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SPECTRAL SYNTHESIS FOR £ 1-ALGEBRAS AND FOURIER 
ALGEBRAS OF LOCALLY COMPACT GROUPS 

EBERHARD KANIUTH 

1. INTRODUCTION 

The purpose of these notes is to report on progress that has been achieved 
during the past twenty years in spectral synthesis for L1- and Fourier algebras 
of {non-abelian) locally compact groups. However, some of these results, in 
particular for Fourier algebras, are very recent. 

To start with, let G be a locally compact abelian group and L 1 ( G) the con
volution algebra of integrable functions on G. Then the spectrum (or Gelfand 
space) of L1 ( G) can be identified with the dual group G of G by means of the 
mapping o: -> <f!o., where <f!aU) = J(o:) = fo f(x)o:(x)dx for f E L1(G) and 
x E G. Spectral synthesis problems concern the extent to which a closed ideal 
I of L1(G) is determined by its hull h(I) = {o: E G: J(o:) = 0 for all f EI} 
in G. We refer the reader to [3] or to Section 2 for the notion of spectral set 
and Ditkin set for L 1(G). 

Since Malliavin's [20] famous discovery that, given any non-compact locally 
compact abelian group G (equivalently, G is non-discrete), there exists a closed 
subset of G which fails to be a spectral set for L1 ( G), there has been much effort 
in producing spectral sets and Ditkin sets. Specifically, so-called injection and 
projection theorems for spectral sets and Ditkin sets (see [3], [23] and [24]) as 
well as results about unions of such sets have been established (see [3]). As 
general references to spectral synthesis we mention [3], [10] and [24]. One of 
the major unsettled problems (even for G = Z) is whether every spectral is 
actually a Ditkin set. In Sections 2 and 3 we discuss analogous problems for 
Fourier algebras and for £ 1-algebras of (non-abelian) locally compact groups. 

2. FOURIER ALGEBRAS 

For a locally compact group G, let A(G) and B(G) denote the Fourier alge
bra and the Fourier-Stieltjes algebra of G as introduced and first systematically 
studied by Eymard [5]. Recall that B(G) is the linear span of all continuous 
positive definite functions on G and therefore is the Banach space dual of 
c•(G), the group c•-algebra of G. Then A(G) is the closed ideal of B(G) 
generated by the functions in B{G) with compact support. It turns out that 
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A( G) consists precisely of all coefficient functions of the left regular represen
tation,\ of G on L 2( G), and A( G) can be identified with the predual of the von 
Neumann algebra VN(G) generated by,\. When G is abelian and G denotes 
the dual group of G, then A(G) and B(G) are isomorphic (by means of the 
Fourier transform) to L1(G) and M(G). 

A(G) is a regular semisimple commutative Banach algebra with spectrum 
Ci.(A(G)) = G [5, Theoreme 3.34 and Lemme 3.2]. In fact, the mapping 
x -> 'Px, where 'Px(u) = u(x) for u E A(G), provides a homeomorphism 
between G and Ci.(A(G)). Thus, associated to every closed subset E of G, is 
a largest and a smallest ideal, I(E) and J(E), of A(G) with zero set equal to 
E. More precisely, 

I(E) = {u E A(G): u(x) = 0 for all x EE} 

and 

J(E) = {u E A(G) n Cc(G) : u vanishes on a neighbourhood of E}. 

E is called a spectral set or set of synthesis if I(E) = J(E), and E is said 
to be a Ditkin set if u E uJ(E) for every u E I(E). Obviously, each Ditkin 
set is a spectral set. In addition, there are local variants of these notions 
(see [3, 4, 9, 16]). They are obtained by replacing I(E) with I(E) n Cc(G). 
When G is abelian, the local notions agree with the former ones. For any 
regular semisimple commutative Banach algebra A it is customary to say that 
spectral synthesis (respectively, local spectral synthesis) holds for A whenever 
every closed subset of Ci.(A) is a spectral set (respectively, local spectral set). 

