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Abstract. In infinite-dimensional harmonic analysis, we encounter naturally induc­
tive limits of certain topological algebraic objects, such as Lie groups, Banach algebras, 
topological semigroups and so on. In such cases, the inductive limit algebraic struc­
tures are not necessarily consistent with the inductive limit topologies, contrary to the 
affirmative statement in [Enc, Article 210]. This phenomenon is studied in [TSH] in 
the case of topological groups. 

We study in this paper similar situations for other categories of topological alge­
braic structures. Further, in relation to this, we study certain properties of general 
topological spaces for the 'commutativity' of (1) taking direct products and (2) taking 
inductive limits. 

This paper is a summarized version of [HSTH]. 

§I. Inductive limits and direct products 

I.I. Preliminaries. Let us consider an inductive system in a certain category 
C, of topological spaces, of topological groups, of topological vector spaces, or of 
topological algebras, etc., as 

{ (X"', rxJ, a- E A; </>p,"', a- j /3, a-, (3 E A}, 

where the index set A is a directed set, each X"' is an object in C with topology 
Tx0 , and </>p,"' is a (continuous) homomorphism X"' • Xp in C satisfying the 
consistency condition: </>1 ,p o </>p,"' = </>1 ,"' for any a- j (3 j "f. 

Then, on an inductive limit space X := li_rp X0 , we define the corresponding 
algebraic structure. On the other hand, we have also an inductive limit topology, 
denoted as 1~ rx0 or simply as r/f,d, in which a subset D of X is open, by 

definition, if and only if </>;1 (D) C X0 is open in Tx0 for each o: E A. Here, </>a 
denotes the canonical homomorphism from X0 to X. 

In this paper, we study about the harmonicity of the limit topology r[~d with 
the algebraic structure on X. Furthermore, we consider an appropriate variant 
of r/f,d in each category C (denote it by r{ provisionally here) and study various 
kinds of harmonicity, and propose several problems. 

Meantime, we find that one of the important points of discussions is the prob­
lem of commutativity of (1) taking the inductive limit r{ and (2) taking direct 
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products. This commutativity is expressed symbolically as Tf x TJ ~ T{xY, 
for two inductive systems { (Xa, TxJ, o E A} and { (Ya, TyJ, o E .4} with 
Y = 1~ Ya. In the case where this commutativity holds, we say that the condi-

tion (DPA) (= Direct Product is Admitted)holds for TJ*l. 
More in detail, let us explain our problems in the following. 

1.2. Inductive limits of topological groups. 
Let {(Ga,TeJ;o EA} be an inductive system of topological groups with a 

directed set A as index set. Here Tea denotes the group topology on Ga and we 
are given an inductive system of continuous group homomorphisms ¢a2 ,01 ; G01 • 

Ga2 (01, 02 E A, 01 :::$ 02) satisfying ¢a3 ,o.2 o ¢o.2 ,a1 = 4>a3 ,o.1 for 01 :::$ 02 :::$ a3. 

Put G := Jim G0 and T;~d := Jim Tea the inductive limit of groups and that of 
• • 

topologies respectively. Then, as seen in [TSH], the multiplication G x G 3 
(g, h) H gh E G is not necessarily continuous with respect to the inductive limit 
topology T;~d• or more exactly, with respect to ( T;~d x T;~d• T;~d). 

Inspired by this rather critical phenomenon, we start to study the inductive 
limit topologies in detail in more general setting. 

1.3. A continuity criterion. 
Let { (XO , TxJ; o E A} be an inductive system of topological spaces. Take 

another inductive system {(Z0 , TzJ; a EA} of topological spaces with the same 
index set A and with an inductive system of continuous maps 4>~ 2.a, : Zo., • Zo.,. 
Then, assume that we are given a system of maps F0 of Xa to Z0 for a E A 
which is consistent in the sense that Fo., o ¢02 ,01 = 4>~,,a, o F01 for a1, 02 E 
A, o 1 :::$ o2 . Then this system induces a map F : X • Z := 1~ Z0 such that 
Fo4>0 = 4>~0F0 (o EA), where 4>a (resp. ¢~) denotes the natural map from X 0 

to X (resp. Z0 to Z), continuous with respect to ( Txa, T;!d) (resp. to ( Tza, T;~d) ). 
Furthermore the following fact is easy to prove. 

Lemma 1.1. If every map Fo. : X 0 • Z0 is continuous in (Txa, TzJ for 
a E A, then the induced map F : X • Z is continuous in ( T/;,d, T;~d). 

