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Abstract 

In analogy to wavelet transforms, we use group-like structures in order to introduce 
a class of integral transformations. We consider them in the context of Hilbert 
spaces and study their inversion. 

0 Introduction 

Wavelet analysis was introduced as a mathematical tool by A. Grossmann, J. Morlet, 
and T. Paul in [4] and was motivated by applications in signal processing. Many exam
ples of important transformations can be recognized as wavelet transforms or are closely 
related to them (see [5], [6]). The mathematics of wavelet transform, as given in [5], is 
based on the theory of square integrable representations of locally compact groups and 
has a considerable range of generality. 
In this paper we consider some integral transformations of wavelet type acting on the 
space of square integrable functions on a commutative hypergroup. They generalize the 
classical wavelet transform and the windowed Fourier trans/ orm. This work was moti
vated by a preprint of M. Rosier [10] and a series of papers by K. Trimeche (see [12], 
[13], [14], [15], [11]). 

The first section recalls some results about commutative hypergroups. In the second 
section we define the left-transform. In the third section we discuss some special cases 
of the left-transform corresponding to transitive group actions. 

1 Commutative hypergroups 

Throughout this paper the following notation will be used: Let K be a locally compact 
space and denote by Cb(K), Co(K), and Cc(K) the spaces of continuous functions on K 
which are bounded, vanishing at infinity, and with compact support respectively. The 
symbol M(K) denotes the space of Borel measures on K, M+(K), Mb(K), and M!(K) 
are its subsets consisting of positive, bounded, and bounded positive measures, respec
tively. The er-algebra of Borel measurable sets of K is denoted by B(K). 
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The notion of a hypergroup generalizes that of a locally compact group. (For additional 
reading on hypergroups we recommend (1] and (7].) A hypergroup K is a locally com
pact topological space with an axiomatically defined convolution * on the Banach space 
Mb(K) of bounded measures. With this operation, Mb(K) forms a Banach algebra. The 
convolution * satisfies several requirements which are natural for locally compact groups: 
For example, * is weakly continuous, the convolution of probability measures is again a 
probability measure, there exists e E K such that the Dirac measure e, is the unit of the 
algebra (Mb(K), *)- Furthermore, there also exists a homeomorphism - : K---+ K with 
fK f (z-)Ex * Ey(dz) = fK f (z)ey- *Ex- (dz) for all x, y E K, f E Cb(K). (In the case that 
K is a group, - is given by inversion.) 

The hypergroup K is commutative if the algebra (Mb(K), *) is commutative. If K 
is commutative then there exists (up to a constant) a uniquely determined measure 
m E M+(K) satisfying Ex* m = m for all x E K; m is called the Haar measure. 
As in the case of groups, family (Tx)xeK of translation operators can be defined: For 
each x E K the corresponding Tx acts on suitable classes of functions by f >-+ Txf, 
(Txf)(y) = fK f dEx * Ey- Translation operators are contractions on L2 (K, m) and 
r; = Tx- holds for all x E K. For commutative hypergroups, a Fourier transform 
and a Plancherel identity are available. A bounded measurable function x : K ---+ (C is 
called character, if x(e) = 1, x(x) = x(x-), and Txx = x(x)x are satisfied for all x E K. 
The set K of characters is endowed with the compact open topology. The Fourier trans
form L1(K, m) ---+ Co(K), f >-+ J is defined by f(x) := fK x(x)f(x)m(dx). There exists 
a unique measure 1r E M+(K) (the Plancherel measure), such that the Fourier trans
form maps L1(K, m) n L2(K, m) into L2lK, 1r) L2-isometrically; it can be extended to 
a unitary operator :F : L2 (K, m) >-+ L2 (K, 1r). Similarly, the inverse Fourier transform 
L 1(K,1r) ---+ C0(K), g >-+ !J, !J(x) := Jx(x)g(x)1r(d~ maps L1(K,1r) n L2(K,1r) into 
L2 (K, m) also L2-isometrically. Its extension to L2(K, 1r) is the unitary operator :,:-1. 

We point out that in general the support S of the Plancherel measure is a proper subset 
of K. Translation operators are diagonalized by :F in the following sense: For all x E K 
the operator :FTx:F-1 acts on L2 (K, 1r) as the multiplication by the function K ---+ <C, 
x >-+ x(x). 

