Triple Systems of Hecke Type and Hypergroups

by

Aloys Krieg

1 Introduction

One of the most important classes of hypergroups is given by double coset spaces (cf. [1]). In this note we will consider double coset spaces with different subgroups on the left and right hand side (cf. [4]) as they already appeared in the description of all normal subhypergroups arising from Hecke algebras (cf. [6], Theorem 4 c). This construction does not any longer yield an algebra in general. But we obtain an associative triple system as its algebraic structure in a natural way (cf. [7], [8]). This triple system can be embedded into a usual double coset hypergroup (cf. Theorem 2). For the sake of simplicity we only deal with discrete hypergroups arising from Hecke algebras as in [6].

2 Associative triple systems of Hecke type

We start with a multiplicative group G with unit element e. The set

$$
\begin{aligned}
\mathbb{C}[G] & :=\{\varphi: G \rightarrow \mathbb{C} ; \text { support }(\varphi) \text { finite }\} \\
& =\left\{\sum_{g \in G} \varphi(g) \delta_{g} ; \quad \varphi(g) \in \mathbb{C} \text { non-zero for finitely many } g \in G\right\}
\end{aligned}
$$

where δ_{g} stands for the Kronecker delta, is a \mathbb{C}-vector space. Extending the product

$$
\delta_{g} \cdot \delta_{h}:=\delta_{g h}
$$

to $\mathbb{C}[G]$ by linearity, we obtain an associative \mathbb{C}-algebra with unit element δ_{e}, the so-called group algebra or group ring of G (cf. [9]).

Now let us consider two subgroups U and V of G and double cosets

$$
U g V:=\{u g v ; u \in U, v \in V\}, \quad g \in G .
$$

Two double cosets are either disjoint or equal. Let

$$
K:=U \backslash G / V:=\{U g V ; g \in G\}
$$

stand for the space of (U, V)-double cosets in G equipped with the discrete topology.

$$
\begin{gathered}
\mathcal{H}(U \backslash G / V):=\{\varphi: U \backslash G / V \rightarrow \mathbb{C} ; \text { support(} \varphi \text {) finite }\} \\
=\left\{\sum_{U g V \subset G} \varphi(U g V) \delta_{U g V} ; \varphi(U g V) \in \mathbb{C} \text { non-zero for finitely many } U g V \subset G\right\}
\end{gathered}
$$

is a \mathbb{C}-vector space. If $V=U$ we use the abbreviation $\mathcal{H}(G / / U)=\mathcal{H}(U \backslash G / U)$ just as in [6].

For the introduction of a product we need the so-called Hecke condition: (G, U) is a Hecke pair if $\left[U: U \cap g^{-1} U g\right]<\infty$ for every $g \in G$. Now assume additionally that V and W are subgroups of G, which are commensurable with U, i.e. the intersection of any two of the subgroups has finite index in both. Then (G, V) and (G, W) as well as $(G, U \cap V \cap W)$ are Hecke pairs, too. Given $a, b \in G$ we obtain finite disjoint decompositions of the double cosets

$$
U a V=\bigcup_{j=1}^{m} U a_{j}, \quad m=\operatorname{ind}_{U} U a V, \quad V b W=\bigcup_{k=1}^{n} V b_{k}, \quad n=\operatorname{ind}_{V} V b W
$$

Then define

$$
\begin{align*}
\delta_{U a V} \cdot \delta_{V b W} & :=\sum_{U c W \subset G} \mu(c) \delta_{U c W}, \tag{1}\\
\mu(c) & :=\sharp\left\{(j, k) ; U a_{j} b_{k}=U c\right\} \in \mathbb{N}_{0} .
\end{align*}
$$

It can be shown that the definition of $\mu(c)$ does not depend on the choice of the representatives $c ; a_{j}, b_{k}$. This product is extended linearly. Moreover we observe

$$
\begin{equation*}
\operatorname{ind}_{U} U a V \cdot \operatorname{ind}_{V} V b W=\sum_{U c W \subset G} \mu(c) \operatorname{ind}_{U} U c W \tag{2}
\end{equation*}
$$

If X is another subgroup of G, which is commensurable with U, we obtain

$$
\begin{equation*}
\left(\varphi_{1} \cdot \varphi_{2}\right) \cdot \varphi_{3}=\varphi_{1} \cdot\left(\varphi_{2} \cdot \varphi_{3}\right) \in \mathcal{H}(U \backslash G / X) \tag{3}
\end{equation*}
$$

for all $\varphi_{1} \in \mathcal{H}(U \backslash G / V), \varphi_{2} \in \mathcal{H}(V \backslash G / W), \varphi_{3} \in \mathcal{H}(W \backslash G / X)$ (cf. [4], [10]).
If $V=U$ we have the Hecke algebra $\mathcal{H}(G / / U)$ of the Hecke pair (G, U) just as in [5], [10].

