ON THE PRODUCT OF RIESZ SETS IN DUAL OBJECTS OF
COMPACT GROUPS

HIROSHI YAMAGUCHI

ABSTRACT. Let E; be a Riesz set in the dual object of a compact group K;(i = 1,2).
We show that the product set E; x E, is a Riesz set in the dual object of K; x K.
We also give a result on compact groups related to a result of Glicksberg and Graham
concerned with “small p set”.

1. INTRODUCTION

Let T and Z be the circle group and the integer group respectively. Z* denotes the
semigroup of nonnegative integers. By a well-known theorem of Bochner, each measure
on T2 whose Fourier-Stieltjes transform vanishes off Z+ x Z* is absolutely continuous
with respect to the Lebesgue measure on T2. This shows that the product set Z* x Z* of
the Riesz set Z* in Z is a Riesz set in T2 & Z x Z. This holds for locally compact abelian
(LCA) groups. For a LCA group G, let L*(G) and M(G) be the usual group algebra and
the Banach algebra of bounded regular measures on G respectively. For p € M(G), i
stands for the Fourier-Stieltjes transform of y. Let mg denote the Haar measure of G.

Definition 1.1. Let G be a LC’AA group with the dual group G, and let p € N (the natural
numbers). A closed subset E of G is called a small p set if

»
(1.1) Vo€ Mp(G) = P =5x -+ € LYG),

where Mg(G) = {p € M(G) : i = 0on E¢}. In particular, a small 1 set is called a Riesz
set.

Theorem 1.1 (cf. 12, Corollary], [10, Theorem 6]). Let G1 and G2 be LCA groups, and
letp € N. Let Md E; be small p sets in G and G respectively. Then E, x E; is a
small p set in G, ® Gs.

A condition for a set in the dual group of a LCA group to be a small 2 set was obtained
by Glicksberg([6]) and Graham([7]).

Theorem 1.2 (cf. {7, Therem 1(b)]). Let G be a LCA group, and let E be a closed set
in G satisfying the following:

(1.2) {re@G: mg(E N (y — E)) < oo} isdensein G.
Let p,v € Mg(G). Then |u| * |v| € LY(G). In particular, E is a small 2 set.

On the other hand, the author proved that the product set of a Riesz set in the dual
group of a compact abelian group and a Riesz set in the dual object of a compact group
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is a Riesz set ([16, Corollary 2.1]). In this paper, we shall show that results corresponding
to Theorems 1.1 and 1.2 hold for (noncommutative) compact groups. In section 2, we
state notation and our results. In section 3, we give the proofs of our results.

2. NOTATION AND RESULTS

We often quote notation from the book of Hewitt and Ross ([9]). Let K be a compact
group, and let ©x be the dual object of K, i.e., the set of equivalence classes of all
continuous irreducible unitary representations of K. For a closed normal subgroup H of
K, A(Zk, H) denotes the annihilator of H in Tk (cf. [9, (28.7) Definition]). mg stands
for the Haar measure of K. Let C(K) be the space of continuous functions on K and
M(K) the space of bounded regular measures on K. Let L!'(K) be the group algebra.
We identify L'(K) with the space of absolutely continuous measures in M (K), by the
Radon-Nikodym theorem. Set M+(K) = {u € M(K) : 4 > 0}. For p € M(K) and
f € L}(|pl), we often write u(f) as [y f(z)du(z).

For 0 € Tk, U denotes a continuous irreducible unitary representation of K in o
with the representation space H, of dimension d,. For u € M(K), jt denotes the Fourier
transform of p, i.e., for 0 € Lk and &,1 € H,,

@1) (B(0)E,m) = [K T, nydu(z),

where US') =D,U) D, and D, is a conjugation on H,. Let spec(u) = {0 € Xk : i(o) #
0}. Let 7 denote the equivalence class in Ty that contains the representation U “. For
a subset E of T, set Mp(K) = {u € M(K) : spec(r) C E}.