Proposition 2.1. Let G be an arbitrary locally compact group. Then 
(i) Local spectral synthesis holds for A(G) if and only if G is discrete. 
(ii) Spectral synthesis holds for A(G) if and only if G is discrete and u E 

uA(G) for every u E A(G). 

The additional condition in (ii) is of course satisfied if A( G) has an ap
proximate identity in the weakest possible sense. It is not unlikely that this 
condition is fulfilled for most groups. In contrast, by a result of Leptin [15], 
A( G) has a norm bounded approximate identity precisely when G is amenable. 

The above proposition can be found in (13]. We indicate the proof of (i). 
Thus, suppose that local spectral synthesis holds for A(G). Using the fact that 
this property is inherited by quotient groups and by closed subgroups, it was 
shown earlier (see [16] and [7]) that G must be totally disconnected (indeed, 
a connected Lie group is generated by its one-parameter subgroups). Fix a 
compact open subgroup K of G and suppose that K is infinite. Then, by a deep 
theorem of Zelmanov [27, Theorem 2], K contains an infinite abelian (closed) 
subgroup H. Now, local spectral synthesis, and hence spectral synthesis, holds 
for A(H), contradicting Malliavin's theorem. Thus K is finite, whence G is 
discrete. 

Proposition 2.1 and the results that have been established for L1(H), H 
abelian, suggest a study of (local) spectral sets and (local) Ditkin sets for 
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Fourier algebras. In this context, the desire to not having to treat the lo
cal variants separately, lead to the following generalization of the notions of 
spectral set and Ditkin set [13]. 

Recall that A(G)• = VN(G) and that there is natural action of B(G) on 
VN(G) given by 

(u • T, v) = (T, uv), 

TE V N(G), u E B(G), v E A(G). Let X be an A(G)-invariant linear subspace 
of V N ( G). A closed subset E of G is called an X-spectral set or set of X -
synthesis for A( G) if each T E X with support (in the sense of [5]) in E belongs 
to I(E).L, the annihiltator of I(E) in VN(G). Eis called an X-Ditkin set if 
for every T E X and u E I(E) there exists a net (ua)a in J(E) such that 
(T, uua) -+ (T, u). These notions reduce to the previous ones when taking 
for X all of V N ( G) and the subspace of operators with compact support in 
V N( G), respectively. 

Returning to locally compact abelian groups, it is worthwhile to mention 
that while the union of two Ditkin sets is Ditkin, it is an open question whether 
the union of two spectral sets is again spectral. In a more general context, 
however, Atzmon [1] has given an example of a regular semisimple commutative 
Banach algebra with unit and of two sets of synthesis in t.(A) the union of 
which fails to be of synthesis. 

Regarding unions of spectral sets and Ditkin sets for Fourier algebras, we 
now have the following results [13, Theorems 2.9 amd 2.10]. 

Theorem 2.2. Let G be a locally compact group and X an A(G)-invariant 
linear subspace of VN(G). Suppose that E1 and E2 are closed subsets of G 
such that E1 n E2 is X -Ditkin. Then E 1 U E2 is an X -spectral set if and only 
if both E1 and E2 are X -spectral sets. 

Theorem 2.3. Let G and X be as in Theorem 2.2, and let E and F be closed 
subsets of G such that En F is an X-Ditkin set. Then EU F is X -Ditkin if 
and only if both E and F are X-Ditkin sets. 

The preceding two theorems have been known before in the special case 
where X = V N(G) (26, Theorems 1 and 4]. Such results can be used in both 
directions. In particular, it follows that, if A(G) has an approximate identity, 
then each open and closed subset of G is a Ditkin set. Moreover, under the 
same hypothesis, it follows that finite subsets of G are spectral sets, since 
singletons are known to be sets of synthesis [5, Corollaire 4.10]. 

