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Abstract 

In this note we present a Girsanov-type formula which turns ( central) Bessel processes on 
[O, oo[ of arbitary indices into non-central ones. It will be shown that this result may be 

seen as a special case of a general Girsanov formula for Levy processes on commutative 

hypergroups which connects Levy processes on different hypergroup structures on the 

same ground space, where the associated convolutions are related by some deformation. 

1 Introduction 

In this paper we present some. Girsanov formula for Levy processes on commutative hy

pergroups. We first illustrate the main result with Bessel processes on [O, oo[, as these 

processes may be regarded as Levy processes on the so-called Bessel-Kingman hypergroups; 

the understanding of this example requires no knowledge about hypergroups. 

We start with an n-dimensional Brownian motion (Bt)t;;:o defined on the Wiener space 

(!1, F, P) with 

n = C(IR.n) := {f: [O, oo[• IR.n, f continuous}, 

which carries the right-continuous, complete induced filtration (Ft)t;;:o as usually with F = 
u(F1 : t ~ 0). The classical formula of Girsanov then in particular implies that for any drift 

vector c E IR." there is a unique probability measure Q0 on (!1,F) with 

for t ~ 0, 

and with respect to Q0 , the process (Bt)t;;:o is a Brownian motion on IR.n with drift c. 

Moreover, for 

cI> : IR.n - [O, oo[, x >-• lxl = (x~ + ... + x~)112 , 
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the process (w(Bt))t?O is a Bessel process of dimension n; see [RY) for details. This process 

may be regarded as coordinate process (X1)t?D on (fl,:F,P) with 

fl:= {J: [O, oo[• [O, oo[, f continuous}, 

with the canonical er-algebras, and with P as image of P under the projection 'V : !1 • fl 
which is uniquely determined by 

for t ~ 0. 

Using the rotation invariance of (Bth?o and the integral representation 

in/2-1(x) := ( ei<x,y> dUn-1(y) (x EC) 
lsn-1 

of the spherical Bessel function in/2_1 (with Un-I the uniform distribution on the unit 

sphere sn-J C !Rn; see 9.1.20 of [AS)), we obtain for any drift c E IR" that the distribution 

Qc := w(Qc) E M 1(fl,:i) satisfies 

Qclp, = e-!llcll~/2in/2-J (illclbX1)Plp, for t ~ 0. 

Moreover, as for a Brownian motion (B1)t?O on !Rn with drift c the process (w(B1))t?O is a 

non-central Bessel process with dimension n and non-centrality parameter llcll2, it can be 

derived from the classical Girsanov formula that, with respect to Qc, the coordinate process 

(Xt)t?O is such a process. As there exist central and non-central Bessel processes also for 

"fractional dimensions" n E JR, n ~ l, it is natural to ask whether the change of measure 

above here also turns central Bessel processes into non-central ones. We shall give a positive 

answer in Theorem 3.8 below. 

We shall show below how this result may be regarded as a special case of a Girsanov

type formula for Levy processes on commutative hypergroups of the following kind: Let 

(Xt)t?O be a Levy process on some commutative hypergroup (K, *) that is associated with 

some convolution semigroup (µ1)t?O• Then, for any positive semicharacter a of (K,*), 

the hypergroup convolution * can be deformed into some new hypergroup convolution, say 

• (see [BH, Vl, V2)). We shall show that under some growth condition, (µ1)t?O can be 

transformed into some convolution semigroup (iit)t?O on (K, o), and that some Girsanov

type change of measure transforms (X1)t?o into a Levy process on (K, *) associated with 

(iith?o. The proof of this result will be based on a martingale cl!aracterization of Levy 

processes in terms of hypergroup characters; see [RV]. This main result will be discussed 

in Section 2 of this paper. Section 3 will be devoted to several examples and includes, in 

particular, a discussion of Bessel processes. 
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We finally mention that the results of this paper are completely disjoint to Girsanov 

formulas for Brownian motions on Lie groups (see [I, Karl), as groups do not admit nontrivial 

positive sernicharacters and hypergroup deformations. On the other hand, we hope that 

martingale characterizations of Levy processes on locally compact groups in [V3, V 4] in 

terms of group representations may be used to generalize the results of [Kar]. 

