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One of the most important classes of hypergroups is given by double coset spaces 
(cf. Ill). In this note we will consider double coset spaces with different subgroups 
on the left and right hand side (cf. 141) as they already appeared in the description 
of all normal subhypergroups arising from Hecke algebras (cf. 16], Theorem 4 c). 
This construction does not any longer yield an algebra in general. But we obtain 
an associative triple system as its algebraic structure in a natural way (cf. 17], IS]). 
This triple system can be embedded into a usual double coset hypergroup ( cf. 
Theorem 2). For the sake of simplicity we only deal with discrete hypergroups 
arising from Hecke algebras as in 16]. 

2 Associative triple systems of Hecke type 

We start with a multiplicative group G with unit element e. The set 

CIG] := {,p: G • IC; support(,p) finite} 

= { L ,p(g )69 ; r.p(g) E IC non-zero for finitely many g E a} , 
9EG 

where 69 stands for the Kronecker delta, is a IC-vector space. Extending the 
product 

to CIG] by linearity, we obtain an associative IC-algebra with unit element 6,, the 
so-called group algebra or group ring of G (cf. 191). 

Now let us consider two subgroups U and V of G and double cosets 

UgV := {ugv; u E U,v EV}, g E G. 
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Two double cosets are either disjoint or equal. Let 

K := U\G/V := {UgV; g E G} 

stand for the space of (U, V)-double cosets in G equipped with the discrete topol­
ogy. 

1-l(U\G/V) := {ip: U\G/V • C; support(ip) finite} 

= { L cp(UgV)ou9v; <p(UgV) EC non-zero for finitely many UgV Ca} 
U9VCG 

is a Cvector space. If V = U we use the abbreviation 1-l(G/IU) = 1-l(U\G/U) 
just as in [6j. 

For the introduction of a product we need the so-called Hecke condition: 
(G, U) is a Hecke pair if (U : Un g- 1Ug) < oo for every g E G. Now assume 
additionally that V and Ware subgroups of G, which are commensurable with 
U, i.e. the intersection of any two of the subgroups has finite index in both. Then 
(G, V) and (G, iv) as well as (G,UnVnW) are Hecke pairs, too. Given a,b E G 
we obtain finite disjoint decompositions of the double cosets 

UaV = um Uaj, m = induUaV, VbW = Un Vbk, n = indvVbW. 
;=! k=I 

Then define 

(1) Ouav · OvbW := L µ(c) Oucw, 
UcWCG 

µ(c) := ff{(j,k); Ua;bk = Uc} E No, 

It can be shown that the definition of µ(c) does not depend on the choice of the 
representatives c, a;, bk. This product is extended linearly. Moreover we observe 

(2) induUaV · indvVbW = L µ(c)induUcW. 
UcWCG 

If X is another subgroup of G, which is commensurable with U, we obtain 

(3) (cp1 · 'P2) · <p3 = 'P1 · (rp2 · rp3) E 7-l(U\G/X.) 

for all rp1 E 7-l(U\G/V), 'P2 E 1-l(V\G/W), <p3 E 7-l(W\G/X) (cf. [41, [101). 

If V = U we have the Hecke algebra 7-l(G/IU) of the Hecke pair (G, U) just 
as in [51, [10]. 

In the general case again, there is a linear isomorphism 

J = Ju.v: 7-l(U\G/V) -t 1-l(V\G/U), Ouav >--+ ov0 -,u, 
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satisfying 

(4) 

(cf. [41). 

This becomes the foundation of our algebraic structure. A C-vector space A 
equipped with a trilinear triple product 

Ax Ax A • A, (x, y, z) ,-+ < x, y, z >, 

is called an associative triple system ( of the second kind) if 

<< u,v,w >,x,y > = < u, < x,w,v >,y > = < u,v, < w,x,y >> 

holds for all u, v, w, x, y E A (cf. [7], [81). The notions of homomorphisms and 
sub-triple systems are then defined in the obvious way. Now (3) and (4) imply 

Theorem 1 ([41). Let U and V be commensurable subgroups of a group G such 
that (G, U) is a Hecke pair. Then 1i(U\G/V) is an associative triple system by 

< 'Pl, 'P2, cp3 > := 'Pl. J(r.p2). cp3. 

The notion of associative triple systems comes from the following idea: Start 
with an associative IC-algebra A with an involution j on A, i.e. j : A -+ A is 
linear and satisfies j(xy) = j(y)j(x) as well as j(j(x)) = x for all x, y E A. Then 
(A, j) becomes an associative triple system by 

< x, y, z > := xj(y)z. 

On the other hand Loos [7] showed that each associative triple system can be 
obtained as a sub-triple system of (A, j) for suitable A and j. In the case of 
Hecke triple systems we can simplify his construction considerably. 

Theorem 2. Let U and V be commensurable subgroups of a group G and r := 

J[U: Un VJ· [V: Un VJ. Assume that (G, U) is a Hecke pair. Then 

<b: (H(U\G/V), J) • (1i(Gl/(U n V)), J) 

'P = L cp(UgV)c5u9v ,-, ;: L cp(UgV)c5(UnV)g(UnV), 
UgVCG (UnV)g(UnV)cG 

is an injective homomorphism of the associative triple systems. 

