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1. INTRODUCTION 

Free probability theory was introduced and developed by Dan 
Voiculescu in an operator algebraic context, but has since then turned 
out to possess links to a lot of quite different fields of mathematics and 
physics. I will give a short general introduction into the basics of free 
probability and illuminate certain aspects of that theory (in particular, 
the analogy between classical and free probability theory) by a closer 
look at free diffusion. 

An extensive presentation of the basic theory of free probability is 
given in the monograph [VDN), whereas for getting an impression of 
the diversity of this field one should consult [V2, V3). 

2. FREE PROBABILITY THEORY 

Free probability theory was introduced by Dan Voiculescu around 
1985 as a tool for investigating the structure of special von Neumann 
algebras. Voiculescu separated from that concrete context the following 
abstract concept of 'freeness' and found it worth to be investigated on 
its own sake. The definition and the main properties of freeness do not 
require an operator algebraic frame, but can be formulated on the level 
of unital algebras and unital linear functionals. 

Definition 2.1. Let A be a unital algebra and cp : A • C a linear 
functional with cp(l) = 1. 
1) Let A1, ... , Am C A be unital subalgebras. The subalgebras 
A1, ... , Am are called free, if cp(a1 · • • ak) = 0 for all k E N and all 
a; E Ai(i) (1 $ j(i) $ m) whenever cp(a;) = 0 for all i = 1, ... , k, 
and neighbouring elements are from different subalgebras, i.e., j(l) # 
j(2) # · · · # j(k). 
2) Elements a1, ... , am E A are called free, if Ai, ... , Am are free, 
where, for i = 1, ... , m, A; := alg(l, a;) is the unital algebra generated 
by a;. 

*Supported by a Heisenberg-Fellowship of the DFG. 

334 



ROLAND SPEICHER 

Voiculescu chose the name 'free' because the basic example where 
such situations occur are von Neumann algebras which are constructed 
from free groups (the so-called free group factors). 

The basic philosophy for the investigation of the concept 'freeness' 
is to consider it as an analogue of the concept 'independence' from 
classical probability theory. Hence we are using a probabilistic kind of 
language and are usually guided by concepts and ideas from classical 
probability theory. In this sense, the theory of freeness can be consid
ered as a part of non-commutative probability theory and it is usually 
referred to as 'free probability theory'. 

Let us first introduce some general notions from non-commutative 
probability theory. 

Notations 2.2. A pair (A, rp) consisting of a unital algebra A and a 
unital linear functional rp : A -+ C is called a (non-commutative) 
probability space, elements a1, ••• , am from the given algebra A 
are called random variables and expressions like rp(a;ci) • • • a;(k)) are 
called moments. The collection of all moments, for all k E N and 
all 1 :5 j(l), ... ,j(k) :5 m, is called the (joint) distribution of the 
random variables a1, ... , am. 

Remark 2.3. One should note that in the case of one self-adjoint 
bounded random variable a = a• E B(1l), one can identify the so
defined distribution of a indeed with a probability measure µ on JR by 
the requirement that the moments of a coincide with the moments of 
µ, i.e. 

(1) for all n EN. 

In that case we will denote this probability measure also with distr(a). 
In general, the distribution of random variables cannot be identified 
with some kind of probability measure, but is just a collection of num
bers. 

Examples 2.4. Let us now give some examples of probability spaces 
and distributions in this general algebraic sense - in order to become 
familiar with this kind of notations and to introduce some basic frame 
for our later investigations. 
1) Classical probability spaces. Classical probability spaces 
(!l, Q, P) - consisting of a set n, a o--algebra Q of measurable sub
sets of n and a probability measure P on n - can be treated in this 
frame by setting, e.g., A= L'"'-(!l) := U~1V'(!1) and where rp =Eis 
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the expectation 

(2) cp(X) = L X(w)dP(w) (XE A). 

2) Matrices. Let, for n E !II, A = Mn be equal to the n x n-matrices. 
A canonical state on this is given by the normalized trace cp = tr, i.e., 
for a= (aii)iJ=l EA we have 

1 n 
(3) cp(a) = - L ll;i• 

n i=l 
One should note that for self-adjoint matrices a = a• the distribution 
distr(a) is nothing but the eigenvalue distribution of a, i.e., if ,\1 , ... , An 
are the (real) eigenvalues of a, then distr(a) is that probability measure 
on JR which puts mass 1/n on each of the eigenvalues, i.e. 

