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Abstract 

We examine several scaling limits of the spectral distributions of Laplacians ( or 
equivalently adjacency operators) on regular graphs and their second quantization 
on Fock spaces as the graphs grow infinitely in certain manners. 

1 Introduction 

The present note reports our recent development in asymptotic spectral theory for Lapla
cians on certain graphs. Main references are (10], (11] and (12], while the material in §5 

first appears in published form in this note. 

Let us begin with an abstract setting. A regular graph r = (V, E), V and E being 

its vertex set and edge set respectively, has by definition the same degree at every vertex 

x : 1,, := j{y E Vjx ~ y }j. Here x ~ y denotes that x and y are adjacent vertices. The 
Laplacian operator I:,. on r acts on f : V --+ C as 

(!:,.f)(x) := L f(y) - 1,,f(x) , 
v~:r 

which is a formal expression when r is an infinite graph. 

Taking a state <P on the algebra generated by I:,. and I {the identity), one considers 

the spectral distribution of I:,. for which the distribution function is determined by values 

of <P at the projectors in the spectral decomposition of /:,.. In this note, we will deal with 

vacuum states and analogs of Gibbs states. We are interested in asymptotic behaviour 

of the spectral distribution along a growing family of graphs, especially in the case where 

1,, • oo. We try to read a statistical property of the spectral distribution through a 

scaling limit. The scaling agrees with that of the central limit theorem (CLT, for short). 

Actually, our problem is closely related to the CLT in algebraic probability theory which 

was initiated by von Waldenfels et al. (e.g. [7], [15]). 
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It is convenient to refer to Cayley graphs to see the way CLT comes out. Let G be a 

group generated by !1 = {w1 , • • • ,w"} 1 e, assuming that n-1 = !1 as a set. Two vertices 

x, y E G are defined to be adjacent if yx-1 E !1. The Laplacian on this Cayley graph is 
expressed as 

" b. = L irL(w;) - 1,,J (1) 
j=l 

where 1TL denotes the left regular representation of G. Let us take vacuum state </J := 

(o., • o.)t,(G)· According to the formulation of CLT, our problem is to discuss weak con
vergence of the spectral distribution of 

b. - </J(b.) 1 " 
J</J((b. _ </J(b.))2) = VK, ~ 1TL(w;) 

(2) 

with respect to </J as G grows in a certain manner with 1,, -+ oo. Noncommuting summands 
1TL(w;) have a sort of (in)dependence reflecting the structure of G. It may reveal a new 
convolution structure of the limit distribution, yielding Gauss and Wigner as the extremal 

ones (see [8], [5]). Furthermore, replacing 1TL and </J by other representations and states 
will be also interesting. 

2 Preliminaries 

2.1 Symmetric group and Young diagram 

Let Sn denote the symmetric group of degree n and S00 := U::"=1 Sn their inductive limit. 
We follow the convention that a Young diagram is expressed as a finite array of left-aligned 
nonincreasing rows. Let Y denote the set of Young diagrams and V the subset of Y whose 
element has no rows consisting of a single box. If .X E Y contains kUl rows of length j, 
we use the notation .X = (1k<•>2k<'l • • • l<;J • • •). The number of boxes contained in .X is 

I.XI := "£.; jkUl. The conjugacy classes in S00 except the trivial one { e} are parametrized 
by the diagrams in V. Let C>. be the conjugacy class in S00 corresponding to .X E V and 
set ct> := Sn n C>. for n ~ I.XI. ct) is also a conjugacy class in Sn. One sees 

1ct) I = n~ I IT /(j) k(j) ! 
j?:;2 

for .X = (2k<'l3k<3> • • •) with nr. := n(n - 1) • • • (n - r + 1). 1TL denoting the left regular 

representation of S00 , we set 

A~n) := L irL(x) and formally A>.:= L irL(x) (3) 
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for.>. EV. The representation matrix of A\nllt'(S.) with respect to the basis {8,,lx E Sn} 
is an adjacency matrix of the group association scheme of Sn. The complex linear hull 
of these adjacency matrices is closed under multiplication and hence becomes an algebra. 
(See [l].) We call A,\ also an adjacency operator on S 00 • 

Regarding Y as a vertex set and joining two Young diagrams if one diagram is made 
by adding a box to the other, one obtains the Young graph (or Young lattice). Later in 
§5, we will mention the Young graph equipped with multiplicity (or colour) on each edge. 

2.2 Distance-regular graph 

Let S be av-set (i.e. ISi = v) and set V := {x C Sllxl = d} as a vertex set. (Assume 
2d::; v without loss of generality.) x, y E V are defined to be adjacent if Ix n YI = d - I. 
Obviously, IVI =(~)and K = d(v - d) (degree). This graph J(v,d) is called a Johnson 
graph. The Laplacian on J( v, d) describes the classical Bernoulli-Laplace model imitating 
a kind of diffusion of sparse gases. 