For 0,7 € £k,0 x 7 is defined (cf. [9, (27.35) Definition]). ¢ X 7 is a finite subset of
Tk For a subset P of T, [P] denotes the smallest subset of £k that contains P and is
closed under the operation ‘x’ and conjugation (cf. [9, (27.35) Definition ]).

For 0 € Tk, T,(K) is the linear span of all functions z — (U,(f’)f, ), where £, € H,.
Let T(K) be the space of trigonometric polynomials on K, i.e., T(K) is the set of finite
linear combinations of functions z — (US’){' ,n), where o € g and &, € H,.

Let {¢,--- €} be a fixed orthonormal basis in H,, and let u’(1 < 4,j < d) be
the coordinate function for U(®) € o and {£,--, ,(,‘:)}, ie., ug-’) (z) = (Uz(”)fgc),f,(”)).

Definition 2.1. Let p be a natural number and E a subset of L. E is called an s-small
p set if

(22) Yy, iy € Mp(K) = p oo % pp € LY(K).
In paticular, an s-small 1 set is called a Riesz set.

Remark 2.1. When K is a compact abelian group, “s-small p set” and “small p set” are
same notion (cf. (13, Lemma 1]).

Theorem 2.1. Let p € N, and let K; and K, be compact groups. Let E; and E, be
s-small p sets in Xk, and Lk, respectively. Then E) x E, is an s-small p set in Tge xx, =
EK; X EK;-

By the above theorem, we obtain the following corollary.
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Corollary 2.1. Let Ey and E, be Riesz sets in Sk, and Sk, respectively. Then Ey x E,
is a Riesz set in Y, xkx, = g, X Ek,.

Next we consider Theorem 1.2 for compact groups. When G is a compact abelian
group, the condition (1.2) in Theorem 1.2 is equivalent to the following:

(1.2)’ Forany m,m € G, (11 +S)N (72 — S) is a finite set.

Theorem 2.2. Let K be a compact group, and let A be a subset of Ex satisfying the
following condition.

(2.3) Forany 0,7 € £k, (0 x A)N (7 x B) isa finite set,

where A = {W:we€ Ay andox A ={oxn:n€ A} Let pv € Mpy(K). Then
|ul * [v| € LY(K). In particular, A is an s-small 2 set.

The following also holds (cf. [7, Theorem 2]).

Theorem 2.3. Let K be a compact group, and let p,q € N. Let A be a subset of g
satisfying the following condition.
(2.3)" (a1 xA)N-N(opx AYN (1 x A) N -+ N (7, X B) is a finite set

for any o1,-++ ,0p, 71, , T4 € Lg.
Let p; and vj be measures in Ma(K) (i = 1,2,--- ,p;7 = 1,2,--- ,q). Then |pp| *---*
[to] * 1] %« + - % [vg| € LY(K). In particular, A is an s-small p+ g set.

Example 2.1. Let K =T x SU(2), and let T* (£=0,3,1,3,---) be as in [9, (29.13)].
Then £k = {Tym:n € Z; m=0,1,1,3,--.}, where 1, m(e¥, 1) = T Let o > 0,
and set A = {Tam € L :n >0, m < an}. Then, by [9, (29.26)] and the fact that T
are self-conjugate (cf. [9, (29.25)]), A satisfies the condition (2.3) in Theorem 2.2. (In
fact, A is a Riesz set, by [3, 3.4 Ezample (a)).)

We prove Theorem 2.2 in the next section. We can prove Theorem 2.3 by an argument
similar to that in the proof of Theorem 2.2.

3. PROOFs OF THEOREMS

In this section, we prove Theorems 2.1 and 2.2. In order to prove Theorem 2.1, we use
the theory of disintegration of measures.

Lemma 3.1. Let K, and K, be compact groups, and let p € N. Let n, € M*(K,), and

let {V,(I")}he;(, be a family of measures in M(K,) with the following property (n =

17 27 e 1p):

(1) k= ™ x 8)(f) is n-measurable for each f € C(Ky x K3).

