white noise measure µ is invariant under the action of the group o• ( E'): 

g'. µ = µ. 

Hence, the operator U9 given by 

U99(x) = 9(g':r) 

is unitary. We can therefore introduce the unitary representation of the group O(E) on the 
Hilbert sµaee (L2 ). 
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§2. Subgroups of O(E) and their roles 

The group 0(£) is. in a sense. quite big; in fact, it is not even locally compact, and 
its structurr is wry complex. It would be a good idea to take subgroups separately and 
im·estigate their roles in white noise analysis. 

B. Finite dimesional subgroups 

Take a finite dimensional subspace, say En isomorphic to R". The collection of rotations 
g such that their restrictions to E,. are its rotations and identity on E;; forms a subgroup, 
denoted by Gn, Obviously, Gn is isomorphic to the linear group SO(n). 

I. Hyperfinite dimensional subgrpoup 

Set 
Goo= VnGn, 

Then, the infinite dimensional Laplace-Beltrami operator ~ 00 is determined by the subgroup 
G00 and is expressed in the form 

Ll00 = fa; 81dt. 

Also, we can prove (see [2]) the unitary representation {U9 , g E G00 } on Hn, n 2: 1, is 
irreducible. As a result, ~ 00 takes a constant value, in fact -n, on the subspace Hn, 

II. Infinite dimensional subgroup: The Levy group 

As is well known the Levy group g is essentially infinite dimensional. Its action can 
generally not be approximated by finite dimensional rotations. Contrary to the case I above, 
the Levy Laplacian ~L acts effectively on the space (S)' and annihilates the basic space 
(L2 ). There is a formal expression (due to H.-H. Kuo) of the Levy Laplacian that helps to 
understand its actions. 

It is noted that the subgroups that have appeared so far depend on the choice of a complete 
orthonormal system for L2(Rd). 

III. Ultra infinite dimensional subgroups: Whiskers 

There are significant one-parameter subgroups that come from the diffeomorphisms of 
the parameter space Rd. They are called whiskers. The most important whisker is the shift. 
Define S{ by 

sf~(u)=~(u-tej), ~EE; tER; j=l,2, ... ,d, 

where ei is the j-th coordinate vector of Rd. There are many other whiskers that have good 
relations (commutation relations) with shift. A significant class of whiskers is isomorphic to 
the conformal group C(d). 

As we shall discuss in what follows, the shift expresses the change of time or space-time 
and illustrates the propagation of random phenomena. 
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§3. Complex systems 

\\'hat we shall be concerned with are random complex systems which are time-oriented 
or space-time-oriented. Assume further that the systems in question are functionals of white 
noisl'. This means that we tacitly assume that white noise input is provided behind the 
system. The observed data shall be expressed as a stochastic process X(t) depending on the 
time t or a random field X(C) indexed by a manifold C, say a contour, that runs through 
a Euclidean space. :\[athematically they are functionals, maybe generalized functionals, of 
white noise. 

There are various approaches to those random complex systems; among others we propose 
the innovation approach. The original idea came from P. Levy's paper [4], where he has 
proposed a stochastic infinitesimal equation for a stochastic process X ( t). This can also be 
extended to the case of a random firld X ( C), although the existence of the proposed equation 
can not always be expected. With the help of the innovation we can measure thr complexity 
of random complex systems. In some cases we can form the innovation for our purpose, and 
they are now in order. 

Starting from a Brownian motion or a white noise , which is a basic elementary stochastic 
process or generalized stochastic process, resp., we discuss functions of Brownian motion (or 
white noise) taking the time development (shift) into account. 

1) Gaussian system 

Let X(t) be a Gaussian process with mean E(X(t)) = 0. Assume that X(t) is separable 
and has unit multipliocity in the time domain. Then, there exists a white noise B(t) such 
that 

X(t) = / F(t, u)B(u)du, 

where F(t, u) is a non random kernel function. In addition, {X(u), u $ t} has the same 
information as { B(u), u $ t} for every t. A representation satisfying these conditions is 
called canonical. 

The notion of multiplicity can be understood in such a way that associated with each 
tis a projection E(t) corresponding to the space spanned by the variables X(s), s $ t, (if 
necessary E ( t) is modified so as to be right continuous) so that the spectrum as well as the 
(spectral) multiplicity can be defined by the Heiliger-Hahn theorem. 

The unit multiplicity means that the given Gaussian process represented by a single 
Brownian motion (white noise) which we could call an elemental stochastic process. There are 
many Gaussian processes with higher multiplicity and number of the multiplicity expresses 
the "degree of complexity." 

2) Nonlinear functionals of white noise 

There are a lot of significant stochastic processes that are expressed by nonlinear func­
tionals of a white noise (Brownian motion). There is requested a calculus, called white noise 
analysis, where a white noise {.B(t)} is taken to be the system of rnriables. 

In order to establish the causal calculus of complex systems of the abo\·e form of a 
stod1astic process, it is necessary to generalize the notion the multiplicity. xamely, a one­
parameter unitary group {U(t), t E R}, acting on the space of white noise functionals and 

163 



rPpn•spnting the timP propagation, is introduced . .'\.ctually, U(t) is defined so as to hold the 
relation C(t)B(s) = B(t + s). 

Once the unitar~· group is introduced, one can see a cyclic subspace of the form 

H(f) = span{U(t)f, t ER}. 