Let us apply this lemma to the above case ·of inductive limits of topological 
groups, by setting 

and F0 : X0 • Z0 as F0 (g0 , h0 ) = g0 h0 • Then, since Tea is a group topology 
on G0 , the map F0 is continuous for each o E A, and so, as their natural limit, 
the multiplication map F(g, h) = gh of X = G x G to Z = G is continuous, by 
Lemma 1.1, with respect to the topologies T;~;e := Jim ( Tea x TeJ on G x G = X 

• 
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and T;~d := lim Ta0 on G = Z. 
• 

1.4. Direct products of inductive limits of topologies. 
On the other hand, it is easy to see the following fact for the direct product 

of inductive limits of topologies. Take two inductive limits of topological spaces 

(X, T;!d) = (1~1 Xo, 1~ Txo) and (Y, Ti~d) = (1~ Yo, I~ Tyo), and consider their 
direct products. 

Proposition 1.2. The product space X x Y is naturally identified with the 

inductive limit space 1~ (X0 x Y0 ). On this space the direct product of inductive 

limit topologies T;!d x T;~d = (1~ Tx0 ) x (1~ Ty0 ) is weaker than or equal to the 

inductive limit of product topologies T;!iy := lim (Tx0 x TyJ, or in a symbolic 
• 

notation, Tf,.d x T;~d ~ T;!iy. In particular, for a subset of product type D x E C 

X x Y, it is open in the former topology if and only if so is in the latter. 

For an inductive limit of topological groups G := I~ G0 , taking into account 
the above result, we see from Lemma 1.1 that, in the case where the multiplication 
G x G 3 (g, h) >-+ gh E G is not continuous with respect to T;~d, the product 
topology T;~d x T;~d should be strictly weaker than the inductive limit topology 
T;~;a := lim (Ta0 x TaJ. Thus we come naturally to the following problem. 

• 

Problem A. Let the notations be as above. Then, give a necessary and suf­

ficient condition for the equivalence of two topologies T;!d x T;~d and T;!iy := 

lim(Tx0 x TyJ on Xx Y, where (X,T;!d) = (limX0 ,limTx0 ) and (Y,T;~d) = 
• • • 

(1~ Yo, 1~ Tyo). 

1.5. Examples and further problems. 
Let us examine the simple example, Example 1.2 in [TSH], from the stand 

point of general topology. 

Example 1.1. Let Gn = Fn x Q, F = R, Q or T with the usual non-discrete 
topology Tn for n EN. Then, G = l~1Gn = (II' F) X Q, where IT' F denotes the 
restricted direct product of countable number of F's. The multiplication on G 
. t· "th t t a 1· H a a axa IS not con 111UOUS WI respec O Tind = ~Ta.. ence, Tind X Tind -< Tind . 

Furthermore, considering Gn as a topological space and express it as a direct 
product of two spaces as Xn x Y, with Xn = Fn, Y = Q. Then, X := Jim Xn = 

lim Fn = IT' F, and we see that the direct product topology T;!d x Ty itstrictly 
• 

weaker than T;!iy = 1~ ( Tx. x Ty) at every point of X x Y, by reexamining the 
proof in Example 1.2 in [TSH] for non-continuity of the multiplication on G. 
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In the above case, the topological space Y is fixed, and so the following problem 
is also important to study. 

Problem B. Let (X, T/;,d) = (1~ Xo,, 1~ Txa) be an inductive limit of topo­

logical spaces and (Y, Ty) a fixed topological space. Then, give a necessary and 

sufficient condition for the equivalence of two topologies T/;,d x Ty and T;'~iy := 

l~(Txa XTy) onXxY. 

The former Problem A contains this Problem B, but it is worth to study 
Problem B by itself. We may expect that a solution to Problem B helps to solve 
Problem A. However the situation is not so simple that Problem A is reduced to 
Problem B, because, for instance, the topology Ty cannot be in general recovered 

from the system Ty. = Tvlv •. So we propose the following problem. 

Problem C. Let (Y, Ty) be a topological space and { (Y"', TyJ; o E A} be an 

inductive system of topological spaces such that Y"' C Y and Y = 1~ Y"' as sets. 

Assume that the restriction Ty lv0 of the topology Ty onto Y"' is equal to Ty0 • 

Then, Ty :::5 T;~d := 1~ Ty0 • Look for a necessary and sufficient condition for the 

equivalence of these two topologies on Y. 

1.6. A characterization of the product topology T;!d x T;~d· 

For the product Xx Y of two inductive limits of topological spaces (X, T;!d) = 
(1~ Xo,, 1~ Tx0 ) and (Y, T;~d) = (1~ Yo,, 1~ Ty0 ), we have by Proposition 1.2, 

the relation T;!d x T;~d :::5 T;!iy := 1~ (Tx0 x TyJ. 