We explain the basic idea of this paper by means of the examples of the classical wavelet 
transform and of the windowed Fourier transform on IR: 

1. Given a function O ?' v E L2 (IR), we define L.: L2 (IR)---+ C(IRxIR\{O}), h >-+ Lvh 
as 

1-
(L.h)(b,a) = f ~v(~)h(r+b)dr, V h E L2(IR), 

b E IR, and a E IR\ {O}. The function (b, a) >-+ (L.h)(b, a) is up to the factor 
(b,a) >-+ lal½, the usual wavelet transform of h. Let us introduce on L2 (IR) the 
families (nheR and (Da)aeR\{O} of translation and dilation operators respectively 
as (Td)(r) := f(b + r), (Daf)(r) := ¼if(~) for all f E L2 (IR), r E 1R. With 
these operators we may write (L.h)(b, a) = (Dav, nh} for all h E L2 (IR), b E IR, 
a E IR\ {O}. 

2. Given a function O ?' v E L2 (IR) we define the transform Wv : L2 (IR) ---+ C(IR x IR), 
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as (Wvh)(b, a) = fa eiarv(r)h(r+b)dr, which is up to a factor the windowed Fourier 
transform. Again, using dilation (in this case modulation) operators (D~)aeR given 
by (D~f)(r) := e-iar f(r) for all / E L2 (JR), r E JR, and a E JR, the transform Wv 
may be written as (Wvh)(b, a) = (D~v, nh) for all h E L2(JR), a, b E JR. 

The following remarkable observation should be pointed out: If we define the actions /3 
and /3' of the groups (JR\ {O},·) and (JR,+) on the dual iR of JR as 

/3: iR X JR\ {0} I-+ iR 
/31 : R X JR I-+ R 

/3(x, a) := X • a, 
/3'(x, a) := x + a, 

then for each g E £2 (JR) we obtain all dilations (Da)aeR\{o} as :FDa:F-1g = g(/3(., a)) 
and dilations (D~)aeR as :FD~:F-19 = 9(/31(., a)). In both cases the dilations are unitarily 
equivalent via :F to operators on £2(iR), induced by an action of a group on iR. 
Motivated by this observation we start with a commutative hypergroup K, a function 
v E L2 (K, m), and an action /3 of a locally compact group G on K. We study the linear 
operator Lv : L2(K, m) • a:KxG, given by (Lvh)(b, a) := (Dav, nh) for all h E L2(K, m), 
(b, a) E K x G. Here lDa)aeG C B(L2(K)) are dilations defined by :F Da:F-19 := 
g(/3(., a)) for all g E L2(K, 1r), and (nheK are the usual translations of the hypergroup 
K. 

2 The left-transform 

Let (K, m) be a commutative hypergroup K equipped with a fixed Haar measure m. 
We assume that a locally compact group G acts continuously on the support of the 
Plancherel measure S = supp1r c K: That means that there exists a continuous mapping 
/3: S x G • S, (x,a) 1-+ Xa satisfying (Xa1 ) 42 = Xa142 for all XE Sand a1,a2 E G. 

Let µ be a fixed left Haar measure of G. We introduce the set {µX : x E S} of image 
measures of µ induced by the mappings G • S, a 1-+ xa: For each x E S we obtain 
µX(B) = µ({a E G : xa EB}) for all BE B(S). Let us also define the set {1r4 : a E G} 
of image measures of 1rls induced by the mappings S • S, x 1-+ X4 - For each a E G 
we obtain 1ra(B) = 1r( {x E S : X4 E B}) for all B E B(S). We suppose the following 
assumption to be satisfied: 

Assumption 1. For all a E G the measure 7r4 is absolutely continuous with respect to 
1rls and the corresponding Radon-Nikodym derivative satisfies ;;1: E L00 (S, 1rls). 

For each a E G and / E <V5 we define the function /4 E <V5 as /4(x) := / (xa) for all 
x E S. Due to the above assumption, the mapping / 1-+ /4 defines a continuous linear 
operator L2(S, 1rls) • L2(S, 1rls) for each a E G. Since the Hilbert spaces L2 (S, 1rls) and 
L2(K, 1r) are naturally isomorphic we may consider the mapping/ 1-+ /4 as a continuous 
linear operator on L2(K, 1r). 

Definition. 
{i) The operators (D,,.)aeG C B(L2 (K, m)), defined by Da L2 (K, m) • L2(K, m), 
h 1-+ ;:-1(:Fh)a for all a E G, are called dilation operators. 
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{ii} For each v E L2(K,m), the linear mapping Lv : L2(K,m) • a::«xa, ht-+ Lvh, 
given by (Lvh)(b, a) := (Dav, Tbh) for all (b, a) E K x G, is called the left-transform 
corresponding to v. 
{iii} The elements of A:= { v E L2(K, m) : (x t-+ fa 1.rv(xa)/2µ(da)) E L00 (S, ?l"ls)} are 
called admissible vectors. The elements of A\ {O} are called wavelets. 