As pointed out in the introduction, when A is a locally compact abelian 
group, a second possibility to produce new sets of synthesis or Ditkin sets for 
L 1 (A) is to apply injection and projection theorems for such sets. To establish 
similar results for Fourier algebras turns out to be considerably more difficult 
and so far, as we shall outline in the sequel, there are only partial analogues 
due to Lohoue (16], Derighetti [4] and Kaniuth and Lau [13, 14]. 

We start with projection theorems. Thus, let G be a locally compact group, 
N a closed normal subgroup and q : G -+ G / N the quotient homomorphism. 
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The problem is whether, for a closed subset E of G / N, Eis a (local) spectral set 
or (local) Ditkin set for A(G/N) if and only if q-1(E) is a (local) spectral set or 
(local) Ditkin set for A(G). The main difficulty in relating A(G) and A(G/N) 
is that, except when N is compact, there is no homomorphism from A(G) onto 
A( G / N). However, there is a natural homomorphism from A( G) n 0 0 ( G) onto 
A(G/N) n Cc(G/N) given by u-> TNu, where TNu(xN) = JNu(xn)dn, x E 
G. This homomorphism has been exploited by Lohoue to prove the following 
projection theorem for local spectral sets [16, Theoreme]. 

Theorem 2.4. Let G be a locally compact group, N a closed normal subgroup 
of G and q : G -> G / N the quotient homomorphism. Then, for any closed 
subset E of G / N, E is a local spectral set for A( G / N) if and only if q-1 (E) is 
a local spectral set for A( G). 

To prepare for the setting of injection theorems, let H be a closed subgroup 
of the locally compact group G, and let 

r: A(G)-, A(H), u-, ujH 

be the restriction map. r is norm decreasing and surjective. More precisely, 
given v E A(H), there exists u E A(G) such that r(u) = v and llullA(G) = 
llvllA(H) [9, Theorem lb; 21, Theorem 4.21]. Thus the adjoint map 

r*: VN(H)-, VN(G), (r*(S),u) = (S,r(u)}, 

u E A(G),S E VN(H), is injective. The range ofr* equals VNH(G), the 
weak-*-closure of the linear span of all operators >.(h),h E H, in VN(G). 
Moreover, r* maps the subspace of operators with compact support in V N(H) 
onto the subspace of operators with compact support in V NH( G). 

For any A(G)-invariant subspace X of VN(G), let 

XH = r•-' (X), 

an A(H)-invariant subspace of V N(H). Now we are ready to formulate the 
injection theorem for X-spectral sets [13, Theorem 3.4]. 

Theorem 2.5. Let X be an A(G)-invariant linear subspace ofVN(G). Let H 
be a closed subgroup of G and E a closed subset of H. Then E is an X -spectral 
set for A( G) if and only if E is an Xu-spectral set for A(H}. 

The proof exploits properties of the map r* as well as the fact that the 
subgroup His a set of synthesis for A(G) [25, Theorem 3]. Thus, as special 
cases, we obtain injection theorems for spectral sets and for local spectral sets. 
The latter has previously been shown by Derighetti [4, Proposition 8]. 

An injection theorem for local Ditkin sets has been proved by Derighetti 
[4, Theoreme 12] whenever the subgroup H is normal in G. Recently, this 
theorem was generalized to the effect that the hypothesis that H be normal is 
weakened and that X-Ditkin sets, for arbitrary X, are considered. 

To elaborate the condition on H, we have to introduce some more notation. 
Let P(G) denote the set of all continuous positive definite functions on G, and, 
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for a closed subgroup H of G, let 

PH(G) = {u E P(G): u(h) = lfor allh EH}. 