Further we can characterize the product topology as the strongest topology on 
X x Y among direct product topologies weaker than T;!iy. More exactly, we 
have the following. 

Theorem 1.3. Let Tx and Ty be topologies on X and Y respectively such 

that Tx X Ty :::5 T;!iy. Then, Tx :::5 T;~d, Ty :::5 Tl~d, and so Tx X Ty :::5 T;!d X T;~d-

The above facts evoke studies on inductive limit topologies in various kinds of 
categories, such as the Bamboo-Shoot topology Tiis in the category of topological 
groups in [TSH] and its generalization, the locally convex vector topology T1!, in 
the category of locally convex topological vector spaces, and so on. 

§2. Inductive limit topologies in various categories 

As mentioned in 1.2, for an inductive limit G = 1~ Gn of topological groups 
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Gn, n 2: 1, the multiplication map is not necessarily continuous with respect to 
the inductive limit topology T;~d = 1~ Ta.. So we have introduced in [TSH] 

a so-called Bamboo-Shoot topology Tff s on G as the strongest group topology 
j T;~d, under the condition (PTA) on the inductive system { Gn }. 

In these respects, it is also natural to ask the similar question for other topo­
logical algebraic objects, such as topological vector spaces(= TVSs), topological 
semigroups, topological rings, and topological algebras etc. 

2.1. Case of locally convex topological vector spaces. 
A good category of TVSs is the category of locally convex topological vector 

spaces (= LCTVSs) over a field F = R or C. In that category, we know well 
how to define an inductive limit of topologies. 

Let {(X,,, TxJ; a EA} be an inductive system of LCTVSs with ¢02 ,01 : X,, 1 • 

X02 , a1, a2 EA, a 1 ::s a2, a homomorphism in the category of LCTVSs, that is, 
a continuous linear map. On the vector space X = 1~ X 0 , we usually consider 
a locally convex vector topology as follows. 

On the limit space X = 1~ X,, of an inductive system { X,, } of LCTVSs, a 

locally convex vector topology, denoted by lcv-l~1 Tx0 or Tiiv, is defined as the one 
for which a fundamental system of neighbourhood of the null element O is given 
as {UC X; T{nropen, convex, balanced (i.e., >.x EU for x EU,>. E F, l>-1 :'.S 1), 
and absorbing} (cf. [Yo, 1.1, Definition 6, p.27]). Further we have also a simple 
characterization of neighboufoods of OE X, as is given in [Tr, §13, p.126]. 

Now we propose the following problem. 

Problem D. Assume that every space X 0 in an inductive system of LCTVSs 
has an additional structure or operation of the same kind, which induces as its 
inductive limit such a structure or an operation on the limit space X := 1~ X 0 • 

Is this structure or operation consistent with the Lev-limit topology Tiiv ? 

2.2. Multiplication or product in an inductive system. 
Let us first consider two concrete cases to show what kind of things we want 

to study. 
Let M be a non-compact differentiable manifold, and Mn /' M, n 2'. 1, be 

an increasing sequence of relatively compact, open submanifolds such that the 
closure Mn is contained in Mn+i• The space of complex-valued test functions 
(C00-functions with compact supports) on M, denoted by 7J(M), is a LCTVS 
obtaind as an inductive limit of the inductive system Xn = 1J(Mn) := { <p E 

C00 (M);supp(,p) C Mn}, n EN. Here 1J(Mn) is topologized in a usual manner 
by means of a countable number of seminorms. 

Let us consider two kinds of operations in X = 1J(M). First one is the point-
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wise multiplication T: Xx X • X, given as T(cp1,'-P2)(p) = 'P1(P)'-P2(P) (p E 
1v[), and the second one is the convolution T( r.p1, r.p2) = r.p1 * cp2 in the case of 

lvl = Rk. We ask if they are continuous or not in ( T1Jv x T1Jv, T1Jv). 
Note that, for the first T, supp( cp1 <p2) C supp( r.pi) n supp( cp2), and so it maps 

Xn x Xn into Xn- On the other hand, for the second T, supp(cp1 * <,02) becomes 
bigger and is in general comparable to supp(r.p1) + supp(r,o2), and so T maps 

Xn X Xn into X,a(n) with a (J(n) > n. 

Proposition 2.1. In the space of test functions X = 'D(M), the multiplica­

tion map T(r,o1, \02) = 'Pi <pz is continuous in (T1J. x T1Jv, T1Jv). 

Proposition 2.2. In the space of test funct·ions X = V(Rk), the convolution 

map T(rp, 1/;) = r.p * 1/; is continuous in (Ti~ x T1Jv, T1~)-

In the above two cases, the proofs are not routine as may be expected. Here 
multiplications T are both commutative, but in our proofs the commutativity is 
not important but the special structure of the space 'D(lvl) is fully used. So, the 
proofs can not be generalized directly in the following general situation. 