Then

(@) (B hg) = () x G) oo (12 6, )(F) (= () %= % 2) X By, ()
is (m X -+ X np)-measurable for each f € C(K; x K>).
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Proof. For fy,--- , f, € C(K1 x Ky), we define f(z,:-- ,2,) € C((K1 x K2)P) by
flz1y-e ’zp) = filz1) -+ fp(zy)‘
By (1),

(8)  (h1,r-hp) = (u,“? X 8py) X o0 X (yy (L on,)(f) = (,,,(;) x 5h1)(f1)”'(1’1(:,)
X Op, ) (fp) is (m X + -+ % n,,)-measurable

Since {31, fri(z1) - fui(2p) @ fii € C(K1 x K2) (1 £ j < pyn=1,2,---)} is dense in
C((K;1 x K2)P), (3) implies that
@ (hay e s hp) = () X 8) X o x () X 83,)(f) 3

(m x «++ X np)—measurable for each f € C((K; x K>)P).
We define 7, : (K x K3)? — K; x K by mp(21,+ -+ ,2p) = 21++-2p. Then

() X 6n,) %+ x (P x 6,)(9)
= (Y x 8,) x -+ x (P x 64, )(g 0 mp)

for each g € C(K, x K3). Thus (2) follows from (4). ]

Lemma 3.2. Let K; and K, be metrizable compact groups, and let p € N. Let p, €
M(K) x K3), n, € M*(K,), and let {u,(‘")}he;(, be a family of measures in M(K,) with
the following properties (n=1,2,---,p):

1) h—=( (") % 8,)(f) is mm-measurable for each f € C(K1 x Ka),

@ I <1, and

B mnlf) = [, (A X 8)(f)dna(h)  for all f € C(K x Ka).
Let p be a measure in M(K, X K;) defined by

@) 2f) = frg " Sy W % % U)X Bppcn (f)dmu (1) - - - dp ()
for f € C(Ky x K3). Then p=py * -+ % pp.

Proof. Let (01,07) be any element in Sx, x Lk, For any £ @ £, 6("’) ® £ ¢
H,, ® H,,, we have

(b(o1,02) (€7 ® €°7), €7 ® £°7)
= /K lxh(Ui"’@U@”’(&-‘”" ® £), 6 @ &™) dp(z,v)
®) = /K = /K D w0 1) X Gy, (T (), €67
X (TY(E?), €02 dmy (ha) - - diip ()
= /K (@) )6, 67)

X (T2, (62), 67 dm (ha) - - - dmp(h).
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On the other hand,

(g %~ * I-‘p)A(Jl;Uz)( (01) ®f («rz)) 1) & 5(62)

=/ T QU () @ 7)), 7 @ €1V dpy -+ » p1p(3, 1)
Kix K,

=[ ) T, e T, e el g ol
dpy (z1,%1) -+ dl‘p(xpr Yp)
oo [ T €T, 667
dpa(z1,%1) -+ Aptp(Zp, Yp)
/. RS /. o B €, 6, (6 )
dm(h1)dua(z2, y2) <+ 1p(Zp, Up)

/ [ [ O € e
KixK, KixKs VK2 VK,
X (T2 o (E),67ydmy (hy)dpsa(2, 42) - Aty (T Bp)

[ [ e, 6o
Kyx K, KixKa J Ky P
X (T2 (€), &7 ydmy (hy)dpsa(2, ¥2) - - dptp (s ¥y)

/ ,/1-(‘ xKa ‘Lx Ko (UE’?):, (Ez(al))7 '71(11)(01)‘(55-’1)))
U:l?)yp (5(62)) U (m‘(fg”)))dﬂz(zz, Y2) « - tp(Tp, Yp)dm (ha)