1 n 
(4) distr(a) = - t" O>, .. 

n~' 
i=l 

3) Random matrices. Random matrices are a combination of (1) 
and (2), namely matrices whose entries are classical random variables: 
A = Mn ® £00-{!1) and cp = tr® E, i.e., a E A are of the form 
a= {%):'J=l' where the entries% E £ 00-(!1), and 

(5) 1 n 1 n l 
cp(a) = E[- La;.]= - L a;,(w)dP(w). 

n i=l n i=l n 
In the case of a self-adjoint random matrix a = a•, the distribution 
distr(a) is the averaged eigenvalue distribution of a. 

To enrich the general frame of non-commutative probability theory 
by some substance one has to add additional structure. In free prob
ability theory this is the concept of 'freeness'. In analogy with the 
concept 'independence' it should be considered as a rule for calculating 
mixed moments in free random variables. This might not be directly 
clear from the definition, so let us present some examples to get familiar 
with the concept of freeness. 

Examples 2.5. Let x and y be free random variables (with respect 
to a given unital functional cp). We want to calculate some mixed 
moments in x and y. 
1) The simplest mixed moment is cp(xy). The definition of freeness 
tells us immediately that cp(xy) = 0, if cp(x) = 0 and cp(y) = 0. But 
we can also reduce the general case to the definition by going over to 
centered variables: since :i; := x - cp(x)l is an element from the unital 
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algebra generated by x with the property rp(.i) = 0, and similarly for 
if:= y - rp(y)l, we have that rp(xy) = O; however, by linearity, we also 
have 

0 = rp(xy) = rp((x - rp(x))(y - rp(y))) = rp(xy) - rp(x)rp(y). 

Hence we have in general for free variables x and y that 

(6) rp(xy) = rp(x)rp(y). 

2) The mixed moment rp(xxyy) calculates in the same way by going 
over to the centered variables: 

yields 

(7) 

rp((x2 _ rp(x2))(y2 _ rp(y2))) = 0 

rp(xxyy) = rp(xx)rp(yy). 

3) Let us also consider a more complicated mixed moment: 

rp((x - rp(x))(y - rp(y))(x - rp(x))(y - rp(y))) = 0 

leads to 
(8) 

rp(xyxy) = rp(xx)rp(y)rp(y) + rp(x)rp(x)rp(yy) - rp(x)rp(y)rp(x)rp(y). 

Remarks 2.6. 1) The last example shows that freeness gives a differ
ent result than independence. Although both concepts are analogous, 
they provide different rules for calculating mixed moments. In particu
lar, freeness is not a non-commutative generalization of independence. 
2) If x and y are classical random variables, then, in particular, they 
commute, i.e. we have in this case that rp(xxyy) = rp(xyxy). However, 
for x and y free we have quite different expressions for these two mixed 
moments and one can easily see that they can only agree if at least 
one of the two variables is a constant. Thus classical random variables 
are, apart from trivial cases, never free. Freeness is really a concept for 
non-commuting variables. 
3) As the last example above indicates the formulas for mixed moments 
in free variables are more complicated than the corresponding formulas 
for independent variables and it is not clear from the definition of free
ness how the structure of a general mixed moment can be described. 
However, there is a nice combinatorial structure behind these formu
las. I have shown that their structure is ( via so-called free cumulants) 
governed by the lattice of non-crossing partitions ( see, e.g., the survey 
[Sp2]). This description is totally analogous to the description in clas
sical probability theory via cumulants and the lattice of all partitions 
and it provides an alternative approach (compared to the analytical 
approach of Voiculescu) to the theory of free random variables. 
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Let me end this short introduction into the generalities of free prob
ability theory by pointing out that there are two fundamental types 
of examples for free variables: The definition of freeness is modeled 
according to the situation occurring in free group factors, thus it is not 
very surprising that special operators in free group factors ( or more 
concretely, special operators on full Fock spaces) are free. But there 
is also a totally different context where free variables arise, namely it 
is one of basic results of Voiculescu [Vl] that special n x n-random 
matrices become free in the limit n -+ oo. I will be more concrete on 
such types of examples when I present the free Brownian motion. 