Problem E. Assume that an inductive system { X 0 ; a E A} of LCTVSs has 

multiplications, consistent in the sense that, for any a, there exists a (J(a) such 

that T0 : X 0 x Xa • X,a(ci) is a continuous bilinear map, and that, for any 

a 1,a2 EA, there exists a "f EA such that "f c O'j, (3(7) c /3(aj), j = 1,2, 
and Tei; 's are naturally induced from T-y. Then the system { T0 } induces as its 

inductive limit a multiplication T on X = l~X0 • 

Is the limit map T continuous with respect to T1~ = lcv-1~ Txn ? 

2.3. Multiplication map between two spaces of test functions. 

Let lvl and lvl' be two differentiable manifolds. We assume that at least one 
of them, say lvl', is non-compact. 

The space of testing functions X = 'D(lvl) is equipped with a locally con­
vex vector topology Tx, where Tx = Tx the usual C00-topology in the case lvl 
is compact, and Tx = T1Jv := lcv-1~ Tx. with Xn = V(Mn) as above in the 
case lvl is non-compact. The space Y = 'D(lvl') is equipped with the lcv-limit 

topology T1~. := lcv-lim Ty. with Yn = 'D(lvl~), where { M~; n = 1, 2, ... } is a 
• 

sequence of relatively compact open submanifolds such that M~ C lvl~+i and 
lvl' = Un>iM~. We can give to the product space Xx Y = 'D(M) x 'D(lvl') the 
lcv-limit topology T/f,,XY which is equal to lcv-lim (Tx x Ty.) if Mis compact, and 

• 
to lcv-1~1 ( Tx. x Ty.) if lvl is non-compact. 

Now put Z := 'D(lvl x lvl'). Then, we ask if the multiplication (or product) 
map T: X x Y • Z, given as T(r.p, 1/;)(p,p') = r.p(p) · 1/;(p'), p E lvl,p' E lvl', for 
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<p E X,1/J E Y, is continuous with respect to (Tx X T1~v,T1fvl• 

Theorem 2.3. Let M and M' be two differentiable man if olds. Assume that 

one of them, say M', is non-compact. Then, the multiplication map T : V(M) x 

V(M') 3 (,p,1/J) 1-t <p • 1/J E 'D(M X M') is not continuous in (Tx X Ti~v> T1fv), 
where X = V(M), Y = V(M'), Z = V(M X M'), and Tx = Tx or Tx = T1~v 
according as M is compact or not. 

The proof is interesting but we have no space to write it down here. 
Taking into account Propositions 2.1, 2.2 and Theorem 2.3, we propose the 

following problem. 

Problem F. Take three inductive systems of LCTVSs { (X0 , TxJi a- E A}, 
{(Y0 ,TyJ;o- EA}, and {(Z0 ,TzJ;o- EA}, and let their inductive limits be 

(X, T1;;v), (Y, Tt) and (Z, Tzfv)- Assume that, for every a- E A, there exists a 

continuous multiplication {bilinear map) T0 : X 0 x Y0 -t Zp(a) with a /3(a) ~ o-, 
which are consistent with these inductive systems so that there exists a multipli­

cation T : X x Y -t Z as their inductive limit. Then, under what conditions, T 
is continuous in (T1;;v x T11:,,, T1~) ? 

Remark 2.1. In comparison to the so-called kernel theorem for distributions 
(cf. [Tr, Th.51.7]), we give a remark. In the situation in Theorem 2.3 with M' 
non-compact, take a distribution S on M x M' or S E 'D'(M x M'). Then 
the bilinear functional 'D(M) x V(M') 3 (,p,1/J) >-+ S(T(,p,1/J)) is not neces­
sarily continuous in the product topology, because so is not the bilinear map 
T: V(M) x V(M') -t V(M x M'). 

2.4. Spaces of finitely many times differentiable functions. 
Let r be a non-negative integer and M' is a non-compact c(rl.c1ass differen­

tiable manifold. Let us consider the space Y = ctl(M') of c<rl.class functions 
with compact supports. For r = 0, Y is nothing but the space of continuous 
functions with compact supports. Further let Z = C£00,rl(M x M') be the space 
of functions f (x, y) in (x, y) E M x M', which is simultaneously of class c(oo) 
in x E M and of class c<r) in y E M', and compactly supported. We topol­
ogize Y and Z respectively as inductive limits of sequences of Banach spaces 
Yn = C(rl(M~), and Zn= c<oo,rl(Mn x M~). 