Again the Hellinger·-Hahn theorem claims that there is a system { H(/11 ); n = 1, 2 .... } such 
that it is an orthogonal system and that the entire complex system in question is expressed 
as the direct sum of those cyclic subspaces. Those subspaces are arranged in the order of the 
spectral measures. The number of the cyclic subspaces is the multiplicity in the general sense. 
This multiplicity is different. from the Gaussian case, but it also serves to the measurement 
of complexity. 

Remark. A stochastic process formed by some nonlinear functional for which its innovation 
is actuall~· obtained (see [3)) can be discussed directly for degree of complexity. 

Example. The \Viener expansion. There is a famous application called the \Viener expan­
sion. \:Ve want to identify an unknown system that permits white noise input as is illustrated 
below. 

input --t nonlinear system --t output 

Let the known nonlinear systems be provided in advance. If the same input as that to the 
nonlinear system is given, then their outputs can be compared to those of the unknown 
system. Thus, the \Viener expansion provides a tool to identify a random complex system 
that admits white noise input. Nonlinear system has usually infinite multiplicity which 
means we need, theoretically speaking, infinitely many known systems. 

§4. Reversibility and irreversibility: Roles of whiskers 
Reversibility and irreYersibility of random evolutional phenomena may be expressed in 

terms of the B(t) instead of the time parameter t itself and both properties are defined with 
respect to the conformal transformations mapping a time interval onto another in a time 
reYerse order. 

We start our discussion with a simple example in Gaussian case where the time interval 
is taken to be [O, 1] to fix the idea. 

1) A Brownian motion {B(t), t E [O, 1]} is certainly irreversible, since it is an accumulated 
sum of independent rnriables B(t)'s at every instant t, and both variance and entropy increase 
as t procf'eds. 

2) Let a Brownian motion B(t) be pinned at t = 1 to a position c, namely let B(l) = 
c. Then, we are given a Gaussian process, denoted by Xc(t). The reversibility maybe 
understood to be an inrnriant property of a process under the simple time reflection. If so, 
we haw 

Proposition. The probability distributipon of X 0 (t), t E [O, l], is invariant under the time 
ref election: t >-+ 1 - t. 

Proof easil~· comes from the computation of the covariace function: 
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f(t, s) = (t I\ s}{(l - t) I\ (1 - s)}. 

There are observations. 

1. It is easily seen that a Brownian motion B(t), which is an irreversible process, is viell'ed 
as a superposition of reversible processes ,\'At), c E R1, with the weight of the standard 
Gaussian measure g(l, c)dc to which B(l) is subject. 

2. The (forward) canonical representation of X(t) is expressed in the form 

X 1(t) = (1- t) ft - 1-B1(u)du, t E [O, l]. 
lo 1- u 

Tlw abm·e B 1(t) is a new Brownian motion that has the same information as X 1(t). 
While, the rewrsal canonical representation is given by 

11 1 . 
X2(t) = t -B2(u)du, t E [O, 1]. 

t u 

Two representations given above express the same Brownian bridge as a Gaussian 
process and they are linked by the projective transformation of the parameter t (see 
[2:Chapter 5]). There, a role of whiskers can be seen. 

The reversibility of a Gaussian process X(t) in white noise analysis is to be considered in 
tNms of the innovation. Since the time domain is limited to a finite interval, the innovation 
should be formed locally in time. This implies that there is a differential operator Lt such 
that 

LtX(t) = B(t). 

Now the reversibilit~· of a Gaussian process may be dealt with as follows. 

a) \\'e understand that a Brownian bridge is an elemental reversible Gaussian process. 
Thus, starting from a Brownian bridge we may consider general reversible Gaussian 
proeesses. 

b) We generalize the reversible property in such a way that the canonical kernels of forward 
and reversal representations are linked by conformal transformations. 

Thus, in the present situation we may assume that 

c) the system of the fundamental solutions of the differential equation 

Ltf =0 

consists of polynomials in (t - 1). 

Summing up we now haYe 

Theorem 2. Let a bridged Gaussian process X(t) satisfy the conditions a), b) and assump­
tion c). Assume that the 07'der of the differential operator L1 is N uniformly int. Then, the 
process X ( t) is reversible. 
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PROOF. By assumption, we haYe the canonical representation of X(t) (see [1]): 

rt . 
X(t) = lo R(t, u)B(u)du, 

"·hen' R(t, 11) is Riemann's function of the form 

N (l - t)k 
R(t,u) = I>k-( )k' 

k=l 1 - U 

where we may assume a1 = 1 so that all the ak's are uniquely determined. Then, as 
a gf'lwralization of the Proposition a conformal map of the interval [O, 1] defines a new 
representation of X ( t) by using the forn·ard and reversal canonical representations. 

§5. Concluding remark 
\\'ith a generalization explained at the end of the last section, we are suggested to think 

of reversibility of a random field X(C). To fix the idea, C is taken to be a contour in the 
plane. To discuss reversibility, it is necessary to have an oriented family C of contours. 
Denote it b~· C = { Ct, t0 $ t $ ti} with the order C, < Ct for s < t denoting C, is inside 
of Ct. ?-dost important requirement is that the C1 expands as t increases from C0 to C1 

smoothly by the action of continuous family {g1} of conformal transformations. With this 
setup a reversibility of X ( C) can be discussed, where X ( C) is an integral of white noise over 
the domain (C) endosed by a contour C (cf. causality). 

It seems to be interesting to note that X(C1), t 0 :St$ t 1, denotes a trajectory (path) of 
a Gaussian random field and on the set of the trajectories a Gaussian measure is naturally 
introduced. It is, therefore, our hope that we are ready to apply to the path integral. Actual 
computations have been given in the case where {Cr} is a family of concentric circles. 
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