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Introduction 

In this survey we present the theory of irreducible bounded representations of exponential 
solvable Lie groups. For these groups the exponential mapping from the Lie algebra g of 
G into G is a diffeomorphism and the unitary dual is explicitly known thanks to the work 
of Mackey, Dixmier, Kirillov, Bernat, Pukanszky and Vergne in the years 1950 to 1970. 
In the first part of the paper we recall the structure of exponential solvable Lie groups 
G and in the second part we explain Kirillov's theory, i.e. we give the description of 
the irreducible unitary representations of G using the orbit method. In the last part the 
algebraically irreducible (or simple) modules of the group algebra L1(G) are presented 
together with what is known about topologically irreducible bounded representations of 
G. The theory of the simple L1 (G) modules, (G exponential), has been developed by 
Leptin and Poguntke from 1975 to 1981 and Poguntke published a classification of these 
modules in 1983. It turns out that irreducible unitary and simple modules can be realized 
in the framework of induced representations. This is no longer true for general bounded 
irreducible representations on Banach spaces. 
In recent years, the method of Poguntke has been used to study these representations. 
For so called non-*-regular exponential groups, more complicated representations appear, 
which are not subrepresentations of induced representations and which are constructed by 
using irreducible non bounded representations of vector groups on Banach spaces. 
Many interesting problems remain to be solved. For instance: Is it possible to characterize 
the separable Banach spaces, on which exponential solvable groups act irreducibly? This 
problem is closely related to the invariant subspace problem. Is it possible to give explicit 
descriptions of some of these strange representations for lower dimensional groups? 
No proofs will be given in this survey article, they can be found in the literature or they 
will be published elsewhere. 

1. The Structure of Exponential Solvable Lie Groups. 

1.1 Let g be a real finite dimensional Lie algebra. We let g1 = g and we define the central 
descending series g;, j = 1, 2, • • •, of g by gH1 = [g, g;], We say that g is nilpotent of step 
k if there exists k E N such that gk+l = (0) and gk =I- (0). 

1.2. We say that g is solvable if the descending series .s1 = g, .sH1 = [~, .s;], j = 1, 2, .. •, 
stops with .sl+1 = (0) for some l E N. 
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1.3. A sequence of ideals of g 

g = n1 ::, • · • ::, ai ::, · · · ::, Clm+i = (0) 

is called a Jordan-Holder series or J.H. series, if for every j = 1, • • •, m, the g-module 
ai/ai+1 is irreducible. A theorem of Lie says that for solvable Lie algebras every irreducible 
complex finite dimensional Lie algebra module is of dimension 1 (see [Di.3]). Hence for 
every J.H.-series (aj)j of a real solvable Lie algebra the dimension of n;/ai+1 is equal to 
1 or 2 for every j. We call these irreducible modules the roots of g. Let us denote by A 
the set of all the roots of g. If ai/ai+1 is one dimensional, then the corresponding root Aj 
is just a real character of g. If ai/ai+ 1 is two dimensional then we can describe the root 
>.i =>.in the following way. There exist two real linear functionals l>. and P>. of g and two 
vectors X = Xj and Y = Yj in nj, such that {X, Y} is a basis of ai mod ni+1 and such 
that 

[U,X +iV] = (l>.(U) +iP>.(U))(X +iY)mod (ai+ 1)c,U E g, 

(where Ve indicates the complexification of a real vector space V). In this way we may 
consider the roots >. of g as linear functionals (a real one in the one dimensional case and 
as complex valued one>. c:= I>.+ ip>. in the two dimensional case). 

1.4. In particular g2 = [g, g] is contained in the kernel of every root. Since the algebra 
g/[g, g] is non trivial if g =f (0) and abelian we have that at least one of the roots of g is O. 
The roots of g give us also the spectrum u(ad(X)) of ad(X)(X E g) considered as linear 
operator on gc, In fact u(ad(X)) = {>.(X),>. EA}. 

1.5. The nilradical n of g is the largest nilpotent ideal of g. In the solvable case, the 
nilradical is given by 

n = n ker(>.) ::, [g, g]. 
>.EA 

From now on we will only consider solvable Lie algebras. 

1.6. Let us describe the Jordan decomposition of such an algebra. If g is not nilpotent, 
we can choose an element T of g which is in general position with respect to the roots of 
g, i.e. for every pair >. and µ of roots, considered as complex linear functionals, we always 
have that 

>.(T) - µ(T) =f 0. 

We take now the Jordan decomposition of ad(T) on gc: 

9c = 1)oc)>., 
>.EA 

where 
(gc)>. = {U E 9c, (ad(T) - >.(T)t(U) = 0 for some k > 0}. 

We have the classical relations 

[(och, (oc),.] c (och+,., >., µ E A. 
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Since T is in general position with respect to the roots of g, it follows that (gc)o is a 
nilpotent subalgebra of gc, Let now 9o = (gc)o n g and for a root >. # 0, let 

9.>. = ( (gc).>. + (gc).>.) n g = ((gc).>. + (sch·) n g. 