3. FREE DIFFUSION 

As pointed out before one of the basic philosophies in free probability 
theory is to consider freeness as an analogue of independence. Thus one 
tries to develop a free theory which goes parallel to classical probability 
theory. Astonishingly, this analogy is very far reaching and there exist 
a lot of (non-trivial) free counterparts of classical results. 

In the following I want to illuminate this general statement by a 
recent joint work [BSpl, BSp2] with Philippe Biane on free diffusion. 

3.1. Classical diffusion. Let me first explain what I mean with the 
corresponding classical notion. If V : JR -+ JR is a sufficiently nice func
tion ( called potential in the following), one can consider the classical 
diffusion in this potential. On one side there is a probabilistic construc
tion of this object, namely it is a stochastic process {X1)i>o which is 
given as the solution of a special stochastic differential equation. What 
I call here 'diffusion in the potential V' is the solution of 

{9) dXt = -~V'(Xi)dt+dBt, 

where Bi is classical Brownian motion. 
There exists also an analyical aspect of this diffusion, namely if we 

denote, for fixed t ~ 0, by distr{X1) the distribution of the random 
variable Xi, then this is a probability measure on JR which has a density 
with respect to Lebesgue measure. Denote this density by p1• Then 
one can write down a differential equation for the time evolution of this 
density, namely 

{10) 8p1(x) = !i_ [(i_ V'( )) ( )] 8t 28x ax+ x Pt x . 

This linear partial differential equation is usually called the Fokker
Planck equation of the corresponding diffusion and, from an analytical 
point of view, one can consider the diffusion also as a solution of that 
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equation. Furthermore, there exist also connections between such dif
fusions and classical entropy. 

The problem which I want to address in the following is whether 
there exist a free counterpart of these statements, i.e., can we define a 
free diffusion as a solution of a free stochastic differential equation and 
is there a corresponding free Fokker-Planck equation. In order to speak 
about free stochastic differential equations, we first have to introduce 
free Brownian motion. 

3.2. Free Brownian motion. In analogy with classical Brownian mo
tion one could define free Brownian motion [Spl] abstractly as a (non
commutative) stochastic process, i.e. a collection (Si)t>o of random 
variables, which have the properties that their increments are free and 
that the distribution of the increments is given by the free analogue 
of the Gaussian distribution (which is what one gets as the limit dis
tribution in a free central limit theorem). It is easy to verify that, 
by abstract reasons, such an object exists and that its distribution is 
uniquely determined. Fortunately, there are also nice concrete realiza
tions of free Brownian motion. 

Examples 3.2.1. In the spirit of the last statement in Sect. 2 there 
exist two such realizations, a functional analytic one by concrete oper
ators on Fock spaces and a probabilistic one by random matrices. 
1) Realization on full Foclc space. Denote by 1i the Hilbert space 
1i := L2 (lR+) and Jet 

(11) :F(1i) := ?i®O El) ?i®l EB 1i®2 EB ••• 

be the full Fock space over 1i, where ?f.®O is a one-dimensional Hilbert 
space which we write in the form 1i®0 = en for a distinguished vector 
n of norm l. n is also called vacuum. For each vector I E ?i, we define 
on :F(1i) a creation operator l(f) and an annihilation operator l*(f) 
by linear extension of 

(12) 

and 

(13) 

(14) 

1(/)11 (81 '' '(81 In =I® Ii (81''' (81 In 

l*(f)fi ®·--®In= (/,11)'2® ···®In 
Z*(f)n = o. 

The operators l(/) and l*(/) are bounded and adjoints of each other. 
Now put 

(15) S1 := 1(110,1)) + 1*(110,1)), 
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where l[o,t) is the characteristic function of the interval [O, t). Then 
it is quite easy to check that (Se)t>o is with respect to the vacuum 
expectation state cp, given by -

(16) cp(a) := (n, an), 

indeed a free Brownian motion. 
The von Neumann algebra generated by all Se (t ~ 0) is isomorphic to 
a free group factor, and this example comes from the original context 
of Voiculescu's investigations on the free group factors. Thus the ap
pearance of freeness in this context is not very surprising. 
2) Realization by random matrices. Let, for 1 ~ i ~ j < oo, 
B;;(t) be independent classical real-valued Brownian motions, and put 
B;;(t) = B;;(t) for j > i. We put now these Brownian motions as 
entries in a matrix, i.e. we consider the selfadjoint random matrices 