In the general case again, there is a linear isomorphism

$$
J=J_{U: V}: \mathcal{H}(U \backslash G / V) \rightarrow \mathcal{H}(V \backslash G / U), \quad \delta_{U a V} \mapsto \delta_{V a^{-1} U}
$$

satisfying

$$
\begin{equation*}
J\left(\varphi_{1} \cdot \varphi_{2}\right)=J\left(\varphi_{2}\right) \cdot J\left(\varphi_{1}\right), \quad J \circ J=\mathrm{id} \tag{4}
\end{equation*}
$$

(cf. [4]).
This becomes the foundation of our algebraic structure. A \mathbb{C}-vector space \mathcal{A} equipped with a trilinear triple product

$$
\mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}, \quad(x, y, z) \mapsto\langle x, y, z\rangle
$$

is called an associative triple system (of the second kind) if

$$
\ll u, v, w\rangle, x, y\rangle=\langle u,\langle x, w, v\rangle, y\rangle=\langle u, v,\langle w, x, y\rangle\rangle
$$

holds for all $u, v, w, x, y \in \mathcal{A}$ (cf. [7], [8]). The notions of homomorphisms and sub-triple systems are then defined in the obvious way. Now (3) and (4) imply

Theorem 1 ([4]). Let U and V be commensurable subgroups of a group G such that (G, U) is a Hecke pair. Then $\mathcal{H}(U \backslash G / V)$ is an associative triple system by

$$
<\varphi_{1}, \varphi_{2}, \varphi_{3}>:=\varphi_{1} \cdot J\left(\varphi_{2}\right) \cdot \varphi_{3}
$$

The notion of associative triple systems comes from the following idea: Start with an associative \mathbb{C}-algebra \mathcal{A} with an involution j on \mathcal{A}, i.e. $j: \mathcal{A} \rightarrow \mathcal{A}$ is linear and satisfies $j(x y)=j(y) j(x)$ as well as $j(j(x))=x$ for all $x, y \in \mathcal{A}$. Then (\mathcal{A}, j) becomes an associative triple system by

$$
\langle x, y, z\rangle:=x j(y) z .
$$

On the other hand Loos [7] showed that each associative triple system can be obtained as a sub-triple system of (\mathcal{A}, j) for suitable \mathcal{A} and j. In the case of Hecke triple systems we can simplify his construction considerably.

Theorem 2. Let U and V be commensurable subgroups of a group G and $r:=$ $\sqrt{[U: U \cap V] \cdot[V: U \cap V]}$. Assume that (G, U) is a Hecke pair. Then

$$
\begin{aligned}
\phi:(\mathcal{H}(U \backslash G / V), J) & \rightarrow(\mathcal{H}(G / /(U \cap V)), J) \\
\varphi=\sum_{U g V \subset G} \varphi(U g V) \delta_{U g V} & \mapsto \frac{1}{r} \sum_{(U \cap V) g(U \cap V) \subset G} \varphi(U g V) \delta_{(U \cap V) g(U \cap V)},
\end{aligned}
$$

is an injective homomorphism of the associative triple systems.
Proof. Obviously ϕ is well-defined, linear and injective. It suffices to show that

$$
\begin{equation*}
\phi\left(\delta_{U a V}\right) \cdot J\left(\phi\left(\delta_{U b V}\right)\right) \cdot \phi\left(\delta_{U c V}\right)=\phi\left(\delta_{U a V} \cdot J\left(\delta_{U b V}\right) \cdot \delta_{U c V}\right) \tag{5}
\end{equation*}
$$

holds for all $a, b, c \in G$. Assume that

$$
\begin{aligned}
U a V & =\bigcup_{j=1}^{\alpha} U a_{j}, \quad U b V=\bigcup_{k=1}^{\beta} b_{k} V, \quad U c V=\bigcup_{l=1}^{\gamma} U c_{l} \\
U & =\bigcup_{\nu=1}^{s}(U \cap V) u_{\nu}, \quad V=\bigcup_{\mu=1}^{t} v_{\mu}(U \cap V)
\end{aligned}
$$

are disjoint coset decompositions. Then

$$
\begin{aligned}
U a V & =\bigcup_{j=1}^{\alpha} \bigcup_{\nu=1}^{s}(U \cap V) u_{\nu} a_{j}, \\
V b^{-1} U & =\bigcup_{k=1}^{3} \bigcup_{\mu=1}^{l}(U \cap V) v_{\mu}^{-1} b_{k}^{-1} \\
U c W & =\bigcup_{l=1}^{\gamma} \bigcup_{\rho=1}^{s}(U \cap V) u_{\rho} c_{l}
\end{aligned}
$$