Let m = I:.>.iO 9.>.· Then [go, m] = m and so m is contained in [g, g] whence g = {Jo + m = 
90 + [g,g]. 

If g is nilpotent, then of course every root is 0 and g = {Jo- If not, let for j = 1, · · · , m, 
u; be a one or two-dimensional subspace of a;, such that a; = ll; El, a;+1• Then 

1.7. Let us now study simply connected solvable Lie groups. We say that a real finite 
dimensional connected Lie group G is nilpotent if its Lie algebra g = Lie( G) is nilpotent. 
We can provide a nilpotent Lie algebra with a group structure using the Campbell-Baker
Hausdorff multiplication: 

1 1 1 
X · Y = CBH(X, Y) = X + Y + 2[X, Y] + 12 [X, [X, Y]] + 12 [Y, [Y,X]] + · · ·, X, YE g. 

This multiplication is a polynoinial expression in X and Y, since g is nilpotent. Hence 
(g, CBH) becomes a Lie group, whose Lie algebra is (g, [, ]). It is obvious that that for 
every X E g, the mapping 

Ex: JR -t g;t ~ tX, 

is a group homomorphism from (JR, +) to (g, CB H). Hence the exponential mapping 
exp : g-+ (g, CBH) is the identity mapping in this case and every simply connected Lie 
group whose Lie algebra is isomorphic to (g, [,]) is itself isomorphic to (g, CBH). 

1.8. If G is a simply connected solvable Lie group, we know (see [Di.3]), that the exponential 
mapping is a diffeomorphism if and only if all the roots of g = Lie(G) are of the form 
h + iw.>.h, for some real constant W>, and a real valued character h of g. More precisely, 
Dixinier has shown in ([Di. 3]) that for a simply connected solvable Lie group G the 
following conditions are equivalent: 

i) The exponential mapping exp : g • G is injective. 
ii) The exponential mapping exp : g • G is surjective. 

iii) The exponential mapping exp : g • G is a diffeomorphism. 
iv) Every root >. of g is of the form >. = (1 + iw)l for some real linear form l E g• and 

some w E JR. 
v) For every X E g the spectrum of the operator ad(X) acting on gc does not contain a 

number of the form iT, TE JR\ (0). 
We call the solvable groups, which satisfy these conditions, (solvable) exponential. 

Such an exponential group G can be realized on its Lie algebra g. The Cambell
Baker-Hausdorff multiplication, which converges on a neighbourhood of 0, extends to a 
unique analytic map on g x g and in this way G is isomorphic to the group (g, CBH), the 
exponential mapping for the latter group being the identity. 
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1.9. A general solvable simply connected Lie group is a.s a variety always diffeomorphic to 
a vector space. Indeed, let us take a Jordan-decomposition g = {Jo + m = g0 + n, for some 
nilpotent ideal n of g containing (g, g]. Choose a subspace t of 9o, such that 

g = tEB n. 

For S, T E t, we write 

CBH(S, T) = CBH(S + T, Q(S, T)), 

where Q(S, T) = CBH(-S-T, CBH(S,T)) E (go, .00] is a polynomial expression of brack
ets in S and T. For a vector U in n and T E t, let 

00 ad(-T)i 
Tu= exp (ad(-T))U = L ., (U) 

j=O J. 

We obtain a group multiplication on s = t EB n by the following rule: 

(T,U) · (T',U') = (T+T',CBH(Q(T,T'),CBH(T'u,U'));T,T' E t,U,U' En. 

The Lie algebra of (s, •) is of course isomorphic to g and so every simply connected Lie 
group G with a Lie algebra isomorphic tog is itself isomorphic to (s, •). In particular 

G = exp(t)exp(n) 

and 

exp(T)exp(U)exp(T')exp(U') = exp(T + T')exp(Q(T, T'))exp(T'u)exp(U') 

(T, T' Et, U, U' En) (see [Le.Lu.]). 

1.10. Let us now consider closed connected subgroups H = exp(ry) of the simply connected 
solvable Lie group G. The quotient space G/H is then diffeomorphic to the space g/ry. We 
obtain coordinates on G / H in the following way: 

Consider a J.H.-sequence S = (a;); of g, which passes through n, i.e. such that a;0 = n 
for some io- For every j, we take a subspace to; of a;, such that a;+ ry = (a;+i + ry) EB to;. 
The mapping Ef/H: to= I:; to; • G/H 

is then a diffeomorphism. In particular if ry = (0), then E<j : to = I:; to; • G is a 
diffeomorphism (see [Le.Lu.]). 
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1.11. We can use the mapping E'j to describe the left Haar measure on G. Indeed the left 
Haar measure dx is given by 

l cp(x)dx = l cp(E'j(w))dw 

for cp in the space Cc(G) of the continuous functions with compact support on G. As
sociated to the Haar measure is the modular function Aa of G. The uniqueness of the 
Haar measure implies that for any s E G the left invariant measure cp f-t fa cp(xs-1 )dx is 
a positive multiple, denoted by Aa(s), of our Haar measure and so 

l cp(xs- 1)dx = Aa(s) l cp(x)dx,cp E Cc(G) 

The function Ao is easy to compute. In fact Aa(exp(U)) = e-trad(U),U E g, where 
tr ad(U) denotes the trace of the operator ad(U) on g. 