Given VJ, V2 EA, we define Cv,,v, : S • (I:! as Cv,,v, (x) := fa (.rv2)(xa)(.rvi)(xa)µ(da) 
for all x E S. It follows from Cauchy-Schwarz inequality that Cv,,v, E L00 (S, ?l"ls). We 
remark that the function Cv,,v, is constant on each orbit: 

Lemma 1. For all Vi, V2 EA, XE S and Xo E /3(x, G) we have Cv,,v, (xo) = Cv,,v, (x). 
Proof. For Xo E /3(x, G) there exists a0 E G with Xo = x«o, and it follows that 

We conclude that 

since µ is a left Haar measure on G. (The same argument implies that µx = µx for 
XE /3(x, G)). • 
For an admissible vector v the left-transform can actually be discussed in the framework 
of Hilbert spaces: 

Proposition 1: 
{i) Given v EA the mapping ht-+ Lvh defines a bounded linear operator from L2(K, m) 
intoL2(KxG,m©µ). ~~~ 
{ii} (Lv, h1, Lv,h2) = fs (.rh1)(x)(.rh2)(x)Cv,,v, (X)?l"(dx) holds for all v1, v2 E A and 
h1,h2 E L2(K,m). 

Proof. (i) Let v E A and h E L2 (K, m). The function Lvh is measurable since 

Lvh(b, a) = (Dav, nh) = (.rDav, .rTbh) = k (.rv)a(x)x(b)(.rh)(X)?l"(dx) 

= fs (.rv)(xa)x(b)(.rh)(x)?l"(dx), 

and the integrand K x G x S • <r, (b, a, x) >-+ (.rv)(xa)x(b)(.rh)(x) is measurable in 
view of continuity of /3: (x, a)>-+ xa. 

Now Lvh E L2(K x G,m®µ) is seen as follows: 

oo > fs i(.rh)(x)l2Cv,v(X)?l"(dx) fs 1(.rh)(x)l2 fa 1((.rv)(xa)l2µ(da)1l"(dx) 

fa fs i(.rv)(xa) · (.rh)(x)l21l"(dx)µ(da) 

k JR l(.rv)a · (.rh)l2d1l"µ(da). 

170 



showing that (Fv)• • (Fh) E L2(K) for µ-almost all a E G. The isometry of F ensures 
that 

oo > lafx l(Fv)• · (Fh)l 2d1rµ(da) 

The first equality holds since 

(ii) Polarizing 

la fx l((Fv)"FhjY(b)l2m(db)µ(da) 

la L l((Fv)", FTbh}l2m(db)µ(da) 

{ j(Lvh)(b, a)l2m ® µ(d(b, a)). 
lxxG 

(Lvh,Lvh) = Is l(Fh)(x)l2Cv,v(X)1r(dx) 'vv E A,h E L2 (K,m), (1) 

we obtain 

• 
Remark. (The inversion of the left-transform.) Let us suppose that for a given v2 E 
A there exists v1 E A satisfying Cv2 ,v1 = 1. In this situation we obviously obtain 
(Lv,h1,Lv2~) = (h1,h2) for all h1,h2 E L2(K,m), which means L:,Lv, = !. 

3 Transitive group action 

In this section a special group action is considered: We suppose that there is essentially 
only one orbit in S, which implies that the function Cv,,v, is constant 1rls-almost every
where on S. This assumption is analogous to that of irreducibility for square integrable 
group representations. 

Assumption 2. The action /3 of G on S is assumed to be transitive, which means that 
there exists x E S with 1r(K \ /J(x, G)) = 0. Furthermore, we assume the measures 
µx E M+(S) and 1ris to be equivalent. 

Remark A similar condition is discussed in the case of groups in [2] Proposition 2. 
We denote by R the function given as R: K • IR+, R(x) := =._dd Ix (x) for all XE S, and 

"s 
R(x) := 0 for all x E K \ S. Obviously R > 0 1r-almost everywhere on K. 

Lemma 2. Assumption 2 implies: 
(i) A= {v E L2 (K,m) : R½Fv E L2 (K,1r)}. In particular A is a dense linear subspace 
of L2(K,m). 
(ii} If v is a wavelet then Lv is, up to a positive factor, an isometric operator. 
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Proof. (i): Let us choose an arbitrary x E S satisfying 1r(K \ f3(x, G)) 
v E L2(K, m). From 

it follows that v E A if and only if the above integrals are finite. 