2 Renormalization of commutative hypergroups and a 

Girsanov-type formula 

We first recapitulate some notations and facts about Levy processes on commutative hyper

groups. For details on hypergroups we refer to the monograph [BH] and to [J]. 

2.1. Commutative hypergroups. A commutative hypergroup (K, *) consists of a locally 

compact space K together with a commutative, weakly continuous, probability preserving 

convolution * on the Banach space Mb(K) of all bounded regular Borel measures on K 

satisfying certain axioms which are well known from convolutions of measures on locally 

compact abelian groups. We denote the identity of (K, *) by e, and the hypergroup invo

lution by . - . It is well known (see [S]) that each commutative hypergroup (K, *) admits a 

Haar measure w(K,•) which is unique up to some multiplicative constant. The dual space 

f?• := {a E Cb(K): a"¢ 0, j ad(o,, * oy) = a(x)a(y) forallx,y EK} 

is a locally compact space w.r.t. the topology of compact-uniform convergence. Elements of 

R• are called characters. 

The Fourier transforms off E L1(K,w(K,•)) and µ E Mb(K) are given by 

!*(a)= { a(x) f(x) dw(K •J(x) lK ' and µ'(a) = l a(x) dµ(x) (a EK*) 

respectively. It is also well-known (Jewett [J]) that R• carries a unique Plancherel measure 

'lr(K,•) such that the Fourier transform on L1(K,w(K,•)) nL2(K,w(K,•)) extends uniquely to 

an isometric isomorphism between L2 (K, w(K,•)) and L2(K, 'lr(K,•)). Notice that sttpp'lr(K,•) 

may be a proper subset of R•. We here notice that the Fourier transform 

is injective (see Theorem 2.2.4 of [BH]). 

2.2. Convolution semigroups and Levy processes. A family (µ1)12:0 C M 1 (K) of prob

ability measures on a commutative hypergroup (K, *) is called a convolution semigroup, if 
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µ, * µ 1 = µ,+t for all s, t ~ 0 with µ 0 = Oe, and if [O, oo[ • M1 (K), t t-+ µ1 is weakly 

continuous. 

Let (µ1)1~o be a convolution semigroup on (K,*). AK-valued Markov process X = 
(X1)1~0 with filtration (.1'1)1~0 (and defined on some probability space (!1, :F, P)) is called 

a Levy process on (K,*) associated with (µ1)1~o and (:F1) 1~o, if its transition probabilities 

satisfy 

P(X1 E Al X, = x) = (µ1_, * 8,,)(A) (0 ~ s ~ t, x EK, ACK a Borel set). 

If the process X above is defined on a time interval [O, T] only and has the properties above 

there, then it is called a restriction of a Levy process on (K, *) associated with (µ1)1~o and 

(.1'1lt~o. 

It can be easily checked that all (restricted) Levy processes on (K, *) are Feller pro

cesses and hence admit cadlag versions; see [RV]. Moreover, one can construct martingales 

from Levy processes on ( K, *) by using hypergroup characters. The following version of a 

martingale characterization of Levy processes on commutative hypergroups was derived in 

[RV]; it is closely related with other versions for general (homogeneous) Markov processes 

as discussed, for instance, in Ch. 4 of (EK]. 

2.3. Lemma. Let (µ 1) 1~o be a convolution semigroup on the commutative hyperyroup (K, *). 

Then for each stochastic process X on K, which is adapted w.r.t. some filtration (:Ft)t~o, 

the following statements are equivalent: 

{1} X is a Levy process on (K, *) associated with (µ1)1~0 and (:F1)1~0-

{!2} For each a E f?•, the C-valued process (µi'(o)-1 ·a(X1))1~o is an (:Ft)r~o-martingale. 

(3) For each a E supp 1r, the process (µ1(0)- 1 · a(X1))1~o is an (:F1) 1~o-martingale. 

An inspection of the proof of this lemma in (RV] shows that a corresponding result also 

holds for restricted Levy processes. 

2.4. Renormalization of commutative hypergroups. For commutative hypergroups 

(K, *), the support supp 'lr(K,•) of the Plancherel measure may be a proper subset off?•. 