1.12. We realize many of our representations on function spaces, for instance on spaces of 
functions which satisfy certain covariance conditions. 

Let H = exp@ be a closed connected subgroup of G and let 

e(G, H) = {e: G • C; e continuous with compact support modulo H, 

AH(h) 
e(xh) = Aa(h) e(x), x E G, h EH}. 

This space is left translation invariant and the linear mapping 

is surjective. The space e(G,H) admits a left invariant linear form, namely 

l,H du: e(G,H) • C, e f-t l e(Ef1H(w))dw. 

Hence the linear form 

Cc(G) • C, ,µ H f PGJH(,µ)(u)du 
laJH 

is left translation invariant and positive and so is a multiple of our Haar measure. The 
uniqueness of the Haar measure implies that the positive linear form §GI H du is unique 
(up to a positive multiple) and so it does not depend on the choice of the J.H. sequence 
and not on the complementary spaces n:,;, 
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1.13. The convolution algebra L1{G) of the integrable functions on G with respect to Haar 
measure plays a fundamental role in the theory of representations of G. The convolution 
of two functions cp and 1/; is defined by 

cp * 1/;(x) = l cp(u)1/;(u-1x)du, x E G. 

The L1-norm on L1(G) is given by 

ll'Pll1 = l lcp(x)ldx, cp E L1(G). 

There exists an isometric involution• on L1(G): 

cp*(x) = ~a(x)-1cp(x- 1 ), x E G, cp E L1 (G). 

The connection between left translation >. and convolution is the following: 

>.(x)(,P*1P) = (>.(x)cp) *1P,X E G,cp,1/; E L 1(G). 

2. The Dual Space of Exponential Solvable Lie Groups 

2.1. We begin with the definitions of the different types of irreducible bounded represen
tations. 

Let G be a locally compact group. A representation (T, V) of G on a Banach space 
V is a strongly continuous homomorphism T : G -+ Gl (V) of the group G into the group 
Gl(V) of the bounded invertible linear operators on V. Strongly continuous means that 
the mappings 

G-+ V, x 1-t T(x)v, 

are continuous for every v E V. 
We say that the representation (T, V) is bounded, if 

CT= sup IIT(x)llop < oo. 
:i:EG 

Here llallop denotes the operator norm of a bounded operator a on V. Since a solvable 
group G is amenable, every bounded representation (T, V) on a Banach space (V, 11 · llv) is 
in fact isometric, there exists another norm II· II' on V, which is equivalent to 11 · llv, such 
that IIT(x)vll' = llvll' for every v E V and x E G (see [Pi.]). 

2.2. Bounded representations can be integrated to bounded representations of the Banach 
algebra L1(G). Indeed, for cp E L1(G), the operator 

T(cp) = l cp(x)T(x)dx 
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on Vis bounded and IIT(v)llop::; CTll'Pll1- We have the relations 

T(<p * ¢) = T(rp) o T('f/!), T(,\(x)rp) = T(x) o T(rp), x E G, <p, 'I/; E L1(G). 

Conversely, given a bounded representation (T, V) of the algebra L1 ( G) on a Banach space 
V, we have at the same time a bounded representation (T, V) of G, such that 

T(x) o T(rp) = T(,\(x)rp) 

for every x E G and <p E L1 (G) (see (Di.4]). 

2.3. A closed subspace W of V is said to be G-invariant, if for every x E G, w E W, 
T(x)w E W. The same type of definitions is valid for representations of the Banach 
algebra L1(G). If Tis bounded, a closed subspace W of V is G-invariant if and only if it 
is L1(G)-invariant. 

2.4. We say that a representation (T, V) is (topologically) irreducible, if the two trivial 
spaces (0) and V are the only closed G- invariant subspaces of V. 

A Banach module (T, V) of L1(G) is said to be simple or algebraically irreducible if 
the trivial spaces (0) and V are the only L1(G)-invariant subspaces of V. 

2.5. We say that a representation (ir, 11,) is unitary if the Banach space 1i is in fact a 
Hilbert space (with scalar product (, )) and if ir(x) is a unitary operator for any x E G. 
A unitary operator being isometric, every unitary representation of G is bounded and 
the corresponding representation of L1(G) has the property that ir(cp)* = ir(rp*) for any 
cp E L 1(G). 

2.6. Two representations (T, V) and (T', V') are called equivalent if there exists a bounded 
linear bijection u : V • V', which intertwines T and T', i.e. such that 

T'(x) ou = uoT(x),'v'x E G. 

We write T ~ T' for two equivalent representations. In particular if T ~ T', then T is 
irreducible if and only T' is. 