We say that G has the H-separation property if for every x E G, x r/. H, 
there exists u E PH(G) such that u(x) =f 1. When G has the H-separation 
property for every closed subgroup H of G, we refer to G as a group with the 
separation property. If H is either normal, or compact, or open in G, then 
G has the H-separation property. Such subgroups H subsume in the class of 
neutral subgroups which are defined as follows. A closed subgroup H of G 
is called neutral in G if there exists a neighbourhood basis V of the identity 
of G such that V H = HV for all V E V. Now, if G is any locally compact 
group and Ha neutral subgroup of G, then G has the fl-separation property 
[14, Proposition 2.2]. On the other hand, for connected groups the separation 
property to hold is a very restrictive condition. Indeed, by Theorem 1.1 of [14], 
an almost connected locally compact group G has the separation property if 
and only if G contains an open normal subgroup N of finite index such that 
N is a direct product of a compact group and a vector group. 

Returning to A(G), the following injection theorem for X-Ditkin sets has 
been proved in (14, Theorem 3.5]. 

Theorem 2.6. Let G be a locally compact group and let X be an A(G)
invariant linear subspace of VN(G). Let H be a closed subgroup of G and 
E a closed subset of H. 

(i) If Eis X-Ditkin for A(G), then Eis XwDitkin for A(H). 
(ii) Suppose that G has the fl -separation property and that u E uA( G) for 

every u E I(H). Then, if Eis XwDitkin for A(fl), then it is also X-Ditkin 
for A(G). 

Since, due to the regularity of A(G), for each compactly supported function 
u E A(G) there exists v E A(G) such that u = uv, Theorem 2.6 includes 
Derighetti's injection theorem for local Ditkin sets alluded to above. 

In establishing Theorem 2.6, rather than the separation property itself the 
following equivalent property is used. There exists a projection P from V N ( G) 
onto VNH(G) such that, in the weak+operator topology on B(VN(G)), Pis 
the limit of operators T-+ u • T, where u E PH(G). 

We finish this section by pointing out that the H-separation property of 
a locally compact group G deserves further investigation since it appears to 
play an important role in the ideal theory of Fourier algebras. For instance, it 
has been shown in (14, Theorem 3.4] that if G has the fl-separation property, 
then the ideal /(fl) has an approximate identity with norm bound 2, the best 
possible bound whenever G / H is infinite. 

3. £ 1-ALGEBRAS 

In this section we turn to £I-algebras of (non-abelian) locally compact 
groups and discuss analogous issues as in the previous section for Fourier 
algebras. To start with, however, let A be an arbitrary semisimple Banach 
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*-algebra, and let A denote the set of equivalence classes of irreducible *
representations of A. The primitive ideal space of A, Prim. A, consists of all 
kernels, kenr, 1r E A, and carries the hull-kernel topology. For each closed 
subset E of Prim. A, let 

k(E) = n{P: PEE}, 

the largest ideal of A with hull equal to E. Whenever k(E) is the only closed 
ideal of A with hull E, then E is called a spectral set (or set of synthesis) for 
A. Also, we say that sepctral synthesis holds for A if every closed subset of 
Prim. A is a spectral set. 

Now, let G be a locally compact group and recall that there is a one-to-one 
correspondence between G, the set of equivalence classes of irreducible unitary 
representations of G, and V(G). When G is type I and L1{G) is *-regular, 
the map 1r-+ ker1r from G onto Prim. L 1(G) is a homeomorphism and G and 
Prim. L 1(G) are usually identified. 

It is easy to see that if G is compact, and hence Prim. L1 ( G) is discrete, then 
spectral synthesis synthesis holds for L 1(G). However, it is worth mentioning 
that spectral synthesis may fail for a semisimple Banach *-algebra with discrete 
primitive ideal space. An example has been presented in [22]. The obvious 
question is whether spectral synthesis for L1 ( G) forces the locally compact 
group G to be compact. Somewhat surprising, the answer is negative. In [6] 
the following example was given of a non-compact locally compact group for 
which spectral synthesis holds. 