0 and 

(ii): Since O =f v E A we obtain from the above arguments that L00 (S, 1rls) 3 Cv,v = 
fR lv(x')l2 R(x')1r(dx') > 0. It follows for all h E L2 (K,m) that .._.,...., 

>0 

>0 

Polarizing the last equality, we are led to the following orthogonality relation: 

For admissible vectors we may normalize the left-transform and obtain an isometric 
operator: 

Definition. Let Assumption 2 be satisfied and v E L2(K, m) be a wavelet. The isometric 
operator £. := IIL~vll Lv is called the wavelet transform corresponding to the wavelet v. 

Remark. As in the case of groups the wavelet transform £. is inverted on its range by 
its adjoint c;, what means £;£. = I; here 

c;e = IIL~vll fKxG ((b, a)n-n.v m 0 µ.(d(b, a)) 

holds in the weak sense for all ( E L2(K x G, m© µ.). The range of£. consists precisely 
of those ( E L2(K x G, m©µ.) satisfying£.£;(=(, where the last assertion is equivalent 
to 

\l(b,a) EK x G. 

3.1 A remark on discretization 

The most important feature of the classical wavelet transform is the discretization tech
nique, since multiresolution analysis based on orthogonal wavelets provide tools for the 
design of fast algorithms. The discretization of the classical wavelet transform is possible 
due to Poisson's summation formula on JR. Unfortunately, no corresponding result is 
available for commutative hypergroups. For this reason, no straightforward discretiza
tion technique can be done in the context of hypergroups and we can present only a 
discretization of the diation parameter. An alternative approach to discretization is 
based on a direct construction of the so-called wavelet frames. This construction is 
known in some special cases, see (10]. 
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Let the assumptions 1 and 2 be satisfied and v be a wavelet. A discretization of 
Lv is given by a set V C K x G such that Cvhlv determines Cvh uniquely. The most 
desirable case is that where V is discrete and h i--t Cvhlv is a bounded injective operator 
from L 2 (K,m) into l2 (V). In our setting, we consider only the case V = K x Gd, where 
Gd C G is a discrete subgroup of G. The group action /3 is restricted to the action f3d 
of the discrete subgroup Gd. The first assumption still holds for {3d, but the transitivity 
of f3d (second assumption) fails in general. However, for v E Ad (admissible vector for 
13d) the operator h i--t Cvhlv mapping from L2 (K) into L2(K x Gd) is still bounded. It 
is also injective, if infxes Cv,v(X) > 0. This follows from (1): 

(Lvh, Lvh}L'(KxGd) = { l(Fv)(x)l2Cv v(x)n(dx) ~ llhll2 inf Cv v(x) 'f h E L2 (K). 
ls ' xes ' 

Note that here Cv,v also corresponds to f3d and is given by: 

'<Ix ES. 

4 Examples 

Example I. (The wavelet transform on JR). The hypergroup, endowed with the 
Haar measure m, is ~ven as (K,m(dr)) := (JR,dr); this choice implies (K,n(dx)) := 
(JR, 21,dx) and S = K. The translations (Tb)beK are given as (Tbh)(r) = h(b + r) for all 
h E L2(K, m), b E K. Let us define (G, µ(da)) := (JR\ {O}, r,hda). The group G acts on 

K by multiplication: /3 : (x, a) i-t x • a. Assumptions 1 and 2 are automatically satisfied. 
We obtain for all a E G n°(dx) := 21; 101 dx, and, putting x := 1, the image measure µii. 
is given by µX(dx) = ½Jdx. The dilation (here modulation) operators are easily seen as 

acting as (D0h)(r) = (.r- 1(.rh)(. • a))(r) = r,hh(~) for all a E G, r E K, h E L2 (K, m). 
Given v E L2 (K, m), we obtain the left-transform of h E L2 (K, m) as 

f 1 f 1 u-b 
(Lvh)(b, a)= (Dav, nh) = JR ~v(ra-1 )h(r + b)dr = JR ~v(-a-)h(u)du 

for all (b, a) E K x G. The function R is calculated by R(x) := ~(x) = ~J for all 

x E K. By definition, 0 ,jc v E L2(K, m) is a wavelet if 

k R(x)IFv(x)l2n(dx) = JR ~:i 1Fv(x)l2 2~ dx = JR j.rv(x)l2 ,:,dx < oo. 