2.7. By Schur's lemma, we know that a unitary representation (ir, 11,) is irreducible if 
and only if every bounded operator a E L(1i), which commutes with ir, i.e. for which 
ir(x) o a= a o ir(x) for every x E G, is a multiple of the identity operator I1t. Hence for 
two equivalent irreducible unitary representations (ir, 11,) and (ir', 11,') there exists a unique 
(up to scalar multiple) interwining operator u: 1{, • 1i', which is even unitary. 

We write (ir] for the equivalence class of the representation ,r, i.e. for the set 
{{ir', 1i'), ,r ~ ir'}. 

We denote by G the family of all the equivalence classes of irreducible unitary repre
sentations of G. 

By the theorem of Gelfand-Naimark, the irreducible unitary representations separate 
the points of G (see (Di.4]). 

2.8. In 1931 Stone and von Neumann determined the unitary dual of the Heisenberg 
group. In the late fourties Mackey proved his imprimitivity theorem, the fundamental 
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tool to compute irreducible unitary representations in the solvable case. Dixmier proved 
in 1957 (see [Di.5]), that every irreducible unitary representation of a connected nilpotent 
Lie group is monomial, i.e. is induced from a unitary character. The breakthrough came 
with Kirillov's orbit picture of the dual space of nilpotent Lie groups in 1962 (see [Ki.]). 
Kirillov's orbit method also works for exponential groups. Bernat, Pukanszky and Vergne 
determined the dual space of these groups in the years 1965-1970 with the orbit method 
(see [Ber.], [Puk.1,2], [Ve.1,2,3]). 

2.9. The irreducible representations of exponential groups are induced from characters. 
Let us describe briefly induced representations. Let H be a closed subgroup of the group 
G and let (p, F) be a unitary representation of H. We realize the induced representation 
r = Tp of p by left translation on a space of mappings e(p) from G into 1£. The space e(p) 
is the space 

e(p) = {{: G • :F;{ continuous with compact support modulo H, 

{(xh) = (!:~~? )112p(h)-1{(x), x E G, h EH}. 

This space of mappings is left translation invariant and we observe that for { E e(p), the 
function x • ll{(x)ll2 is contained in e(G,H). Hence the scalar product 

({, 1/) • ({, 1/)11. = i ({(x), 1/(X)}:FdX 
G/H 

is G-invariant, positive and hermitian and so left translation is isometric on the prehilbert 
space (e(p), (,) ). The completion 1£ of the space e(p) with respect to the norm II • 1111. is a 
Hilbert space on which the group G acts by left translation, i.e. 

r(x){(s) = e(x- 1s), x, s E G, e E 1£. 

We take now the special case where p is a unitary character of H. Then 1£ is a space 
of complex valued functions and we see that the operators r(cp),cp E Cc(G), are kernel 
operators with continuous kernels. Indeed, for { E e(p), 

r(cp){(s) = fc r,o(x)e(x- 1s)dx = l r,o(sx- 1)ila(x)-1e(x)dx 

= j { r,o(sh- 1x- 1)t.a(xh)-1 ilc(h) (ilH(h) )112x(h)e(x)dhdx 
la;H J H ilH(h) ilc(h) 

= £/H Lla(x)- 1 (l r,o(shx- 1 )( t:~~~ )112x(h)dh) e(x)dx. 

Hence the kernel \OH,x. of the operator r(r,o) is the function 
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2.10. Let H = exp(Q) be a closed connected subgroup of G. Every unitary character x of 
H is of the form 

x(exp(T)) = x1(exp(T)) = e-if(T), TE Q, 

where f is a real linear functional on g, such that 

f([Q, Qj) = (0). 

We remark that for every t E G, the representations TH,x and TtHt-•,•x are equivalent. Here 
tX is the unitary character of the group tHt- 1 defined by tx(p) = x(t- 1pt),p E tHt- 1• An 
intertwining operator u between these two representations is given by right translation: 

u(e)(s) = e(st), e E e(x), s E G. 

We define the coadjoint representation Ad• of G on the dual vector space g• of g by: 

Ad*(x)f(U) = f(Ad(x- 1)U), U E g, x E G,f E g•. 

Hence the induced representations TH,x, and TtHt-•,xA•·<•>t are equivalent, since 
XAd•(t)f =tX, t E G. 

2.11. A subalgebra p of g is called a polarisation at f E g•, if p is subordinated to f 
(i.e. if f ([p, pl) = (0)), and if p has maximal dimension with this property. This maximal 
dimension is equal to ½(dimg + dimg(f)). Here g(f) denotes the stabilizer offing, i.e. 
g(f) = {U E g; f ([U, g]) = (0) }. For a polarisation p at f we always have that Ad* (H)f is 
open inf+ p.L. We say that pis a Pukanszky polarisation, if Ad*(H)f = f + p.L. 