Proof. Obviously ¢> is well-defined, linear and injective. It suffices to show that 

(5) ¢>(c5u.v) · J(,f>(c5uw)) · ¢>(c5ucv) = ¢>(c5u.v · J(c5uw) · c5ucv) 
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holds for all a, b, c E G. Assume that 

UaV = Uc, Uaj, UbV = U13 bkV, UcV = U1 Uc1 J=l k=l l=l 

u = u:=l (Un V)uv, V = u~=l Vµ(U n F) 

are disjoint coset decompositions. Then 

UaV = U<> U' (Un V)uvaj, J=l v=l 
/3 t 

vb- 1U = U U (Un F)v-1b-1 
k=l µ=l I' k 

u cW = u~=l u:=l (Un V)upct 

are disjoint decompositions, too. In view of (1) the coefficient of (Un V)g(U n V) 
on the left hand side of (5) is 

1 
3 H(v,j, µ, k, p, l); (Un V)uvaiv; 1bj; 1upct =(Un V)g} 
T 

1 =3 ·HU,µ, k, P, l); Uaiv; 1b;1upc1 = Ug} 
T 

=~ • ff{(j', k', l); Uai,b;,1c1 = U g}. 
T 

By virtue of st= r 2 and (1) this is also the coefficient of (Un V)g(U n V) on the 
right hand side of (5). Thus the claim follows. • 

3 Associative Banach triple systems of Hecke type 

Consider the data of section 2. Given an arbitrary mapping cp : U\G /V • IC 
define its norm by 

(6) ll'PII := L cp(UaV) E [O; oo]. 
(UnV)acG 

Then 

il(U\G/V) := {cp: U\G/V-+ IC; ll'PII < oo} 

equipped with II· II is obviously a Banach space containing rl(U\G /V) as a dense 
subset. Extending the product form rl(U\G/V) we conclude 

II < 'Pl, 'P2, 'P3 > II ::; ll'P1ll · ll'P2ll · ll'P311 
for all 'Pl, 'P2, <p3 E il(U\G/V) from Theorem 1, Theorem 2 and [6], Theorem 2. 

A Banach space A, which is an associative triple system and satisfies 

II < x, Y, z > II $ llxll · IIYII · llzll for all x, y, z EA 

is called an associative Banach triple system (cf. [21). Thus we have 
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Corollary 1. Let U and V be commensurable subgroups of a group G such that 
(G, U) is a Hecke pair. Then it.(U\G/V) is an associative Banach triple system 
containing 1i(U\G /V) as a dense subset. 

4 Hypergroups 

Consider again the data of section 2. Let e stand for the point measure. Given 
a, b E G use (1) in order to define 

(-,·) ~ µ(c) • indu(UcW) 
cuai· * c'VbW := ~ indu(UaV) · indv(Vbff) c'Uc\V• 

UcWCG 

It follows from (2) that the right hand side of (7) is a probability measure again. 

Recall the definition of a hypergroup and in particular of the discrete dou­
ble coset hypergroup (GI/ (U n V), *) from [1], Chapter 1. 1. Thus Theorem 2, 
Corollary 1 and [6], Theorem 3, lead to 

Theorem 3. Let U and V be commensurable subgroups of a group G and r := 
✓IU: Un VJ• [V: Un VJ. Assume that (G, U) is a Hecke pair. Then 

<l>:it.(U\G/V)-+(Gl/(UnV),*), <p>-+~ L <p(UaV)c(Uni')a(UnV), 
(UnV)aCG 

is an injective homomorphism of the associative triple systems. 

Note that a hypergroup with the attached involution naturally defines an asso­
ciative triple system. Thus we can view (U\G /V, *) as an associative hypergroup 
triple system. 

5 Examples 

The notion of Hecke algebras originates from the theory of modular forms. It 
should be noted that the consideration of (U, V)-double cosets there also plays 
an essential role when dealing with congruence subgroups (cf. [3], III.7.3, [10], 
section 3.4). 

Next consider a Hecke pair (G, U) and a subgroup UC H CG such that H/IU 
is normal in G 1/U. This means H gH = H gU for all g E G due to [6], Theorem 4. 
In this case one can easily sharpen Theorem 2. The associative hypergroup triple 
systems (H\G/U,*) and (GI/H,*) are then isomorphic. An explicit example of 
this type is 
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(cf. [61, section 3). 

Now we consider finite subgroups U and V of a group G. It follows from (1) 
and (7) that 

The elements 

1 _ 1 t5 1 t5 
. d u V ouav .. d Vb-lU Vb-lU . . d u ,,. UcV 
Ill U a Ill V Ill U C1· 

1 1 
= ··u "V L , d U b-1 V t5uavb- 1ucF, 

~ · ~ ueU,vEV lfi U av UC 

1 
Euav * cvb-lU * cucv = ttU. nv L cuavb- 1 ucV· 

uEU,vEV 

are idempotents in C[G]. We consider the associative triple system (C[G], J) with 
J(t59 ) = tSg-1. In view of J(cu) = cu and J(cv) = cv we observe that cu· C[G] · cv 
becomes a sub-triple system of (C[G], J). Thus a verification (cf. [51, 1(6.6), [61, 
Theorem 5) yields 

Theorem 4. Let U and V be finite subgroups of a group G. Then 

1-l(U\G/V) -+cu· C[G] · cv, <pi--+~ L\O(UgV)t59 , 

' gEG 

is an isomorphism of the associative triple systems. 
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