=/K/Kf“/x U ey G ) %22 (00" (67

<Us(:-2+)x yp(f(vz)) U(a:): (E(ﬂ)))dl-'frﬂ (Trrts Yrar) - *+ dup(zp’ yp)dm(hl) <+ dne(h,)
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= [ [ s )
X (€70, T (€07))dm (ha) - - dirp(hy)
/K K( uD x e PY (1) €0), €0

x (T2, (€)Y dm (ha) - - - dmy(hp),

where V,(, )(al) and T b ,, are the adjoints of z/,(l )(al) and U ,x respectively. By (5)
and (6), we have

(po1,09) (€ ® £17), €6 @ £1°7)
= (% ¥ pp) (01,02)(€f"’)®§(”2)) (1) @ 7))

for any (0’1,0’2) € Tk, X Lg, and E("‘) ® 5("’) E(‘") ® {E"’) € H,, ® H,,. This yields
P= kK Uy 0O

Proposition 3.1. Let K, and K, be metrizable compact groups, and let p € N. Let E,

be an s-small p set in Lk,, and let py,-+- ,pp € ME,,(EKQ(KI x Kj). Then le [10z,e2) *
T—e)

fy %k py — Py %k ]| = 0, where e; is the unit element of K; (i = 1,2).

Proof. Let 7 : K7 x K3 — K, be the projection, and let 7, = w(|pa]) (n = 1,2, ,p).

Then, by the theory of disintegration of measures (cf. [1] or [14, Corollary 1.6]), there
exists a family {,\f,")},,e k. of measures in M (K, x Kj) with the following properties:

(1) h — A™(f) is n,—measurable for each f € C(K; x K),
2) NN <1,

(3) supp(A™) € 77(k), and

@) un(f) = /K AP (F)dna (k) for all f € C(K x Ko).

By (2) and (3), there exists a measure v\™ € M (K ), with [|1{™|| < 1, such that

(5) A = M 5 g,
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Let o1 ¢ E,. Let 0, be any element in Sg,. For any g ®§,(;"), §§”‘) ®§§”’) € H, ® H,,,
we have

0= (fn(on,02) (€Y ®ED), 6V ® £°7)
=[O T o) @ 6 dun(ay)
1XK2

= /K . (T (), )T (667)), £ dp(z, )

-/ 2 / T, 6 e)
X [TE), ) dma(h)  (by (4) and (5))

-/ 06, 6 (ana ),

which yields
/ A0, 6wl ) = 0
for all p € T(K,). Hence
PPo)E, €M) =0 mu—sa he Ky (1<Vij<dy,).
Thus
f/,(.")(al) =0 1n,—aa heK,

Since Xk, is countable, we have

(6) D,(,")(ul) =0 forallo; €Tk, \ E1 7mn—2.a h€ K,
Since E,; is an s-small p set, we have
(7) vy ox v € LK) (mx oo X mp)—a.a. (b, , hy) € KB

It follows from Lemmas 3.1 and 3.2 that (hy,--- , hy) — (u,(,ll) * ok u,(:)) X Oyt (f) 18
(m x -+« x n,)-measurable for each f € C(K; x K>) and

® By ke * pp(f)
= [ [ A ) B, (1)) )

for all f € C(K; x K3). For z € Ky, we note that (hy, - ,hp) = (67 % u,(lt) Koeok u,(:)) X
Onyop(f) 18 (m X - -+ X mp)-measurable for each f € C(K; x K3). It follows from (8) that