2.12. We can now describe the unitary dual of an exponential group G. The theory of 
Kirillov-Bernat-Vergne-Pukanszky says that the induced representation TH,x, is irreducible 
if and only if Q is a Pukanszky polarisation at f. Furthermore, given f E g•, there always 
exists a Pukanszky polarisation p at f and for two Pukanszky polarisations p, resp. p' 
at f, resp. at f', the representations TP,x, and Tp•,x,, are unitarily equivalent, if and 
only if the coadjoint orbits of f and f' are the same. Finally, by Mackey's imprimitivity 
theorem, every irreducible unitary representation 1r of G is equivalent to some induced 
representation TP,xi· We obtain in this way a bijection (the orbit picture) between the 
space of the coadjoint orbits g• /G and the dual space of G: 

IC: g• /G • G, Ad•(G)f • [rP,x,J. (P = exp(p), p any Pukanszky polarisation at!). 

2.13. We can construct Pukanszky polarisations at f E g• in the following way. Let as 
before n denote the nilradical or any nilpotent ideal of g containing [g, g]. Take a J.H. 
sequence (a;)j=, for the action of g on n and let g(q) be the stabilizer of q = fin in g. The 
subspace 

• 
Po= L a;Uia) 

j=m 
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is then a polarisation at q inn (see [Ve.1,2]. The stabilizer g(q) of q in g is a subalgebra of g 
containing g(f) and the quotient algebra g(q)/ker(f) nn(q) is either abelian or isomorphic 
to a Heisenberg algebra. Furthermore we have that [g(q), Po] C Po• Let Pi be a polarisation 
at f1o(q)• Then p = P1 + Po is a Pukanszky polarisation at / (see also [Le.Lu)). 

The Heisenberg algebra 

!Jn = span {X1 · · ·, Xn, Y1, · · ·, Yn, Z}, (n EN) 

has the bracket relations: 

(X;, Y;] = ,5;,;Z, [X;, Xj] = [Y;, Y;] = 0 = [U, Z], 1 ~ i,j ~ n, U E IJn· 

For a linear functional / on !Jn, we see that the stabilizer !Jn(f) at / is equal to !Jn if 
f (Z) = 0 and !Jn(f) = IRZ if f(Z) ,f: 0. In the latter case we have many polarisations. For 
instance the subspaces span{X1 +a1Y1, · · ·, Xn + anYn, Z}, where a1, ···,an are any real 
numbers, give us an infinity of polarisations at/. 

2.14. The irreducible representations 1T = -rP,Xt of an exponential group G have the fol
lowing property. The subspace 1{,1 of all the vectors e in the space 1{, of 1r, for which 
there exists an element ip = 'P{ E L1(G), such that the operator 1r(ip) is the orthogonal 
projection P{ onto q is different from (0), and hence is dense in 1{, since 7l' is irreducible. 
There exist even non zero elements e in 1{,1 , such that 'P{ is rapidly decreasing, which 
means that V'P( is also in L1(G) for every real character v of G. This was proved by Howe 
(see (Ho.]) in the nilpotent case, by Ludwig (see [Lu.2)) and by Poguntke (see [Po.1)) in 
the exponential case. 

3. Algebraically and topologically irreducible Representations. 

3.1. Let A be a Banach algebra and (T, V) an algebraically irreducible A-module. For 
any v E V,v ,f: 0, the annihilator A.,= {a E A;T(a)v = 0} is a maximal modular left 
ideal, which is automatically closed, and so the representation (T, V) is equivalent to the 
left module (>., A/A.,). In particular (T, V) is a Banach module of A. (see [Bo. Du.)) 

3.2. Let now (T, V) be a topologically irreducible representation of A. We can again fix a 
non zero vector of V and consider the annihilator A., of v in A, which is a closed left ideal. 
We have an injection 

i: A/A., • V,i(a mod A.,)= T(a)v, 

and the image of the mapping i is dense in V since T is irreducible. We transfer the 
norm II· llvof V to the space A/A., via i and so we can replace the Banach space V by 
the completion of A/ A., and realize T by left translation on the space A/ A., and on its 
completion. In this way, the module (T, V) is determined by the closed left ideal A., and 
a certain module norm II · II on A/A., which satisfies the following inequality: 

llab mod A.,11 ~ llallAllb mod A.,11,a,b EA. 

3.3. Let Al be the ideal in A, consisting of all the a's in A, such that T(a) is an operator of 
finite rank. Suppose that Al ,f: (0). Then the submodule V1 = span {T(a)v, a E Al, v E 
V} is dense in V and defines a simple A-module. 

269 



3.4. The simple L1 (G)-modules in the nilpotent case have been determined by Dbanier 
(see [Di.I]), Leptin (see [Le.2]), Poguntke (see [Po.4]), Jenkins (see [Je.]) and Ludwig (see 
[Lu.3]) from 70 to 77 and Leptin and Poguntke studied the exponential case in some papers 
from 76-81 (see for instance [Le.Po.]) and finally Poguntke (see [Po.2]) gave a complete 
description of these modules in 1983. It turns out that every simple L1(G)-module is of 
the form (T, V1) for some topologically irreducible Banach representation (T, V) of L1 ( G). 
We will describe them in (3.14). 