Theorem 2.4. Let M be a differentiable manifold and M' be a non-compact 

c<rl.class manifold for some r, 0 ::; r < oo. Put X = V(M), Y = Ctl(M') 
and Z = C£00,rl(M x M'). Then, the multiplication map T: Xx Y 3 (,p,1/J) t-t 

<p. </! E z is not continuous in (Tx X Tz~., T/i,,), where Tx = Tx if M is compact, 
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and Tx = T/f., if M is non-compact. 

§3. Bamboo-Shoot topology Tj5 and locally convex topology T(°f,, 

3.1. Bamboo-Shoot topology for PTA-groups. 
For an inductive system of topological groups {(Gc,,ToJ;a E A}, assume 

that the index set A is cofinal to a sub-directed-set isomorphic to N. Then we 
introduced in [TSH, §2] a condition called (PTA), and under this condition, we 
defined the so-called Bamboo-Shoot topology Tj5 on G = 1~ G", and proved 
that it is the strongest one among group topologies weaker than or equal to the 
inductive limit topology T;~d on G. 

3.2. Bamboo-Shoot topology and locally convex topology. 
The group topology Tj5 has an intimate relation to the locally convex vector 

topology T/f., as in the following problem. 

Problem G. Let {(Xn, II · lln); n E N} be an inductive system of Banach 

algebras. Then X = 1~ Xn has naturally a structure of algebra. Take an induc­

tive system of topological subgroups Gn of (X}:, Tx:) the group of all invertible 

elements in Xn, with the restriction Tx: of II • lln-topology on X}:. In the case 

where the condition (PTA) holds, what is the relation between the Bamboo-Shoot 

topology Tj5 on G = lim Gn and the restriction T1!,lo onto G of the locally convex 
• 

vector topology Ti!, ? 

A. Yamasaki[Ya] and T. Edamatsu[Ed] studied certain special cases of this 
problem. 

Stitely generalizing the situation, we also propose the following proplem. 

Problem H. Assume that every (Xn, Tx.) is locally convex as a TVS. Then, 

with the locally convex limit topology Ti!,, does the algebra X become a topological 

algebra ? 

Furthermore, let Gn := xnx be the set of all invertible elements in Xn, Then, 

Gn is a topological group with the relative topology To. := Tx. lo., and they form 

an inductive system of topological groups. Then, under the condition (PTA), what 

is the relation between the Bamboo-Shoot topology Tj5 on G and the restriction 

Ti~vlo onto G of the locally convex limit topology Ti~., on X ? 

We also remark here that studies in different directions on inifinite dimensional 
Lie groups, containing the theory of their representations, are continued for ex­
ample in [Boy] and in [NRW]. 
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3.3. Extension of Bamboo-Shoot topologies and their products. 
In the category of topological groups, we can extend in an abstract way the 

notion of Bamboo-Shoot topology on an inductive limit group G = Jim G0 for any 

(not necessarily countable) inductive system { (Go., TaJ, a EA; <f>;o., a~ ,6 }. 
In fact, we see easily from axioms of neighbouhood system of the unit element 

for a topological group (e.g., (GTl) ~ (GT5) in [TSH, §1.3]) that there exists, 
on an inductive limit group G = I~ Go., the strongest group topology under the 
condition that every canonical homomorphism <1>0 : G0 • G is continuous. We 
call it the extended Bamboo-Shoot topology and denote it again by Tifs-

In the case where the inductive system is countable and the condition (PTA) 
holds for it, this topology coincides with the Bamboo-Shoot topology Tifs con­
structed explicitly in [TSH]. 

In the category of topological groups, the problem similar to Problem A is 

affirmatively solved as follows. Let { (Go., TaJ; a EA} and { (Ha, TH0 ); a EA} 
be inductive systems of topological groups. Let G = I~ Go. and H = I~ Ha be 
their inductive limit groups, and the canonical homomorphisms be </>0 : G0 • G 
and 1/Jo. : H0 • H. 

Then, we have the direct product of inductive systems as { (Go. x H 0 , Ta0 xH.l; 
a E A} with Ta.xH. = Ta0 x T80 . Its inductive limit is canonically identified 
with the direct product G x H. 

Theorem 3.1. (i) Let G = Jim G0 , H = Jim Ho., and G x H = Jim (G0 x H0 ) 

be as above. Then the extended Bamboo-Sha; topologies Tifs, T/fs, :nd Tg58 on 

G, H, and G x H respectively satisfy 

on G x H. 

(ii) In the case of countable inductive systems, if { (Gn, Ta.); n E N} and 

{ (Hn, Tn.) ; n E N} satisfy the condition (PTA), then so does their direct prod­

uct { (Gn x Hn, TG.xHJ; n EN}. 