We give a quick review on distance-regular graphs (DRG, for short), among which 
J(v, d) plays a central role in this note. See [1] for details. Let r = (V, E) be a finite 
connected graph. 8(x,y) denotes the distance (i.e. minimal length) between x,y EV and 
diamr := max:z:,uev8(x, y) the diameter of r. r is called a DRG with diameter d if, for 
Vh, i,j E {O, 1, • • •, d}, l{z E Vl8(x, z) = i, 8(z, y) = j}J =: P;~ does not depend on the 
choice of x, y whenever 8(x, y) = h. In particular, pf1 = K (degree of r). Set K; := P;~
The ith adjacency operator A; (i = 0, 1, • • •, d) is defined as 

(Ad)(x) := L f(y) for I: v ~ c. 
8(:z:,y)=i 

In particular, Ao = I, A1 = A (adjacency operator) and I).. = A - Kl. The condition of 
distance-regularity is translated into a linearizing formula for adjacency operators : 

d 

A;A; = LPbAh. 
h=O 

The commutative algebra .A(r) generated by A and I is called the adjacency algebra of 
r. Clearly, {Ao, A1, • • •, A4 } is a linear basis of .A(r). Then one sees that diamr + 1 = 
dim.A(r) = the number of distinct eigenvalues of A. (For a general graph, the former 
'=' should be replaced by•::;•. A DRG has high symmetry and its eigenvalues are thus 
degenerated.) Letting 00 (= K) > 01 > • • • > 0d be distinct eigenvalues of A and E; the 
orthogonal projector on £2(V) corresponding to 0;, one has 

d d 

A= L0;E;, A;= L, v;(0;)E; (i = 0, 1, · · ·, d) . 
j=O j=O 
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Here v; is shown to be a polynomial of degree i such that v;(A) = A;. {E0 , E1, ···,Ea} 
also forms a linear basis of A(r). 

3 Central Limit Theorem for Adjacency Operators 
on S00 

It is quite interesting to seek out statistical properties of large symmetric groups as is 

seen in [13], [2], [3] etc. In this section, we report the main result in (10] which extends 

the result in [13]. We follow the notations in §§2.1. 

Let ¢ := (o., · o.)t'(S=) be the vacuum state. For each A E 'D, one sees 

as the mean and the variance of A\n) with respect to ¢ respectively. Hence we consider 

an asymptotic spectral behaviour of A\n) ;J1c1n)I as n---+ oo from the viewpoint of CLT. 

Let Hr(x) denote the Hermite polynomial of degree r obeying the recurrence formula : 

H,+1(x) = xHr(x) - rHr-1(x) , Ho(x) = 1 , H1(x) = X. 

Theorem 1 ([10]) For all A1, · · · , Am E 'D and for all P1, · · · , Pm E N, we have 

A(n) A(n) 
I" ¢(( >.1 )P' ( Am )Pm) 
n~~ ✓1ct)1 ... ✓1c1~1 

= IT 100 e-z'/2 (Hk[;i(x)r ... (Hk!.{>(x)rm dx' 

j~2 - 00 ./27r Mi /iJF! (4) 

( k(') k(>) ·k(j) ) ( · ) where A;= 2 ; 3 ; • • • J , • • • i = 1, • • •, m . 

From ( 4) we can read how adjacency operators A>.,,· · · , A>.m are correlated with respect 

to ¢. The strucure of the right hand side of ( 4) tells that rows of different length among 

At, · · · , Am essentially play independent roles while there remain some interfering effects 

among rows of the same length and in different diagrams. In our computation, this 

asymptotic independence along length j is attributed to disjoint union structure of a 

certain graph. The left hand side of (4) can be expressed in terms of the irreducible 

characters of Sn and the Plancherel measure on Sn. Under this formulation, Kerov showed 

in [13] the corresponding result to (4) for one-row Young diagrams. 
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4 Central Limit Theorems on Distance-Regular Graphs 

Since the Laplacian /J. on a DRG does not yield such a canonical decomposition as (1) or 

(3), the original feature of CLT which describes a macroscopic effect of sums of small 'in

dependent' fluctuations through appropriate scaling may seem to go somewhat backward. 

However it has a good meaning to consider 

(!J.-if!(!J.))/Jit!((!J. - if!(/J.))2) (5) 

with respect to some state if! on adjacency algebra A(f) in the situation that DRG r 
grows in some manner. Then the (in)dependence of summands should be transformed 

into topological structure of the graph. In this section, we survey our results concerning 

the Johnson graph as examples of such CLT on a DRG as (5). We follow the notations 
in §§2.2. 