(17) (n) 1 ( ( ))n xt := In B;; t i,j=l 

in the probability space (Mn® £ 00-(0), \O(n) =tr® E). (These special 
random matrices are usually called Gaussian random matrices.) Then 
the basic result of Voiculescu [Vl] on the connection between freeness 
and random matrices tells us that the processes (Xt))t>o converge in 
distribution, for n • oo, towards the free Brownian motion (St)t>O• 
This means that -

(18) ;~ cpCnl(xtl · · · xtl) = \O(St, ···St.) 

for all k E N and all t1 , •.. , tk ~ 0. Thus, in a sense, free Brownian 
motion can be considered as an oo x oo-random matrix. However, one 
should note that this is not just an infinite array of entries, but the 
crucial information lies in the state. There exists no normalized trace 
on infinite arrays, and freeness is the mathematical structure which 
survives under taking this limit. 

Remark 3.2.2. The realization of free Brownian motion by random 
matrices gives us an interesting connection with systems of interacting 
particles. Namely, for fixed t, we know that the distribution distr(xtl) 
is the averaged eigenvalue distribution of these n x n-random matri
ces and thus free Brownian motion describes in particular also the 
behaviour of the eigenvalues of Gaussian n x n-random matrices in 
the limit n • oo. However, it is well known that the eigenvalues of 
such Gaussian random matrices are not independent, but they behave 
like electrically charged particles in two dimensions, i.e. like particles 
with a special type of pair-interaction. In a probabilistic language, the 
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eigenvalues of the random matrices xt> obey the stochastic differential 
equation 

1 l"' 1 d.>.;(t) = -dB;(t) + - L., --dt 
,In n ,s;s• >.; - Aj 

(19) (i = 1, ... , n), 

J#i 

where B;(t) (i = 1, ... , n) are independent classical Brownian motions. 
In the limit n -+ oo, the diffusive term can be neglected compared 

to the deterministic term and thus this limit corresponds to a system 
of infinitely many particles which interact with each other by a special 
type of pair interaction. Free Brownian motion provides thus in par
ticular the description for such a system of infinitely many interacting 
particles. 

3.3. Free stochastic differential equations. The next step is to 
develop a stochastic calculus with respect to free Brownian motion 
in order to be able to define and deal effectively with corresponding 
stochastic differential equations. By integration the meaning of a sto
chastic differential equation is reduced to the meaning of the corre
sponding stochastic integrals. In our case, this means that we have 
to define objects like J A1dS1B1, where dS1 is the increment of the free 
Brownian motion and where (At)t>o and (B1)t>o are adapted processes. 
((At)t>o adapted means that, for-each t ~ 0,-A1 is an element of the 
von Neumann algebra generated by all S, with s ~ t.) In contrast to 
the classical case, our processes and the increments do not commute, 
so one should really consider this bilinear integral in (At, B1) instead 
just a one-sided integral. Such stochastic integrals are defined as usual, 
namely for elementary processes, which are constant on time intervals 
I; and take there a fixed value A; or B;, the integral is defined as 

(20) J A1dS1Bt := L A;S(I;)B;, 
1 

where S(I;) is the increment of the free Brownian motion over the 
interval I;. Then one has to prove estimates for such integrals in some 
suitable norms and extend the definiton of the integral to the closure 
of elementary functions under the involved norms. The easiest norm 
estimate is an L2-estimate which works in the same way as for other 
stochastic calculi and which yields the usual Ito-isometry. Results of 
Pisier and Xu [PX] on non-commutative martingales can be used to 
obtain V'-estimates for p < oo. Whereas such kind of estimates are 
also true for other kind of stochastic calculi, a very specific feature of 
the free calculus is that one can also derive L00-estimates, i.e. one can 
estimate the integrals in operator norm. 
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Theorem 3.3.1. ([BSpl]} Let (At)t>o and (Bt)t>o be adapted pro-
cesses. Then we have - -

(21) II/ AtdStBtll $ 2/2(/ IIAill2 • IIB1Jl 2dt)112 • 

Having established the existence of the free stochastic integrals in 
nice topologies one can continue to investigate the corresponding sto
chastic calculus. There exists also a free Ito formula [KSp, BSpl], 
which, on a formal differential level, states that 

(22) dS1AdSt = rp(A)dt for A adapted. 