It was observed in [Vl] that this property is closely related with the fact that commutative 

hypergroups (K, *) may admit positive semicharacters, i.e., positive functions ao E C(K) 

that admit all properties of characters except that they may be unbounded. It was shown 

in [Vl] that each positive semicharacter a0 on a cornmutatice hypergroup (K, *) induces a 

new hypergroup structure (K, •) (where, by convention, the underlying positive semichar

acter ao as index will be suppressed); the convolution • is determined uniquely by the 

349 



convolution of point measures: 

(x,y EK). 

Identity and involution of (K, •) are the same as of (K, *). We next give a list of further 

connections between the data of the hypergroups ( K, *) and ( K, •); for details see [Vl]: 

(1) Ifµ, v E Mb(K) satisfy aoµ, aov E Mb(K), then aoµ • aov = ao(µ * v). 

(2) W(K,•) := a5w(K,•) is "the" Haar measure of (K, •). 

(3) The dual space of (K, •) is given by 

R• := {a/ao: a a semicharacter of (K,*) with !al~ ao}-

(4) If 1T(K,•) denotes the Plancherel measure of (K, •) on R•, then the mapping 

R•---+ R•, a >---t a/ao is a homeomorphism that maps 11"(K,•) into 11"(K,o). 

(5) The hypergroups (K, •) and (K, •) may be interchanged above by using the fact 

that 1/ ao is a positive semicharacter of (K, •), and that the associated renormalized 

hypergroup structure is just the original hypergroup (K, *). 

Let ao be a positive semicharacter on a commutative hypergroup (K, *). We now show 

how convolution semigroups on (K, *) can be transformed into convolution semigroups on 

(K, •). For this we say that a convolution semigroup (µ 1)t~o on (K, *) is ao-continuous 

whenever 

[0, oo[• [0, oo[, t >---t h(t) := l ao dµt 

is finite and continuous. If ao E R• is a positive character, then clearly each convolution 

semigroup on (K, *) is ao-continuous. 

2.5. Lemma. Let ao be a positive semicharacter and (µ 1)t~o an ao-continuous convo

lution semigroup on (K,•) Then, for all s,t ;:;=: 0, h(s) · h(t) = h(s + t), and (µf 0 := 

iiftj · aoµi) 1~ 0 is a convolution semigroup on (K, •). 

Proof. Clearly, µf 0 E M 1(K) for all t e': 0. Hence, for all s, t e=: 0, µ~• • µf' E M 1(K). 

Moreover, by Section 2.4, 

00 00 _ 1 ( ) ( ) _ 1 ( ) _ h(s + t) 1 
µ, • µt - h(s)h(t) aoµ, • aoµt - h(s)h(t) ao µ, * µi - h(s)h(t) h(s + t) aoµs+t• 

As h(s~t)aoµ,+t E M1(K), it follows that h(s) · h(t) = h(s + t) and µ~• • µf0 = µ~tt• The 

continuity of h finally ensures that t t-+ µf0 is vaguely and hence weakly continuous. D 
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The following Girsanov formula connects Levy processes associated with (µtlt;;:o and 

(µf 0 )t;;:o • 

2.6. Theorem. Let ao be a positive semicharacter and (µt) 1;;:o an ao -continuous convo

lution semigroup on the commutative hypergroup (K, *). Let (X1)t;;:o be a Levy process on 

(K, *) with filtration (Ft)t;;:o and with convolution semigroup (µ 1)t;;:o that is defined on some 

probability space (n, F, P). Then for each T :::: 0, the process (Xtlte[o,T] on the probability 

space (!l,Fr, iit½ao(Xr) • P) is the restriction of a Levy process on (K,•) associated with 

(µf")t;,:o • 

Proof. As (Xt)1;;:o is a Levy process on (K, *) with filtration (.r1)t;;:o and with convolution 

semigroup (µt) 1;;:o, we see that for alls, t:::: 0 and P-almost all w En, 

E(ao(Xs+t)IF,)(w) = E(ao(Xs+t)IX,)(w) = l ao d(µt * <lx,(w)) = h(t) · ao(X,(w)). 