3.5. Let us analyse such a topologically irreducible L1 (G)-module (T, V), for an exponential 
group G. Then T is also a G-irreducible module and we can restrict T to the nilradical 
N = exp(n) of G. The group G acts on N by conjugation and so also on the functions of 
N and in particular on the elements of L 1(N). Whence an ideal IC L 1(N) is G-invariant 
if for every 'P E I the function 

n i-+ .llo(t)1P(r1nt) = t'P(n), n EN, 

is also in I for every t E G. The restriction of T to N is no longer irreducible, but the 
kernel kerL'(N)(T) ofT in L 1(N) is a closed G-prime ideal. AG- prime ideal I in L 1(N) 
is by definition a twosided G-invariant ideal, which has the property that for every pair 
11, 12 of twosided G-invariant ideals in L 1(N), such that 11 * 12 C I, necessarily one of 
the two ideals Ii and 12 is contained in I. It has been shown by Molitor-Braun in 1996 
(see [Mo.I] and [Lu.Mo.3]), that every closed G-prime ideal I in L1(N) is the kernel of a 
G-orbit in N, i.e. 

I= n kerL'(Nlr) = ker(0 r) 
tEG 

for some r EN. The representation T of N is associated to its Kirillov-orbit Ad•(N)q for 
some q E n•. Let / E g• be an extension of q. We take a subspace t of g(/), such that 
g(/) = t EB (g(/) n n). Let Q be a subspace of g containing n, such that g = t EB Q. Then 
[g, g] C n C Q and so Q is an ideal of g. Let p = /1~ E Q•. Let us choose a Pukanszky 
polarisation p at /, such that Po = p n n is a polarisation at q as in (2.13). Then p n Q 
is a Pukansky polarisation at p and the restriction of the representation 1r = TP,x, of G 
to H = exp(Q) is irreducible and equivalent to <1 = TPnH,xp• Our choice of Q implies that 
the H-orbit of p is saturated with respect to n, i.e. Ad*(H)p + n.J.. = Ad*(H)p. As a 
consequence, (see [Ha.Lu] and [Lu.Mo.3]), 

kerL'(H)(u) = kerL'(H)(T). 

Hence the representation T annihilates the twosided ideal 

IT= span (L1(G) * kerL'(H)(u)) = span (L1(G) * kerL'(N)(r)) 

of L1(G) (here (--) denotes closure in L1(G)). Th~ the representation T factorizes 
through IT and defines an irreducible representation T of A = L 1(G)/IT. The algebra 
A is itself a generalized L1-algebra. As Banach space A is isometrically isomorhic to 
L 1(T, (L1(H)/kerL'(H)(u))), where 

T= exp(t) ~ G(f)/G(f) nN ~ G/H 
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and the algebra L 1(H) acts by convolution on the right and on the left on A and so A has 
many idempotent multipliers (see [Po.2]). Indeed, we can choose exponentially decreasing 
elements cp = 'P>. in L1 (H), such that u(cp) is the orthogonal projector P>. onto C.X. Hence 
a t--+ cp * a mod IT defines an idempotent multiplier on A, since cp * cp = cp modulo 
kerL'(H)(T). We take for every t ETC G(f) the element v(t) E L1(H)/kerL'(H)(u) for 
which u(v(t)) = 1r(t)-1oP>., The norm w(t) of v(t) in the quotient space L 1(H)/kerL'(H)(u) 
is a measurable submultiplicative function which is constant on G(f) n N and defines a 
weight on G(f)/G(f) n N. It follows from this that the subspace B = B,p = cp *A* cp is a 
closed subalgebra of A. Furthermore we have for a E A that 

cp *a* cp(t) = h(t)v(t) E L1(H)/kerL'(H)(u), t ET, 

where t t--+ h(t) is a measurable function defined on T and in fact on G(f)/G(f) n N, such 
that 

ll'P *a* 'PIIA = h-lh(t)lllv(t)lldt. 

It turns out that the mapping cp * a * cp t--+ h is even an isometric isomorphism of the 
algebra B onto the weighted convolution Banach algebra L 1(G(f)/G(f)nN, w) (see [Po.2]). 
Since G(f)/G(f) n N is commutative, it follows that B itself is commutative. Let now 
W = T(cp>.)V CV. Since T(cp>.) is a projector we have that Wis a closed subspace of V 
and Wis an irreducible B-submodule of V. Let us denote by S the restriction of T to W. 

3.7. If T is algebraically irreducible, then (S, W) is also a simple B-module and B being 
abelian, it follows that Wis one dimensional and Sis a character of the algebra B, which 
we denote by Xv• We can describe this character by a linear form (denoted by v) on g(f): 

Xv('P *a* cp) = { h(t)e-iv(log(t))dt, a EA. 
j G(f)/G(f)nN 

3.8. If T is only topologically irreducible, the space W need not be one dimensional. The 
commutative algebra L1(G(f)/G(f) n N, w) has infinite dimensional irreducible represen
tations, if the weight w is exponential. It suffices in that case for instance to take a real 
linear functional v on g(f)/g(f) n n, such that ev(T) ::; w(log(T)), TE g(f), and to choose 
any infinite dimensional Banach space W, which adlnits a bounded operator u, which has 
no closed invariant subspaces except the trivial ones (see [Be.]). The representation S 
defined by 

S(cp *a* cp) = { h(t)e-v(log(t))udt, a EA, 
j G(f)/G(f)nN 

is then irreducible on W. 