4.1 Vacuum state 

For DRG r, we define vacuum state if!0 on A(r) as 

if!o(X) 
1 .- WT trX (X e A(r)) 

(o,,,Xo,,)l'(V) (XE A(r)) for all x EV. 

Theorem 2 ([11]) Let r = J(2d,d) (Johnson graph} and if!= if!0 (vacuum state} in 

(5). Then the spectral distribution of (5) with respect to if!0 converges weakly to 

e-({+l) I[-1,oo)(~)d~ 

as d • oo. Here I. denotes an indicator function. 

4.2 Gibbs state 

We announce the main result in [12]. For DRG r with diameter d, we define linear 

functional if!9 on A(f) by 

(h = 0, 1, · · ·, d) 

where q is a parameter. It is shown that, for r = J( 11, d) and O ::; q ::; 1, if!q is actually a 

state (namely, enjoys positivity) on A(J(v, d)). if!9 is regarded as analogue of the Gibbs 

state with inverse temperature parameter /3 = - log q (q = 0 ~ vacuum state if!0). 

Theorem 3 ([12]) Let r = J(2d, d) and if! = if!9 in (5) where O :S q :S 1. Then the 

spectral distribution of {5} with respect to if!9 converges weakly to the following as d • oo: 
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(Case 1) if q = r/d0 where r 2: 0 and et> 1 are constants, 

e-(e+il l[-l,oo)(€)d€ ; 

(Case 2) if q = r/d where r 2: 0 is a constant, 

(6) 

✓2r + le-({../'irTT+2r+llJ0 (i2Jr(€✓2r + 1 + r + l))I[-(r+l)/../'irTT,oo)(€)d€. (7) 

Here 
co (-z2/4)k 

Jo(z) := E (k!)2 (z EC) 

is the 0th Bessel function. 

In both cases, d • oo and q • 0 hence "temperature of the graph" tends to 0. 

Remark (communicated to the author by P.Biane) Checking the characteristic function 
of (7), one sees that (7) is expressed as 

°-(r+l)/,/'irTT * µr * llr where µr(d€) := ✓2r + le-e../'irTT I[o,oo)d€ 

and vr is the infinitely divisible distribution whose characteristic function is given by 

exp /400 
( e;,e - 1 )r✓2r + le-e,/2i'+T d€ . 

Note that 

°-(r+l)/,/'irTT * µr --+ (6) and llr --+ Oo as r • 0 . 

5 Second Quantization and Central Limit Theorem 

In this section, we give some observations on CLT for the second quantizations of discrete 
Laplacians. 

5.1 Second quantization 

Let F(1-l) be the Boson Fock space over Hilbert space 1-l: 
00 

F(1-l) := E£l 1-l°n ' 1-loO := Cl 
n=O 

where o denotes the symmetric tensor product and 1 the vacuum vector. The creator 

a*(€) and annihilator a(€) on F(1-l) are defined by 

a*(€)6 o .. · o €n := ✓n + 1€ o fa o .. · o €n , a'(€)1 := € 
1 n • 

a(€)6 o .. · o €n := ;;;;- L(€,€J)'N6 o .. · o €i o .. · o €n, a(€)1 := 0 
vn i=l 
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(€, €1 , • · ·, €n E 7-l). Here· indicates the conventional notation for removal of a component. 
The exponential vector defined as 

00 1 
e(€l := L -en satisfies (e(€l, e(11));r('1£) = e<{,q)" 

n=ov'nf 

(C 1) E 7-l). The (differential) second quantization of operator A on 1l is 

00 n 

dr(A) := L LI® ... ®I® A® 1 ® ... ® 1 , 
n=lj=l 

where A sits on the jth component in the product of the right hand side. 

Let us work on Cayley graph (G,n), i.e. n is a generator set of group G such that 

n-1 = n ~ e. Assume that n is an infinite set. For each n E N, take finite subset On of 

n such that n;;- 1 = nn and nn /' n (as a set) as n • oo. (Recall the discussion in §3 on 
the conjugacy classes in S00 .) We consider adjacency operators on £2(G): 

A:= L 7rL(w) (formally) and An := L ,rL(w) . (8) 
wen wenn 

The second quantizations of them on .r(£2(G)) are expressed in terms of creators and 
annihilators as 

dr(A) = L L a:,,a,, (formally) and dr(An) = L L a:,,a,, , 

where we set a,, := a(o,,) and a; := a•(o,,) (x E G) for simplicity. These operators describe 

the (nearest neighbour) random walk on G from the viewpoint of quantum fields. Setting 

coherent state 

(sorry for confusing usage of several 'e's), we have 

Hence our problem of CLT is to discuss weak convergence of the spectral distribution of 

the operator: 

dr(An/ y'in,J) = ~ L L a:,,a,, 
V inn I wEOn ,:EG 

with respect to cp as n • co. This can be solved by relating the moments of an operator 

on 7-l to those of its second quantization. 
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5.2 Moments with respect to coherent state 

In general, let 1-l be a Hilbert space, ~ E 1-l a unit vector, and A a self-adjoint operator 

on 1-l. Set 

<P := (~, · ~}11 and 4> := (e-112e(~}, • e-1!2e(~))F(1l) . 