Using h(s + t) = h(s)h(t), we obtain that (Zt := ;;tiycro{X1))t;;:o is a positive (Ft)i;;:o

martingale with E(Z1) = 1. In particular, (Zt · Pl,:-,)t;;:o is a family of probability measures 

with 

(Zt · PIF,)J', =Zs· Pl.rs for s, t:::: 0. 

Now let a E supp 1r(K,•) be a character of (K, •) contained in the support of the 

Plancherel measure. Section 2.4 shows that a := a • ao is a character of (K, *), and, 

by the definition of µr• , 

;:;;(&) = l a(x)ao(x) dµt(X) = h(t). (µr")"·(a) (t:::: 0) 

where."• denotes the Fourier transform w.r.t. (K,•). Lemma 2.3 now yields that 

is an (Ftlt;,:o -martingale on (n, F, P). Using the properties of (Z1) 1;;:o, we see that for 

T>O, 

is an (.r1) 1e[o,TJ -martingale on the probability space (fl, F, ZrP). As this holds for all 

a E supp 1r(K,•), Lemma 2.3 implies that the process (Xtlte[o,T] on (n, F, ZrP) is the 

restriction of a Levy process on (K, •) associated with (µr"lt;;:o. D 

We now give an extension of the preceding result to the complete time interval [O, oo[. 

351 



2. 7. Theorem. Let ao be a positive semicharacter and (µ1lt:2:o an ao -continuous convolu

tion semigroup on the commutative Polish hypergroup (K, *)- Let (X1) 1:2:o be a Levy process 

on (K, *) associated with (µt)t;?:O defined on the probability space (11, F, P) with 

11 = 'D(K) := {/: [0,oo[• K, f cadlag} 

and equipped with the right-continuous and complete induced filtration (F1lt:2:o. Then there 

exists a unique probability measure Q on (11, a(F1 : t 2: 0)) with 

for t 2: 0, 

and with respect to Q, the process (Xt)1:2:o is a Levy process on (K, •) associated with 

(µf 0 )t;?:0 · 

Proof. In view of the proof of the preceding result it suffices to check existence and unique

ness of Q. Uniqueness, however, is clear, and the existence follows from Lemma 16.18 of 

[Ka!]. • 
2.8. Remark. Lemmas 2.3 and 2.5 as well as Theorems 2.6 and 2.7 can easily be adapted 

to the setting of time-homogeneous random walks (Xn)n?:O on commutative hypergroups. 

2.9. Remark. Theorems 2.6 and 2.7 may be regarded as special cases of more general 

Girsanov-type formulas for Feller processes which satisfy certain technical restrictions. We 

shall present details of this generalization elsewhere and include some ideas here only: 

Assume that ao is a positive semicharacter and (µ1)1:2:0 an ao-continuous convolution 

semigroup on some commutative hypergroup (K, *). The associated Levy processes are 

Feller, and the generator G of the associated Feller semigroup on Co(K) is given by 

GJ(x) = lim ~(µ1 * J(x) - f(x)) 
1• 0 t (x EK, f E D(G)) 

where the domain D(G) of G is 11-lloo-dense in Co(K); see [RV]. Now consider the generator 

G00 of the Feller semigroup on C0(K) that is associated with the renormalized convolution 

semigroup (µf 0 ) 1:2:o on (K,•). Then, using the notation above, we have 

_ 1 _ 1 
((µf 0 ) • J)(x) = h(t) ((aoµ1) • J)(x) = h(t)ao(x) (µt * aof)(x) 

(seep. 408 of [Vl]). Moreover, by Lemma 2.5 we have h(t) = e<1 for some c E JR, and hence 
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limt• o t(l/h(t) - 1) = -c. Hence, 

G00 f(x)= lim !(((µf0 )- • f)(x) - f(x)) = lim ! (h( ) 1 ( ) (µt * aof)(x) - f(x)) 
t• O t t• O t t ClO X 

= __2_( ) lim ! (h(l) (µt • aof)(x) - (aof)(x)) 
etoXt• Ot t 

= __2_( )G(aof)(x) + __2_( ) lim(!(l/h(t) - l)(µt * aof)(x)) 
CIO X CIO X t• O t 

1 = -(-)G(aof)(x)-cf(x). 
CIO X 

Therefore, if M9 is the multiplication operator with some function g E C(K), then formally 

(2.1) coo = M1/oo o Go Mao - c 

where ao is an eigenfunction of G with eigenvalue c. 