3.9. Conversely, every irreducible Banach space representation (S, W) of the algebra B 
allows us to define a falnily of topologically irreducible representations of G in the following 
way. Choose a non-zero vector w E W and let 

Bw = {b E B;S(b)w = O}, Aw= {a EA, S(cp*ha*cp)w = O,'v'b EA.} 
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Define the function 11 • llmin on A/Aw by 

llamodAwllmin= inf 11S(rp*b*a*rp)wllw,aEA. 
llbl!A=l 

It turns out that 11 • II min is a norm on A/ Aw for which 

111/1 * a mod Awllmin:::; lltPllilla mod Awllmin, a EA, 1/1 E L1{G). 

Furthermore the restriction of II· llmin to (B+Aw)/Aw ~ B/Bw is equivalent to the norm 
bi-+ IIS(b)wllw of B. Hence we obtain a Banach space vmin, the completion of A/Aw with 
respect to II· llmin of A, such that convolution on the left on A/Aw extends to a bounded 
representation Tmin of £ 1 ( G) on vmin. Furthermore the subspace wmin = Tmin ( rp .>.) vmin 
is isomorphic to W and the representation smin of B is equivalent to the representation 
(S, W). We say that (Tmin, vmin) is an extension of (S, W). It is easy to show that Tmin 
is even irreducible (see [Lu.Mo.3]). 

3.10. There may be other extensions. For instance if S is character of B, then we may 
take as extension norm the quotient norm on A/Aw, since now B/Bw is one dimensional. 
The left ideal Aw is now modular and a modular left unit is given by any element of B, on 
which S has the value 1. It is not difficult to see that Aw is even maximal and so A/ Aw is 
an algebraically irreducible submodule of the module vmin. We see also that two simple 
modules T and 'l'' of A are equivalent, if and only if the corresponding characters of the 
algebra B coincide (see [Po.2]). 

3.11. We say that a norm II· II on A/Aw is an extension norm, if 

11¢ * a mod Awll:::; C11,11ll1/lll1lla mod Awll 

for any a E A and ¢ E L1{G) { for some constant C11,11) and if the restriction of II · II to 
B/Bw ~ (B+Aw)/Aw is equivalent to the norm b I-+ IIS(b)wll of B. It turns out that every 
extension norm II· II dominates the minimal norm, i.e. we have that llallmin :::; Cllall, a E A, 
{for some constant C) and that the completion of A/Aw with respect to the norm II• II, 
considered as a subspace of the Banach space vmin, is also an irreducible L1(G) module. 
Hence there are as many equivalence classes of irreducible extensions of a given (S, W) 
module as there are equivalence classes of extension norms (see [Lu.Mo.3]). 

3.12. In the case where Sis a character, there are in general an infinity of such extensions. 
For instance, if G is nilpotent every closed prime ideal I of £ 1 ( G) is the kernel of an element 
1r of G. Hence every irreducible bounded irreducible module (T, V) with kerL'(G){T) = 
kerL'(G)(1r) contains as simple submodule a copy of (1r, 1i1). Let us realise 1r as indix, 
for a polarisation P = exp(p) at f. Instead of taking the Hilbert space 1i we may take the 
Banach spaces 

LP(G/P, Xt) = {e: G • C; e measurable ,e(xp) = x1(p)- 1e(x), x E G,p E P, 

1 le(x)IPdx = 11e11: < oo,} 
G/H 

272 



(1 :$ p < oo). For p = oo, we can take the space 

Coo(G/P,x1) = {~: G • C;~(xp) = x1(p)-1~(x),x E G,p E P, 

~ continuous, tending to O at oo}. 

The group G acts by left translation on all these spaces and we write T(P,xt,P) for these 
representations. Since the spaces L1'(G/P,x1) are not isomorphic, the representations 
T(P,xi,P) cannot be equivalent. The operators T(P,xi,P)(cp), cp E L1(G), are kernel operators 
whose kernels 'PCP,xt,Pl do not depend on p. In fact 

'P(P,xi,p)(u, v) = l cp(upv- 1)x,(p)dp = 'PP,x,,2(u, v), u, v E G, 

and so kerL'(G)(T(P,xt,P)) = kerL'(G)(7r) and the representations T(P,xi,P) are irreducible 
and all contained in the corresponding ymin. 