Example 3.1. Let p be a prime and let N be the field of p-adic numbers. Let 
K denote the subset of elements of N of valuation 1. Then K is a compact 
group under multiplication. Form the semi-direct product G =Kt>< N, where 
K acts on the additive group N by multiplication. The group G is often 
referred to as Fell's example of a non-compact group with countable dual. In 
fact, 

G =Ru {1rj: j E Z}, 
where each 'lrj is induced from some character of N. Both Kand {1ri: j E Z} 
are discrete, K is closed and a sequence (1rj.)k converges to some (and hence 
all) a E .K if and only if jk -+ -oo. 

Using this description of the topology of G, the projection theorem for spec
tral sets (see Theorem 3.5 below) and the fact that L 1(G) has the so-called 
Wiener property ( compare [17]), it is not difficult to show that every closed 
subset of G = Prim. L1 ( G) is a spectral set. 

When looking carefully at the preceding example, an interesting problem 
arises. Suppose that L1(G) contains a closed ideal I such that Prim. I and 
Prim. L1(G)/ I are both discrete. Does then spectral synthesis hold for L1(G)? 
An affirmative answer would cover Example 3.1. 

Notice that the group G of Example 3.1 has an abelian normal subgroup with 
compact abelian quotient group. In contrast, for nilpotent locally compact 
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groups it can be deduced from Malliavin's theorem that spectral synthesis 
fails for £1 ( G) whenever G is non-compact (12]. In the course of investigations 
to relate spectral synthesis to properties of certain topologies on the space 
of all closed ideals of the enveloping C*-algebra C*(G), this latter result was 
recently generalized as follows (6, Theorem 3.7]. 

Theorem 3.2. Let G be a locally compact group and suppose that G contains a 
compact normal subgroup K such that N / K is a finite extension of a nilpotent 
group. If spectral synthesis holds for L1(G), G must be compact. 

Apart from nilpotent groups this comprises, for instance, the class of Moore 
groups (that is, groups with finite dimensional irreducible representations). 

An apparently very difficult problem for £!-algebras of locally compact 
groups G is the existence of a smallest (closed) ideal j(E) for a given hull 
E <;;; Prim. L1(G). The next theorem is due to Ludwig (18]. 

Theorem 3.3. Let G be a locally compact group of polynomial growth, and 
suppose that L1(G) is symmetric. Then, given a closed subset E of Prim. L1(G), 
there exists a smallest closed ideal whose hull is equal to E. 

We remind the reader that a locally compact group G is polynomially grow
ing if for every compact subset K of G, the Haar measure of powers Kn, n E N, 
grows at most polynomially in n. Moreover, a Banach *-algebra A is called 
symmetric if every selfadjoint element of A has a real spectrum. Several classes 
of locally compact groups, among them nilpotent groups and motion groups, 
satisfy both of these hypotheses (see (17]). A main tool in proving Theorem 
3.3 is Dixmier's functional calculus for groups of polynomial growth. Unfor
tunately, the ideal j(E) is only described in terms of a generating set. This 
fact seems to be responsable for that, so far, there are no results on unions of 
spectral sets. 

On the other hand, the existence of such smallest closed ideals turned out 
to be very useful in establishing injection and projection theorems for spectral 
sets. Naturally, for £!-algebras of non-abelian locally compact groups, the 
setting is much more complicated than for Fourier algebras, and this is what 
we are now going to describe. 

Let N be a closed normal subgroup of G, and let q : G -> G/N denote 
the quotient homomorphism and T : L1(G) -> L1(G/N) the corresponding 
homomorphism of £ 1-algebras. Then there is a canonical embedding 

i: Prim. L1(G/N)-> Prim. L1(G) 

given by i(ker1r) = ker(1r o q) = r-1(ker1r). Then i(Prim. L1(G/N)) is closed 
in Prim. L1(G) and i is a homeomorphism onto its range. In this situation, 
Hauenschild and Ludwig have proved the following injection theorem for spec
tral sets (8, Theorem 3.2]. 