3.4. Direct product of locally convex vector topology. 

Let { (Xo., Tx. ); a E A} and { (Yo., Ty.); a E A} be inductive systems of LCTVSs, 
and put X = I~ Xo., Y = I~ Yo.. The direct product of these systems is defined 
as {(X0 x Yo., Tx0 xy.); a EA} with rx.xYa := Tx0 x Ty0 • Then its inductive limit 
is isomorphic to the direct product X x Y as vector spaces. For topologies on 

this space, we already know that T/[v X T1~v ~ rr}.XY := lcv-1~ Tx. X l'o. 

On the other hand, we can translate the proof of Theorem 3.1 appropriately 
in the category of LCTVSs, and see that the condition (DPA) holds in general 

for the 'lcv-limit functor' T1~~ as follows. 
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Theorem 3.2. Let X = l~X.,, Y = 1~1 Y., be inductive limits in the 
category of LCTVSs. The direct product space X x Y is identified with the 
inductive limit of the direct product of inductive systems. Then, as locally convex 
vector topologies on X x Y, there holds the equivalence 

§4. Sufficient conditions for Problem A 

For sufficient conditions for Problem A or B, the local compactness and the 
local sequential compactness play important roles. Here we study them for Prob­
lem A. 

4.1. A sufficient condition for r[~d x T;~d ~ r;!iy. 
As in 1.4, take two inductive systems of topological spaces and put X 

1~ Xa, Y = 1~ Y.,. First let us give a simple sufficient condition for the 'com­
mutativity' of (1) taking inductive limits and (2) taking direct products, for 
inductive limits of topologies, that is, the condition (DPA) for rtJ. 

Theorem 4.1. Assume that A has a cofinal sub-directed-set isomrphic to 
N. For two inductive systems of topological spaces, assume that every Xa and 
Y., are locally compact Hausdorff spaces. Then, as topologies on X x Y with 

X = 1~ X.,, Y = 1~ Y.,, identified with 1~ (Xa x Y.,), the product topology 

rfnd x T;~d and the inductive limit topology r;!iy := Jim (rx0 x ryJ are mutually 
• 

equivalent: r/;,d x r;~d ~ r/;,;Y, that is, the condition (DPA) holds. 

4.2. Other sufficient conditions. 
We give other sufficient conditions assuming on Xn and Yn a stronger condition 

(SC) than the local sequential compactness. 

Definition 4.1. For a subset D of a topological space Z, its sequential closure, 
denoted by scl(D), is defined as 

scl(D) := { z E Z; 3zn E D such that limn• oo Zn = z }, 
and D is called sequentially compact if every sequence in it has a subsequence 
converging to a point in D, and further Z is called locally sequentially compact if 
every point in it has an open neighbourhood U for which scl(U) is sequentially 
compact. 

Our condition (SC) on Z is defined as follows. 
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(SC) For every sequentially compact subset I< and an open set O containing it, 

there exists an open set G such that [( C G C scl(G) c O and that scl(G) is 

seq·uentially compact. 

Under this condition (SC), we can give two kinds of sufficient conditions for 
Problem A as follows. For an inductive system, assume that A = N, and that 

X1 C · · · C Xn C Xn+I C · · · C X canonically by the identification through the 
canonical maps rf>n• 

Theorem 4.2. Let A = N for an inductive system of topological spaces, and 

assume that every (X,., TxJ and (Yn, Ty.) satisfies the condition (SC). Then, in 

the case where they all satisfy the first countability axiom, the condition (DPA) 

holds, i.e., for X = I~ Xn and Y = I~ Yn, there holds the equivalence T/!,d x 
Y ~ XxY ·- 1· ( ) X y Tind = Tind .- ~ Tx" X T}'n on X . 

Theorem 4.3. Let A= N, and assume the condition (SC) for every (Xn, TxJ 
and (Yn, Ty.). Then, in the case where the system satisfies rx.+1 Ix. = Tx., 
Tyn+I 1i,. = T\'n for n 2". 1, and the condition 

(Go) Xn is a G.-set of Xn+I, and Yn is a G.-set of Yn+I, for n 2". 1, 

there holds for Xx Y the equivalence TC,d x T;~d ~ T;!dy := li:!,n (Tx. x TyJ. 

§5. The case of a fixed Y and Problem B 

In the following, we study in detail Problems A and B, especially necessary 
conditions for converses of theorems in §4. In this section, we study the case 
where Y is fixed, or the case where (Yn, Ty.) = (Y, Ty) for any n 2". 1. This is our 
Problem B. 