This should be compared to the classical Ito formula dBtAdB1 = Adt. 
The differences between the usual stochastic calculus and the free sto
chastic calculus can, on a formal level, be reduced to this difference 
between the corresponding Ito formulas. 

One can also derive free analogues of classical stochastic analysis. In 
[BSpl] we treated, e.g., iterated stochastic integrals, which give rise to 
a chaos decompositon of the L2-space of the free Brownian motion and 
allow to prove a representation theorem for martingales or to extend the 
free Ito integral to a free Skorohod integral for non-adapted processes. 

3.4. Free diffusion. 

Definition 3.4.1. We will consider the free stochastic differential 
equation 

(23) 

We call the solution of (23), if it exists, the free diffusion in the 
potential V. 

Remark 3.4.2. In the same way as free Brownian motion describes 
the behaviour of infinitely many particles which interact with a spe
cial pair-interaction, the free diffusion in the potential V describes the 
behaviour of such particles if we put them in addition into a potential 
V. 

Theorem 3.4.3. ([BSp2]} Let X0 be free from the free Brownian mo
tion (Si)t>O and V' be sufficiently smooth {e.g., V' E C2 ). 

1) Then there exists a unique solution (X1bo of the equation {23}. 
Furthermore, we have that Xt lies in the c• --algebra generated by X 0 

and all S, withs$ t and that the mapping t I-? X 1 is II· JI-continuous. 
2) The distribution of X 1 is absolutely continuous with respect to 
Lebesgue measure, distr(X1) = Pt(x)dx, where the density Pt is bounded 
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(but not smooth in general) and a weak solution of the following free 
Fokker-Planck equation 

8pt(X) 8 [ 1 / ) 
(24) ~ = - Bx (Hpt(x) - 2 V (x))Pt(x) , 

where His (up to a constant) the Hilbert transform, i.e. 

(25) Hp(x) := f p(y) dy. 
x-y 

Remarks 3.4.4. 1) Note that the free Fokker-Planck equation (24) is 
compatible with the picture of infinitely many interacting particles in 
the potential V: the particles at position x feel a force coming via the 
pair-interaction from the other particles at all possible positions y and 
in addition the force V 1(x) coming from the potential. 
2) The structure of the free Fokker-Planck equation is on a formal level 
very similar to the classical Fokker-Planck equation (10); the only dif
ference is that the second derivative is replaced by the Hilbert transform 
Hp1; however, this changes of course totally the nature of the consid
ered equation; instead of a second-order linear we have now a first-order 
non-linear partial differential equation. The non-linearity reflects the 
fact that we are dealing with interacting particles; in contrast, classical 
free diffusion can be thought of as infinitely many diffusing particles in 
the potential V without any interaction. 

3.5. Free diffusion and free entropy. The above mentioned results 
show a formal analogy between classical diffusion and free diffusion. 
But this analogy goes much further. As mentioned in Sect. 2, there 
exists a relation between classical diffusion and classical entropy. There 
is also a free counterpart of that. Voiculescu introduced free analogues 
of the classical notions of entropy and Fisher information [V4, V5]. A 
relative version (with respect to V) of these are as follows. (V = 0 
corresponds to the original definition of Voiculescu). 

Notations 3.5.1. The relative free entropy and the relative free 
Fisher information are given by 

(26) ~v(µ) :=ff log Ix - yjµ(dx)µ(dy) - f V(x)µ(dx) 

and (for µ(dx) = p(x)dx) 

(27) Iv(µ):= 4 f (Hp(x) - iv1(x)) 2p(x)dx, 

respectively. 

With these notations we have the following theorem. 
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Theorem 3.5.2. ([BSp2]) Let (Xt)t;,:o be the solution of the free dif
fusion equation {29). Then we have 

(28) 

In particular, I:v(X1) is increasing with t. 

If we replace Ev and Iv by their classical counterparts then the same 
theorem is true for classical diffusion. 

3.6. Conclusion. Formally there exists a very far reaching analogy 
between the theory of free diffusion and the theory of classical diffusion. 
However, free diffusion and classical diffusion describe quite different 
situations. Whereas the latter provides a theory for diffusing particles 
without interaction the former describes particles with a special type of 
pair-interaction. It is very surprising (but also exciting and promising) 
that a special type of interaction behaves in a very probabilistic way. 
Free probability theory seems to be the right tool for dealing with this 
kind of interaction. 
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