Theorem 3.4. Let N be a closed normal aubgroup of the locally compact 
group G, and let F be a closed subset of Prim. L1(G/N) and E = i(F) <;;; 

Prim. L 1(G). 
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(i) If E is a spectral set, then so is F. 
(ii) Let F be a spectral set and suppose that G has polynomial growth and 

L1 ( G) is symmetric. Then E is a spectral set. 

In (ii), the condition that L 1(G) is symmetric and G has polynomial growth 
can be replaced by the hypothesis that i(Prim. L1(G/N)), the hull of the 
kernel of T, is a spectral set for L 1(G) [8]. However, the only case where 
i(Prim. L1(G/N)) is known to be a spectral set seems to be the indicated one. 

Let us now turn to projection theorems. As before, let N be a closed normal 
subgroup of G. The action of G on N by inner automorphisms gives rise to 
actions of G on L1(N) and hence on the primitive ideal space Prim. L1(N). 
Now, if 1r is a representation of G, then the £ 1-kernel of 1rlN is a G-invariant 
ideal of L 1(N). In particular, relating spectral sets for L 1(G) to spectral sets 
for L1(N) leads to consider G-invariant subsets of Prim. L1(N). 

Hauenschild and Ludwig have been the first to accomplish a projection the
orem for spectral sets for non-abelian locally compact groups [8, Theorem 2.6]. 
Their result was subsequently improved by Bekka [2] as follows. 

Theorem 3.5. Let G be a locally compact group and N a closed normal sub
group of G. Let F be a closed G-invariant subset of Prim. L1(N) and 

E = {kern: 1r E G such that 1rlN(k(F)) = O}. 

(i) Suppose that N has polynomial growth and L1(N) is symmetric. If E is 
a spectral set, then so is F. 

(ii) Suppose that G has polynomial growth and L1(G) is symmetric. If F is 
a spectral set, then E is a spectral set. 

Part (i) is entirely due to Hauenschild and Ludwig. For the more sophisti
cated part (ii), they needed an additional hypothesis which Bekka was able to 
remove. 

To indicate the difficulty, consider a G-invariant closed ideal J of L 1(N). 
Regarding L1(N) as a subspace of M(G), naturally associated to J is a closed 
ideal e(J) of L1(G), the extension ideal. Indeed, e(J) is defined to be the 
closed linear span of Cc(G) *Jin L 1(G). Retaining the notation of Theorem 
3.5, if F = h(J) then E = h(e(J)). The main problem now is to show 
that e(j(F)) = j(E). In [8] this equality was proved when G/N is solvable, 
and in some other less important cases. Taking into account that groups 
with polynomial growth are amenable, the essential missing step was to deal 
with compact quotients G/N. Bekka managed this by extending Dixmier's 
functional calculus to matrix valued functions. 

Neither part (i) nor part (ii) of the theorem holds for arbitrary G or N (see 
[2] and [8]). 

In Example 3.1, we have already given a sample of possible applications 
of the projection theorem. To conclude, we mention three further examples 
concerning singletons in Prim. L 1(G). In treating two of them, (ii) and (iii), 
the projection theorem is substantial. 
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Example 3.6. (i) If G is a finitely generated nilpotent discrete group, then 
singletons in Prim. £ 1 ( G) are Ditkin sets. In fact, more generally, the so-called 
Helson-Reiter theorem holds for L1(G) [11]. 

(ii) In contrast, when G is a connected and simply connected nilpotent Lie 
group of nilpotence class 2:: 3, then singletons in Prim. £ 1 ( G) need not be 
spectral sets [19]. 

(iii) Let Gn = SO(n) I>< lRn, n 2:: 2, be the Euclidean motion group in 

dimension n. Using the two facts that the non-trivial orbits in iif.i = ]Rn are 
spheres and that sn-l ~ ]Rn is a set of synthesis precisely when n = 2, it can 
be shown (see [2]) that all singletons in Prim. L1(G2) are sets of synthesis, 

whereas, for n 2:: 3, { 1r} ~ C:. is spectral only if 1r E ~). 
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