are disjoint decompositions, too. In view of (1) the coefficient of $(U \cap V) g(U \cap V)$ on the left hand side of (5) is

$$
\begin{aligned}
& \frac{1}{r^{3}} \sharp\left\{(\nu, j, \mu, k, \rho, l) ; \quad(U \cap V) u_{\nu} a_{j} v_{\mu}^{-1} b_{k}^{-1} u_{\rho} c_{l}=(U \cap V) g\right\} \\
& =\frac{1}{r^{3}} \cdot \sharp\left\{(j, \mu, k, \rho, l) ; \quad U a_{j} v_{\mu}^{-1} b_{k}^{-1} u_{\rho} c_{l}=U g\right\} \\
& =\frac{s t}{r^{3}} \cdot \sharp\left\{\left(j^{\prime}, k^{\prime}, l\right) ; \quad U a_{j^{\prime}} b_{k^{\prime}}^{-1} c_{l}=U g\right\} .
\end{aligned}
$$

By virtue of $s t=r^{2}$ and (1) this is also the coefficient of $(U \cap V) g(U \cap V)$ on the right hand side of (5). Thus the claim follows.

3 Associative Banach triple systems of Hecke type

Consider the data of section 2. Given an arbitrary mapping $\varphi: U \backslash G / V \rightarrow \mathbb{C}$ define its norm by

$$
\begin{equation*}
\|\varphi\|:=\sum_{(U \cap V) a \subset G} \varphi(U a V) \in[0 ; \infty] . \tag{6}
\end{equation*}
$$

Then

$$
\hat{\mathcal{H}}(U \backslash G / V):=\{\varphi: U \backslash G / V \rightarrow \mathbb{C} ; \quad\|\varphi\|<\infty\}
$$

equipped with $\|\cdot\|$ is obviously a Banach space containing $\mathcal{H}(U \backslash G / V)$ as a dense subset. Extending the product form $\mathcal{H}(U \backslash G / V)$ we conclude

$$
\left\|<\varphi_{1}, \varphi_{2}, \varphi_{3}>\right\| \leq\left\|\varphi_{1}\right\| \cdot\left\|\varphi_{2}\right\| \cdot\left\|\varphi_{3}\right\|
$$

for all $\varphi_{1}, \varphi_{2}, \varphi_{3} \in \hat{\mathcal{H}}(U \backslash G / V)$ from Theorem 1, Theorem 2 and [6], Theorem 2.
A Banach space \mathcal{A}, which is an associative triple system and satisfies

$$
\|<x, y, z\rangle\|\leq\| x\|\cdot\| y\|\cdot\| z \| \quad \text { for all } x, y, z \in \mathcal{A}
$$

is called an associative Banach triple system (cf. [2]). Thus we have

Corollary 1. Let U and V be commensurable subgroups of a group G such that (G, U) is a Hecke pair. Then $\hat{\mathcal{H}}(U \backslash G / V)$ is an associative Banach triple system containing $\mathcal{H}(U \backslash G / V)$ as a dense subset.

4 Hypergroups

Consider again the data of section 2. Let ε stand for the point measure. Given $a, b \in G$ use (1) in order to define

$$
\begin{equation*}
\varepsilon_{U a V} * \varepsilon_{V b W}:=\sum_{U c W \subset G} \frac{\mu(c) \cdot \operatorname{ind}_{U}(U c W)}{\operatorname{ind}_{U}(U a V) \cdot \operatorname{ind}_{V}(V b W)} \varepsilon_{U c W} \tag{7}
\end{equation*}
$$

It follows from (2) that the right hand side of (7) is a probability measure again.
Recall the definition of a hypergroup and in particular of the discrete double coset hypergroup $(G / /(U \cap V), *)$ from [1], Chapter 1.1. Thus Theorem 2, Corollary 1 and [6], Theorem 3, lead to
Theorem 3. Let U and V be commensurable subgroups of a group G and $r:=$ $\sqrt{[U: U \cap V] \cdot[V: U \cap V]}$. Assume that (G, U) is a Hecke pair. Then

$$
\Phi: \hat{\mathcal{H}}(U \backslash G / V) \rightarrow(G / /(U \cap V), *), \quad \varphi \mapsto \frac{1}{r} \sum_{(U \cap V) a \subset G} \varphi(U a V) \varepsilon_{(U \cap V) a(U \cap V)},
$$

is an injective homomorphism of the associative triple systems.
Note that a hypergroup with the attached involution naturally defines an associative triple system. Thus we can view ($U \backslash G / V, *$) as an associative hypergroup triple system.