5.1. Comments to converses of Theorems 4.1, 4.2 and 4.3. 

Statements for direct converses of these theorems contain necessarily a global 
characterization such as "Xn is a locally compact space". However, this kind 
of global characterization of spaces Xn and Yn are not possible in its nature of 
inductive sequences of topological spaces, and so, possible converses should be 
at first stated in languages of local characterizations of these spaces. This can 
be seen from the following examples. 

Example 5.1. Let X = R and Xn = (-n, n) U Q with an open interval 
(-n, n), where X is equipped with a usual topology TR of R, and Xn with its 
relative topology Tx. = TR Ix.. Then, no Xn is locally compact, whereas so is 
the inductive limit space X (cf. Theorems 5.2 and 5.3). Note that the space 
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(Q,Tq = Talq) is totally disconnected and normal. 

Example 5.2. Let Y = n~>l Rk with Rk = R be the restricted direct 

product ofR. Put Yn = m=l Rk-= Rn, y~ = (m:} Rk) X Q C Yn, and imbed 
Yn into Yn+I as Yn 3 y >-+ (y, 0) E Yn+l· The space Yn is equipped with the usual 

Euclidean metric, and the space Y~ with its relative topology. Then, Yn is locally 

compact, whereas no point of Y~ has a compact neighbourhood. However the 

topological space Y considered as the inductive limit of (Yn, Ty0 ), n 2 1, is also 

equal to the inductive limit of (Y~, Ty~), n 2 1, since there is a mixed inductive 

system given by Y2~+ 1 := Yn, Y2~ := Y~, (n 2 1), which converges to (Y, Ti~d). 
Now let { Xn ; n E N} be an inductive system of separable locally compact 

spaces and put X = l~ Xn. Consider two inductive systems of direct product 

type as { Xn x Ym; (n, m) E N x N}, and { Xn x Y,:.; (n, m) E N x N}, where 
(n,m) ::s (n',m') in N x N if and only if n :Sn', m :Sm'. Then we get as 

their inductive limits the same space X X Y. Denote by T;!:,r and T[~:.{ the 
inductive limit topologies on X x Y corresponding to the first and the second 

system respectively. We assert that T;!:,r ~ T;!:,r ~ T;!d X T;~d-
In fact, the first equivalence is affirmed by considering a mixed inductive system 

(Zn,Tz.), n > l, with (Z2n+1,Tz,.+ 1 ) := (Xn X Yn,Tx. X Ty.), (Z2n,Tz,.) := 

(Xn X Y~, Tx. X Ty~)- Another equivalence Tt,:,r ~ T;!d X T;~d is guaranteed by 
Theorem 4.1 thanks to the local compactness of Xn's and Yn's. 

Furthermore, in the case the index mis fixed, as for the topologies on J!,~ (Xn x Ym) 

=Xx Ym and on J!.~(Xn x Y,:,) =Xx Y,:,, we get the equivalence Tf}d x Tym = 
X Y X Xx~ T;nI m by Theorem 4.1, but the inequivalence T;nd x Ty,:_ -< T;nd m by Theorem 

5.2 below. 

5.2. A sufficient condition for T,!d x Ty ~ T;!IY 
Let us now begin to treat Problem B. Fix a topological space (Y, Ty). Put 

Zn = Xn x Y, Tz. = Tx. x Ty, and Z = lim Zn, T;~d = Jim Tz •. We identify Z 
-t -t 

with X x Y and T;~d with T;!IY. We know in general Tj;,d x Ty ::s T;!IY, and 
the problem is to guarantee the converse relation. A simple sufficient condition 
is given as follows. 

Proposition 5.1. Assume for the inductive system { (Xn, Tx.)} that Xn is 

imbedded homeomprphically into Xn+I for n 2 1, and for the counter part (Y, Ty) 
that Y is locally compact Hausdorff. Then there holds the equivalence T;!d x Ty ~ 
T;~:y 

5.3. Normalization of situations. 
To simplify the situations we put some natural assumptions from the begin-
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ning. 
First we assume for simplicity that the index set A contains a cofinal subset 

isomorphic to N as directed set, and so we take A = N later on except when the 
contrary is announced. It may be assumed without essential loss of generality 
that 

(00-X) each canonical map ¢>n+I,n : Xn -+ Xn+I (n 2:: 1) is injective, 

and so considering as Xn C Xn+I and X = Un~! Xn, we can omit the notations 
¢>m,n and ¢>n rather freely, and then, 

(01-X) each ¢>n+l,n is a homeomorphism, or Tx.+i Ix. 9:! Tx •. 