We expect that Theorems 2.6 and 2. 7 can be extended in this way to arbitrary generators 

G of Feller semigroups on locally compact spaces K and arbitrary "eigenfunctions" ao E 

C(K) of G with eigenvalue c under certain restrictions concerning the domain of G. We 

mention that a related result for Feller processes on finite state spaces is given in Section 

IV.22 of [RW]. 

Lemma 2.5 admits the following converse statement: 

2.10. Lemma. Let ao be a positive semicharacter on (K, •) with ao ~ 1, and let (µt)t~o 

a convolution semigroup on (K, •) with generator G. Assume that 

coo := M1/oo o Go Mao - c 

(where c satisfies Gao = =o, and M is given as in 2. 9) is the generator of a convolution 

semigroup (µf0 )t~o on the modified hypergroup (K, •). Then (µ1)t~o is Clo-continuous, and 

(µf0 )t~o is equal to the convolution semigroup (µf•)t~o of Lemma 2.5. 

Proof. By our assumption, 1/c,0 is a positive character on (K, •). Now apply Lemma 

2.5 and Remark 2.9 to 1/ao and the 1/ao-continuous convolution semigroup (µf 0 )t~o on 

(K, •). Then the renormalization of • is just *, and the generator of the convolution 

semigroup on (K, •), which is the deformation of (µf 0 )t~o according to 2.5, is given by G. 

Hence, for t ~ 0, 

µt = --- 1-µf 0 where t >-t h(t) := { 1/ao dµf 0 is continuous. 
h(t) •ao JK 

This shows that the function h of Lemma 2.5 is equal to 1/h and hence continuous. The 

remaining assertions are now obvious. D 
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3 Examples 

In this section we present a few examples to which the Girsanov-type formulas 2.6 and 2.7 

may be applied. The most prominent examples will be Bessel processes which may be re

garded as Levy processes on the Bessel-Kingman hypergroups and their modifications. As a 

preparation we first discuss positive semicharacters on general Sturm-Liouville hypergroups 

on (O,oo(. 

3.1 Sturm-Liouville hypergroups on [O, oo[ 

(1) A function A E C((O, oo[) n C1 (JO, oo[) is called admissible if A(x) > 0 for x > 0, and 

if there exist constants f > 0, ao ;:::: 0 and a 1 E 0 00 (] - f, e[) with 

A'(x)/A(x) = °'0 +x·a1(x) for all xE]0,f[. 
X 

In the singular case ao > 0 we assume in addition that a 1 is even. 

(2) The Sturm-Liouville operator associated with an admissible A is defined by 

1 
LAJ(x) := - A(x). (A(x). J'(x))' for f E C2(]0,oo[), X > o. 

(3) A hypergroup ((0, oo(, *) is called a Sturm-Liouville hypergroup if there exists an 

admissible function A such that for each even f E C00 (IR.) the function u1(x,y) := 

It f d(ox * Oy) (x, y::::: 0) satisfies u, E 0 2((0, 00[2) with 

L:u(x, y) - L:u(x, y) = 0 and for x,y ::C:: 0 

where subscripts indicate variables with respect to which the operator £A is applied. 

3.1. Facts. Let ((0, oo(, *) be a Sturm-Liouville hypergroup associated with some admissi

ble function A that satisfies some further technical restriction; see (Z] and Ch. 3.5 of (BH]. 

Then the following statements hold: 

(l) p := ½ limx• oo A'(x)/A(x) exists with p ::C:: O; it is called the index of K. 

(2) A function a E C((O, oo[) is multiplicative on K, i.e., (ox* oy)(a) = a(x)a(y) for all 

x, y ::C:: 0, if and only if a E C2 ((0, oo[), and if a is the unique solution of the eigenvalue 

problem 

LAa = s., · a with a(O) = 1, a'(O) = 0 for some s0 EC. 