3.13. Let us sum up what has been said above. For every G-orbite Ad*(G)q inn•, we 
have the commutative subalgebras B"',. ~ 'P>. * L1(G)/L1(G) * kerL'(N)(Tq) * ,P>. which 
are all isomorhic to L 1(T,w) ~ L 1(G(l)/G(l) n N,w), for some weight independent of 
A. Having fixed one of the 'P>. 's, every irreducible bounded module (T, V) defines an 
irreducible bounded module (S, W) of B, where for h E L1(T,w), 

S(h) = Ir h(t)T(t)T(v>.(t))dt. 

The representations (T, V) and (T', V') are equivalent if and only if their Ad* ( G) orbits in 
n• coincide, if the modules (S, W) and (S', W') are equivalent and if the extension norms 
on A/Aw= A/A:U are equivalent. 

3.14. Let us finish this exposition with a characterisation of the simple modules of L1(G). 
We have seen that every simple module is determined by its orbit Ad*(G)q in n• and a 
character XT = Xv of B = L 1(G(l)/G(l) n N,w) ~ L 1(T,w). 

Poguntke has given a description of the weight w (see [Po.2]). Choose a J.H. sequence 
(b;)T=1 of the g(f)-module n/Po, where Po is a g(f)-invariant polarisation of q (see 2.13). 
Let for T E g(f), 

1 m 

µ(T) = µq(T) = 2 L jtr ad&;/&;+, (T)I. 
j=l 

Then the weight w satisfies the following inequalities: 

eµ(T) :$ w(exp(T)) :$ eµ(T) R(T), TE g(f), 

for some polynomially bounded expression R of T. Hence the characters Xv of Bare of 
the following form: 

Xv(h) = Ir h(t)e-i(v(log(t)))dt, h E L1(T, w), 
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where vis any complex linear functional of 9(/), for which !Im(v)I ::; µ. We see thus that 
B has exponentially increasing characters, if and only if one of the modules b;/b;+1 is not 
trivial. In that case the group G is not *-regular in the sense of Boidol (see [Boi.]). 

3.15. We shall show now that for a simple module (T, V) of L 1(G), there exists a topo
logically irreducible i:nodule (T;;, V;;) of G such that (T, V) is equivalent to (T;;, VJ-). Let 
q E n• and let f E 9• be an extension of q. Let b = 9(q) + n, which is an ideal of 9 and 
which contains our Pukanszky polarisation p =Pi+ Po at f. 

We choose a J.H. sequence 

n = a. :::> • • • :::> a,,. :::> Clm+1 = Po 

of the b-module n/Po• Let ,: be a subspace of p such that b = i: EB (p + n) and let s be a 
subspace of 9 such that s EB b = 9. Let us also choose for every j a subspace tu; of a; such 
that a; +Po= tu; EB (a;+1 +Po)- We let p = (p1, .. · ,Pm) E [1, ooim and for TE 9(q) we set 

6;;-(T) = f tr(ad(T)!a;/'1;+t. 

i=l P1 

Let t..p( exp(T)) = e.S.(T), T E p, and let 

V(G/P,x1) = {e: G • C;e measurable ,e(xp) = t..p(h)x1(p)- 1e(x),x E G,p E P, 

llell;; = (l (1 (i, (· .. (lm 1e(exp(S)exp(X)exp(U1) .. •exp(Um))IPmdUm) f.;-

. • -f' dU1) *)2 dXds/ < oo}. 

· It is easy to verify that this norm II· lip is translation invariant and that for p = (2, • • •, 2) = 
2, we obtain the Hilbert space of the induced representation indix,. Left translation 
defines thus an isometric representation denoted by T(P,x.,,Pl on I.J(G/P,xt). For every 
cp E L 1(G), the operator T(P,x.,,pJ('P) is a kernel operator, whose kernel 'P(P,x.,,P! is equal 
to the kernel of the operator TH,x., (t..pt..tcp), if cp is exponentially decreasing. This obser
vation tells us that T(P,x.,,Pl is irreducible and that there exist many cp E L 1(G), for which 
T(P,x.,,;;)(cp) is of rank one. The character Xv,., of the commutative algebra B defined by 
the simple module (r(P,x.,,p'J,LP(G/P,x1) 1 ) is given by 

Xv,-(h) = { h(t)e}:;'._, Cf;"-½ )trad•;l•;+1 (logt) dt. 
•P JF 

It turns out that every real linear functional v = v,z, on 9(/), for which !v(T)I ::; µq(T), TE 
9(/), is of the form 
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for some (p1, •••,Pm)- This shows that any simple module (T, V) of L1 (G) is equivalent to 

for some f E g• and some p. 
We obtain finally the following description of the space G of the equivalence classes 

of simple L 1(G) modules. 
Let g;,.im be the collection of all pairs (f,v) E g• x g(/)*, such that lvl :::;'. µt1 •• 

The group G acts on s;,.;m by Ad*. Let s;/G be the corresponding quotient space. The 
mapping 

g-;,_;m/G • G, [(f,v)] o-+ [(T(P,x,,p),V(G/H,x1) 1 )], 

is a bijection (see [Po.2],[Lu.Mi.Mo.]) 
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