For (01-X), we remark that the topologies Tx. can be replaced by T;";idlx. to get 
the same inductive limit topology T/;,d, and then (01-X) holds for new topologies 
on Xn's. From now on, we assume (00-X) and (01-X) for { Xn }. 

Taking an appropriate cofinal sequence if necessary, we may put the following 
assumption for { Xn } from the beginning: 

(1-X) for any n, Xn as a subset of X,.+1 has no Tx.+1 -inner point of Xn+I· 

5.4. Necessary conditions for T;!d x Ty 9:! T;!;Y. 
We follow the discussion of A. Yamasaki in [Ya] to get the following necessary 

condition. 

Theorem 5.2. Let A = N and Y be fixed. Assume the condition (1-X) and 

the fallowing: 

(2-x0) for n ~ l, xo E Xn has a countable fundamental system of Tx. -
neighbouhoods; 

(3-y0) y0 E Y has a countable fundamental system of neighbourhoods consisting 

of closed ones; 

( 4-y0) y0 E Y does not have a sequentially compact neighbourhood. 

Then, T;~d x Ty-< T;!;Y := 1~ (Tx. x Ty) at (xo,Yo) EX x Y. 

Reformulating the above result in a global form, we get a kind of converse, in 
the case of a fixed Y, of affirmative assertions in theorems in §4 as follows. 

Theorem 5.3. Assume (1-X) and the following: 

(2-X) each (Xn, TxJ satisfies the first countability axiom; 

(3-Y) Y is regular and satisfies the first countability axiom. 

Then, T;!d x Ty -< T(~;Y at any point (x, y) E X x Y for which y E Y has 11.0 
sequentially compact neighbourhood. 
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§6. Necessary conditions for T;~d x T;~d ~ T/[,iY and Problem A 

Let A = N. Let us consider two inductive systems { Xn} and { Yn }, and 
put Zn = Xn X Yn and identify Z = Jim Zn with X X Y, then T;';,d = T,~;1' 

• 
Assume (00-X) and (01-X) for { Xn} and similarly (00-Y) and (01-Y) for { Yn }, 
for simplicity. 

6.1. Conditions for T;~d x T;~d--< T/;,;Y at a point. 
We study when the above two inductive limit topologies on Z = X x Y are 

different from each other at a point z0 = (x0 , y0 ) E Z. 

Theorem 6.1. Assume the following: 
(1-X) Xn has no Tx•+• -inner point of Xn+l for n ~ 1; 
(2-X) Xn satisfies the first countability a1,-iom for n ~ 1; 
(3-Yn0 ) Yno is regular and satisfies the first countability axiom; 
(4-Yn0-yo) Yo E Yn0 has no sequentially compact neighbourhood; 
(5-Yn0 ) Yno is Ty. -closed in Yn for all n > no. 

Then, T;!d x T;~d --< T;!iy at (xo, Yo) E X x Y for any Xo E Xno• 

Reformulating the above result in a global form, we get a converse of Theorem 
4.1 as follows. 

Theorem 6.2. Assume (1-X) and (2-X)and further assume the following: 
(3'-Y) each (Yn, Ti,J is regular and satisfies the first contab-ility axiom; 
( 5'-Y) Yn is closed in (Yn+l, TYn+I), for n ~ 1. 

Then, if Yo E Y has no sequentially compact neighbourhood in any (Yn, Ty.), there 
holds T/f,d x T;~d --< T;~d at (xo, Yo) E Z for any Xo E X. 

To get much faithful converses to Theorems 4.1, 4.2 and 4.3, we should get rid 
of the first countability axiom. 

Theorem 6.3. Let Xn and Yn be all regular Hausdorff spaces satisfying the 
first countability axiom. Assume the conditions (1-X) and (5'-X) for { Xn} and 
s·imilarly (1-Y) and (5'-Y) for { Yn }. Then T[~d x T;~d ~ T;!iy if and only if 
Xn and Yn are all locally sequentially-compact. 

6.2. Case of metrizable spaces. 
In the case of metrizable spaces, they are automatically regular and satisfy the 

first countability axiom, and furthermore sequential compactness is equivalent 
to compactness. Therefore, in that case, we get from Theorems 4.1 and 6.2 
the following simple necessary and sufficient condition for the commutativity of 
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"inductive limit" and "direct product"· T;< x Ty ~ TXxY ·= Jim (T x T ) · ind ind md · • Xn Yn · 

Theorem 6.4. Assume the conditions (00-X), (01-X), (1-X) and (5'-X) for 

{Xn}, andsimilarly(00-Y), (01-Y). (1-Y) and(5'-Y)for{Yn}- LetXn andYn 

be all metrizable spaces. Then, T;~d x T;~d ~ T;!JY if and only if Xn and Yn are 

locally compact. 
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