5 Examples

The notion of Hecke algebras originates from the theory of modular forms. It should be noted that the consideration of (U, V)-double cosets there also plays an essential role when dealing with congruence subgroups (cf. [3], III.7.3, [10], section 3.4).

Next consider a Hecke pair (G, U) and a subgroup $U \subset H \subset G$ such that $H / / U$ is normal in $G / / U$. This means $H g H=H g U$ for all $g \in G$ due to [6], Theorem 4. In this case one can easily sharpen Theorem 2 . The associative hypergroup triple systems ($H \backslash G / U, *$) and $(G / / H, *)$ are then isomorphic. An explicit example of this type is

$$
G=G L_{n}\left(\mathbb{F}_{q}\right), \quad H=\left\{\left(\begin{array}{ccc}
* & & * \\
& \ddots & \\
0 & & *
\end{array}\right) \in G\right\} . \quad U=\left\{\left(\begin{array}{ccc}
1 & & * \\
& \ddots & \\
0 & & 1
\end{array}\right) \in G\right\}
$$

(cf. [6], section 3).
Now we consider finite subgroups U and V of a group G. It follows from (1) and (7) that

$$
\begin{aligned}
& \frac{1}{\text { ind }_{U} U a V} \delta_{U a V} \cdot \frac{1}{\operatorname{ind}_{V} V b^{-1} U} \delta_{V b^{-1} U} \cdot \frac{1}{\operatorname{ind}_{U} U c V} \delta_{U c V} \\
& \quad=\frac{1}{\# U \cdot} \sum_{u \in U, v \in V} \frac{1}{\operatorname{ind}_{U} U a v b^{-1} u c V} \delta_{U a v b^{-1} u c \mathrm{~F}}, \\
& \varepsilon_{U a V} * \varepsilon_{V b^{-1} U} * \varepsilon_{U c V}=\frac{1}{\sharp U \cdot \sharp V} \sum_{u \in U, v \in V} \varepsilon_{U a v b^{-1} u c V} .
\end{aligned}
$$

The elements

$$
c_{U}:=\frac{1}{\sharp U} \sum_{u \in U} \delta_{u}, \quad c_{V}:=\frac{1}{\sharp V} \sum_{v \in V} \delta_{v}
$$

are idempotents in $\mathbb{C}[G]$. We consider the associative triple system $(\mathbb{C}[G], J)$ with $J\left(\delta_{g}\right)=\delta_{g-1}$. In view of $J\left(c_{U}\right)=c_{U}$ and $J\left(c_{V}\right)=c_{V}$ we observe that $c_{U} \cdot \mathbb{C}[G] \cdot c_{V}$ becomes a sub-triple system of $(\mathbb{C}[G], J)$. Thus a verification (cf. [5], I(6.6), [6], Theorem 5) yields

Theorem 4. Let U and V be finite subgroups of a group G. Then

$$
\mathcal{H}(U \backslash G / V) \rightarrow c_{U} \cdot \mathbb{C}[G] \cdot c_{V}, \quad \varphi \mapsto \frac{1}{\sqrt{\sharp U \cdot \# V}} \sum_{g \in G} \varphi(U g V) \delta_{g},
$$

is an isomorphism of the associative triple systems.

References

[1] Bloom, W.R., Heyer, H.: Harmonic analysis of probability measures on hypergroups. de Gruyter, Berlin-New York 1995.
[2] Fernandez Lopez, A., Garcia, E.: Compact associative B^{*}-triple systems. Quarterly J. Math. Oxford 41 (1990), 61-69.
[3] Koecher, M., Krieg, A.: Elliptische Funktionen und Modulformen. SpringerVerlag, Berlin-Heidelberg-New York 1998.
[4] Krieg, A.: Associative triple systems of Hecke type. Algebras, Groups, Geom. 5 (1988), 341-357.
[5] Krieg, A.: Hecke algebras. Memoirs Amer. Math. Soc. 435 (1990).
[6] Krieg, A.: Hecke algebras and hypergroups. In H. Heyer, J. Marion (eds.): Analysis on infinite-dimensional Lie-groups and algebras. World Scientific, Singapore-ה`ew Jersey-London 1998, 197-206.
[7] Loos, O.: Assoziative Tripelsysteme. Manuscripta Math. 7 (1972), 103-112.
[8] Meyberg, K.: Lectures on algebras and triple systems. Lecture Notes, University of Virginia, Charlottesville 1972.
[9] Passman, D.S.: The algebraic structure of group rings. J. Wiley, New York 1977.
[10] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton University Press, Tokyo-Princeton 1971.

Author's address:
Lehrstuhl A für Mathematik, RWTH Aachen, D-52056 Aachen, Germany
e-mail: krieg@math.A.rwth-aachen.de