The relation between the moments of A and dr(A) are as follows. 

Proposition 1 Set mr := ¢(Ar) and Mr:= 4>(df(A)') for r EN. Then we have 

Mr = L d(>.)mr mt•> ... m:<") 
l,\l=r,,\E)I 

where>.= (lk(ll2k<•> • • • rk<•l) in each tenn and 

r! 
d(>.) := l!k<•> 2!k<•> ... r!k<•> k(l)!k(2)! ... k(r)! · 

(9) 

(10) 

(11) 

(10) is the same relation as that between moments of a probability measure and its 

cumulants. Note that one has 

(Vt ER). 

Combined with the following elementary formula, this yields Proposition 1. 

Lemma 1 
:r ef(t) = ef(t) L d(>.)f'(tt'> f"(tl<•> · · · /(r)(tt•> 

l,\l=r,,\E)I 

where>.= (1k<•>2k1•> • • • rk1'>) and d(>.) is given by {11). 

Lemma 1 is easily shown by induction on r. 

Coming back to Cayley graph ( G, n), we set ~ = 80 in ( 9): 

<P = (8., -8.)l•(G) ' q, = (e-112e(8.), . e-112e(8.))F(l'(G)) ' 

and consider An in (8). The limits of moments of An/ v'in.J with respect to ¢ are, if they 

exist, majorized by the Gaussian ones, i.e. 

lim ¢((A I 1jn1)2P) < (2p)! 
n• oo n V l"nl - 2Pp! (Vp EN) 

(see [8]) where the right hand side is the 2pth moment of the standard normal distribution. 

Applying Proposition 1 to the Gaussian case, in which m 2p = (2p)!/(2Pp!) and the odd 

moments vanish, we have 

M = (2p)!B( ) 
2P 2Pp! p (12) 
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by using the pth Bell number B(p) i.e. the number of classification of p objects. Taking 

into account the asymptotic of B(p) asp • oo, we can majorize (12) and hence limiting 

moments of dr(A,.)/ /fnJ with respect to <I>. 

Proposition 2 If for \/r E N 

Jim <!>(( ~)r) =: m, exists, then 
n • oo V l11nl 

Jim <I>((dr(A,.))') =: M, 
n • oo /fnJ 

also exists for all r E N and satisfies 

I. M l/2p/2 1m 2P p<oo. 
p • oo 

(13) 

( 13) is a modification of Carleman 's condition. It ensures the unique existence of a 

probability whose rth moment is M, (see e.g. [6]). 

5.3 Branching, q-deformation 

We end the section with two remarks. 

Let the Young graph be equipped with multiplicity function 11:(A, µ) on each edge with 

A,µ E Y such that jµI = IAI + 1. Then the Young graph is simply called a branching. We 
refer to [14] for terminology and examples of branchings. Ao E Y denotes the diagram 

consisting of a single box. To each path u = (A0 ,A1, ···,A,.), in which jA;+1I = IAd + 1, 

going from Ao to A= A,., one assigns the weight Wu:= nr;l 11:(A;, A;+1), Then 

d(A) := L Wu (14) 
u=(.l.o, .. ·,.l.nPn=.I. 

is called the combinatorial dimension function on the branching. If the multiplicity func

tion is trivial i.e. 11:(A, µ) = 1, d(A) agrees with the number of standard tableaux in A and 

hence with the dimension of the irreducible representation of Sl>,I associated with A. We 

see that d(A) in (11) is the combinatorial dimension function on the branching determined 

by the following multiplicity function. Let A,µ E Y such that lµI = IAI + 1. 

(i) Ifµ is made by adding a box to a row (say, of length j) in A and A contains r rows of 

length j, then set 11:( A, µ) := r. 

(ii) Ifµ is made by adding a box to A as the new bottom row, then set 11:(A, µ) := 1. 

This observation helps recurrent computation of d(A) in (11). 

A parallel discussion to the preceding subsections can proceed if one considers the sec

ond quantization on a q-Fock space (0 < q < 1). See e.g. [4] for the structure of the inner 

product, the creators and the annihilators on a q-Fock space. An exponential vector and 
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a coherent state in (9) are naturally q-deformed. Then it is shown that Proposition 1 and 
the branching in the last paragraph yield their 'q-analogue'. Namely, the combinatorial 

dimension function d(>.) is given by (14), but the rule assigning the multiplicity function 

11:(>., µ) should be slightly modified depending on q. 
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