According to (BH, Z], we parametrize the eigenvalues by >.~ + p2 = s0 with >.., E IC. In 

this notation, the dual space K and the support of the Plancherel measure are given 
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by K = {a multiplicative: >.0 E [0,oo[Ui]0,p)} and supp1r = {a EK: >.0 E [0,oo[}. 
Moreover, a is a positive semicharacter if and only if >.0 E i · [0, oo[ holds; see [Vl, Z]. 

(3) If a is a positive character on ([0, oo[, *) with >.0 E i • [0, oo[, then the associated 

modified hypergroup ([0, oo[, •) is the Sturm-Liouville hypergroup associated with the 

admissible function A0 (x) := a(x)2 A(x); see [Vl]. 

3.2. Diffusions on [O, oo[ as Levy processes. It is well known (see [C,RV]) that for each 

Sturm-Liouville hypergroup ([0,oo[,*) with admissible A, the operator -LA is the gener

ator of a convolution semigroup (µ1)t~o on ([0, oo[, *). Now let a is an arbitrary positive 

character on ([0, oo[, *) with >.0 E i•[0, oo[. We now check that the assumptions of Theorems 

2.6 and 2. 7 are satisfied: 

3.3. Lemma. In the above setting, (µ1) 1~o is a-continuous with 

{"° ' 2 h(t) := Jo a dµt = e-t(>..+p l (t;?: 0) 

Proof. The lemma is obvious for a E R, i.e., >.; + p2 ;?: 0. Otherwise we have a > 1 

on [0, oo[ (see [BH] or [Z]) and we may consider the modified hypergroup ([0, oo[, •) with 

Aa := a2 A which is associated with a. A short computation yields 

(M1/a o (-LA) o M0 ) + >.; + p2 = -L"'A 

where, by our considerations above, -L"'A is the generator of a convolution semigroup on 

{[0,oo[,•). The lemma now follows from Lemma 2.10. D 

Theorem 2.7 now reads as follows in our present case: 

3.4. Theorem. Let ([0, oo[, *) be a Sturm-Liouville hypergroup with associated function A 

and index p. Then the operator 

A I d d 
-L = A(x) . dx (A(x). dx) 

is the generator of a convolution semigroup (µ 1)t~o on ([O, oo[, *). Let (Xt)1~o be an as

sociated Levy process ([0, oo[, *), i.e., (X1)t~o is a diffusion with generator -LA. Assume 

that (Xt)t~o is defined on the probability space (fl, :F, P) with 

fl := {/ : [0, oo[-t [0, oo[, f continuous} 

and is equipped with the right-continuous, complete induced filtration (:F1) 1~o. Then for 

each positive semicharacter a on ([0, oo[, *), there exists a unique probability measure Q on 

(fl, a(:F1 : t ;?: 0)) with 

for t;?: 0, 

and with respect to Q, the process (X1) 1~ 0 is a diffusion with generator -L"'A. 
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We now investigate concrete examples, namely Bessel processes which are Levy processes 

on the so-called Bessel-Kingman hypergroups. 

3.2 Bessel-Kingman hypergroups and Bessel processes 

3.5. Bessel-Kingman hypergroups (see [BH, J, Ki, RV]). For a first motivation, fix 

some integer n ~ 1 and consider the Banach spaces 

M;"d(IR.n) := {µ E Mb(R.n): A(µ)=µ for all rotations A E SO(n)} for n ~ 2 

and M;"d(IR1) := {µ E Mb(IR) : µ(B) = µ(-B) for all Borel sets B C IR} 

consisting of all "radial" measures on !Rn. M;•d(IRn) is a Banach-*-subalgebra of Mb(IRn), 

and the extension of the projection 4> : !Rn --t [O, oo[, x >---+ lxl = (x1 + ... + x~) 1l2 

to measures is an isometric isomorphism between the Banach- *-algebras Mtnd(Rn) and 

Mb([O, oo[) where the second space has to carry the corresponding convolution and involu

tion. This leads to a symmetric hypergroup ([O, oo[, *), the "Bessel-Kingman hypergroup of 

index a = n/2 - 1". 

The Bessel-Kingman hypergroup of arbitrary index a~ -1/2 is defined as the Sturm

Liouville hypergroup on [O, oo[ with admissible function 

A"(x) = x2"+1 for X ~ 0. 