Example 2, (The windowed Fourier transform on JR). We choose (K, m(dr)), (K, n(dx)) 
and (nheK as in the previous example. Let us define the group as (G, µ(da)) := (JR, da). 
The group G acts on K by addition: /3 : (x, a) i-t x + a. Assumptions 1 and 2 are then 
satisfied. We obtain n°(dx) := 21,dx for all a E G, and, putting x := 0, the image mea
sure µx is found as µX(dx) = dx. The dilation (here modulation) operators are easily 
seen as acting as (D 0 h)(r) = (F- 1(.rh)(. + a))(r) = e-iarh(r) for all a E G, r EK. For 
a given v E L2(K, m), we obtain the left-transform of has 

(Lvh)(b, a) = (D.v, nh} = L e-iarv(r)h(r + b)dr 
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for all (b, a) EK x G. Since R(x) := *(x) = 211' each O ,f v E L 2(K, m) is a wavelet. 

Example 3. (Radial wavelet transform, a special case of (10]). The Bessel-Kingman 
hypergroup K with parameter a > -½ is given as K := IR+, the Haar measure is just 
m(dr) := r 20+1dr, and the convolution * of point measures satisfies 

r(a + 1) ((r2 - (x - y)2)((x + y)2 - r 2w-½ 
(e., * ey)(dr) = r(½)I'(a + ½)20-l (xyr)2" lux-yl,x+y]dr. 

The set of characters of K is just 

{r >-+ j.,(x · r) Ix E IR+,j., is the modified Bessel function of order a}, 

. ~ (-l)kr(a + 1) 2k 

Ja(z) := ~22kk!r(a+k+l)z Vz E <D 

and via this parameterization the dual K can be identified topologically with IR+· The 
Plancherel measure 1r, associated with (K,m), is given by 1r(dx) = (2"'~~::11))2dx, and 
its support S is equal to K. Let the group G := lR+ \ {O} act on K by multiplication: 
/3 : (X, a) >-+ x • a. We fix the Haar measureµ on Gas µ(da) := ¼da. Assumption 1 is 
satisfied since 1r"(dx) := (2•rcI:~~~.2"'+2dx for all a E G. The dilation operators can be 
obtained explicitly: It follows from 

Vh E Cc(K) 

h(~) 

that (D0 h)(r) = ••~+>h(~) for all h E L 2(K, m), a E _ G, and r E K. Finally to see 
Assumption 2 is satisfied, we set x := 1 and obtain µX(dx) = ½dx. This implies that 

R(x) := *(x) = ½ (2"~l~till' > 0 for all x E K. The function O ,f v E L 2(K, m) is a 
wavelet if 

{ 2 - r"' 1 (2"r(a + 1))2 2 x2o+l - {O(J 2 l 
00 > lR RJ.rvl d1r - lo X x2a+l J.rv(x)I (2"r(a + 1))2dx - lo 1.rv(x)I xdx. 

Example 4. Here we consider the wavelet transform on Chebli-Trimeche hypergroups. 
This is a generalization of the previous example. A Chebli-Trimeche hypergroup K with 
Haar measure mis given by (K, m(dr)) := (IR+, A(r)dr). The mapping A : IR+ • IR+, 
called the Chebli-Trimeche function, is assumed to satisfy several conditions. (For the 
exact definition of Chebli-Trimeche hypergroups we refer the reader to [1], p. 209). The 
set of characters K is identified with IR+ U i(O, p], ( the constant p E IR+ is called the 
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index of the hypergroup). By this identification the support of the Plancherel measure 
is given by S := IR+- Furthermore there exists a function C : IR+ • <V with 1rls(dx) = 
IC(x)l-2dx. By a result of Trimeche (see [12)): 

1cm1-2 

!~~ IC(x)l-2 < oo Va E IR+\ {O}. (2) 

Let us define the action of the group G :=IR+\ {0} on S by multiplication: f3: (x, a) t--t 

X · a. It follows from 

l f(x)1r"(dx) l f(x")1r(dx) = f 0 J(x · a)IC(xW2dx 

= 100 f(x · a)IC(x · aW2dx 
lo a 

= 100 f(x)IC(~W2~dx VJ E Cc(K) 
lo a a 

that 1r4 (dx) = Jc(:)J-• dx for all a E G. We conclude that Assumption 1 is satisfied since 
in view of (2) ~; E L00 (S, 1rls) holds for all a E G. As in the previous example, we 
endow the group G with the Haar measure µ(da) = !da. Choosing S 3 x := 1 the action 

/3 is easily seen to be transitive. It follows from ~(x) = i JC(~)J-, > 0 that Assumption 
2 is satisfied. The function O =f v E L2(K, m) is a wavelet if 
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