The dual space is given by { \O~ : ,\ ~ O} where the \O~ satisfy rp~(x) := j 0 (>..x) with the 

normalized Bessel functions 

. ~ (-1Jkr(a+l) 2k 
Jo(z) = t:o 22kk! r(a + k + 1) z (z EC). 

3.6. Bessel processes. The convolution semigroup (pf)1;,:o on the Bessel-Kingman hy

pergroup of index a~ -1/2 with generator 

is given by the Rayleigh distributions 

(3.1) 
1 2" 2 

dp"(x) = --- -- x20+1 e-:z: /(2t) dx on [O, oo[ for t > O; 
t r(a + 1) t0 +1 

see 7 .3.18 of [BH]. Associated diffusions are called called Bessel processes of index a. Notice 

that in this notation, projections (4>(Bf))1;,:o of n-dimensional Brownian motions (Bf)t;,:o 

are Bessel processes of index a = n/2 - 1. 

We next consider the modification of Bessel-Kingman hypergroups. 
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3. 7. Modified Bessel-Kingman hypergroups and non-central Bessel processes. For 

any a<". -1/2 and p <". 0, the Bessel function 'Pfp is a positive semicharacter on the Bessel

Kingman hypergroup of index a. The associated modified Sturm-Liouville hypergroup will 

be called modified Bessel-Kingman hypergroup of index a and non-centrality parameter p; 

the associated admissible function is 

Ao,p(x) := x2o+l. ('Pfp(x))2 (x <". O}. 

Diffusions on [O, oo[ with the differential operator 

-£Ao,, / 2 =~~+(a + 1/2 +'Pf;).!!:_ 
2 dx2 x 'Pfp dx 

are called non-central Bessel processes with index a and non-centrality parameter p. 

To motivate these notions, consider the n-dimensional Euclidean space IR'.n ( n <". 1). Fix 

some non-centrality parameter p <". 0 and consider the multiplicative mapping 

hp : IR'.n -t]O, oo[, x >-+ e<c,,x> with Cp := (p, 0, ... , 0) E IR.n. 

By [V2], the vector space 

{µ E Mb(IR'.n) : µ = hp • v, v E Mt'"d(IR'.n) with compact support} 

is a subalgebra of Mb(IR'.n) whose total variation-closure M;ad,P(JR.n) is a Banach subalgebra 

of Mb(IR'.n). Similar as in Section 3.5, the projection <I> : IR'." -t [O, oo[ leads to an isometric 

isomorphism between the Banach algebras M;ad,p(IR.n) and Mb([O, oo[) where the latter 

has to be equipped with the corresponding "convolution". It can be easily verified (see 

[V2)) that [O, oo[ with this convolution is the modified Bessel-Kingman hypergroup of index 

a= n/2 - 1 and non-centrality parameter p. Moreover, if (Br•P)t?,o is an n-dimensional 

Brownian motion with drift Cp (i.e., (Br·P -tcp)t?,0 is a Brownian motion), then (<I>(Bf))t?,0 

is a non-central Bessel process with index a= n/2 - 1 and non-centrality parameter p. 

We now reformulate Theorem 3.4. 

3.8. Theorem. Let (X1)t?,O be a Bessel process on [O, oo[ of index a <". -1/2 which is 

defined on the probability space (!1, F, P) with 

!1 := {f : [O, oo[-t [O, oo[, f continuous}, 

and which is equipped with the right-continuous, complete induced filtration (Ft)t?,O. Then 

for each p <". 0, there exists a unique probability measure Q on (!1, a(Ft : t <". 0)) with 

for t <". 0, 

and with respect to Q, the process (Xt)t?,O is a non-central Bessel process with index a and 

non-centrality parameter p. 
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3.9. Remark. In this section we obtained non-central Bessel processes from central ones 

via hypergroup deformations. On the other hand we used some change of drift argument 

in the introduction for a = n/2 - 1, n E J\I, in order to obtain the same result. Both 
methods are, in fact, related from a more abstract point of view via deformations of orbit 

hypergroups; for the background and possible further examples we refer to (V2]. 
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