(9) 6(:,cz) ¥y ko ¥ /-‘p(f)
- /K o [ @ k) By (D) - ()
2 2
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for all f € C(K, x K3). Let A= {f,} be a countable dense set in C(K; x Kj). Since

||62*u,(,1l)*---*u,(,’;) —v,(.ll)*---*y(”)”
= sup {62 % 1) % % v2) X 6yn, — (V) ke kD) X By, } )l
€
llfnlle <1
we note that
(h1y--- s hp) = |]6,*V,(‘i) *---*u,(.’;) - u,(lll) *~--*V,(:)[|
is (m X - - - X 7p)-measurable. Let {s,} be a sequence in K; such that IHI;: s, = e3. Then,
n
by (7),
. 1 1
"111’20"6,“ *u,(h)*---*u,(:) —V,(h)*'u*u,(,z)" =0
(771 X e X "p)_a"a' (hl’” . lhp) € Kg’
which, together with (8) and (9), yields
Hm [[Oon,en) ¥ s %k pp = kx|
= lim  Sup | O(sper) * pir ke * pap(f) — pr %o % pp(f) |

n—oo €
Il 1
. o, ) -
= nl-l-»r{.!o ?'23 | Kz Kz{(&,n * VY -k Vh,. ) X 5).1...),’
[1flleo <1
(u‘” % U2) X By, } (N () - - dig(hy) |
(p) (1) (p)
'}l’ngo Kz ” |6, * 1/ sk =y ek vy |ldm(ha) - - - dip(hy)
(by the Lebesgue convergence theorem)
Since K is metnzable, the proposition is obtained. o

Similarly we get the following proposition.

Proposition 3.2. Let K; and K, be metrizable compact groups, and let p € N. Let E,
be an s-small p set in Ty,, and let py,- -+ , iy € My, xp, (K1 ¥ K;). Then le [P
y—es
= Sery * p1 %% | = 0.

Proposition 3.3. Let K, and K, be metrizable compact groups, and let p € N. Let Ey
and E; be s-small p sets in Tk, and T, respectively. Then E, X E, is an s-small p set
n EleK2 1= E}(l X 2]{2.

Proof. Let pn, € Mg, x5, (K1 X K3) (n=1,2,---,p). It follows from Propositions 3.1 and
3.2 that

Q) Bm [l %o # ptp = Sy ¥ p %+ gyl =0, and
@) B [l -k ptp = Seaiy % ko % pp | = 0.
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Thus we have

ea e iy = Gagy # pia % - % o

im
(z,y)—(er,e2)

{lles # -+ v % ptp — Sz,eq) * i1 % -+ |

< lim
(z.¥)—(e1,e2)
+ "6(:,52) * [y ¥ ok Uy = J(I,y) ¥y ke k ﬂp”}
= 0,
which implies py * - - - * up, € L(K, x K,). This completes the proof. O
Lemma 3.3. Let K be a compact group, and let H be a closed normal subgroup of K.

Let v € M(K/H), and let m : K — K/H be the canonical map. Then there ezists a
measure p € M(K) with the following :

¢Y) m(p) =v,
(2) i(c) =0 for 0 € Tk \ A(Zk, H), and
®) {0 € A(Sx, H) : o) # 0} = {o € A(Sx, H) : 9(0) # 0}

Proof. Let v € M(K/H). For f € C(K), let [f] be a continuous function in C(K/H)
defined by

116) = [ fevimat)

H

and we define p € M(K) by
wh= [ (N@ae)

K/H
for f € C(K). It is easy to verify that
4  wu)=v
Claim 1. (o) =0 for o € Tk \ A(Zk, H).
Let 0 € £k \ A(Zk, H). For £,n € H,, we have

@l = [ O nduta)
K

= /K y /H T¢, m)dma (W)dv(2)
= /K . /H T, T nydma (v)dv(2)

= [ (hato)e, U myas(a)
K/H

=0. (by [9, 28.72(g), p.112))
This shows that Z(o) = 0.

Claim 2. Let o0 € A(Zk, H). Then ji(o) 5 0 if and only if #(g) # 0.
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For &,1 € H,, we have, by the fact that o € A(Zg, H),
@oen = [ [ @ mdmu(s)an(s)
K/HJH

- [K /H<Ui‘25,n>du(¢)

= (p(o)¢,m).
Thus Claim 2 follows. By (4) and Claims 1 and 2, the lemma is obtained. O

Lemma 3.4. Let K be a compact group, and let H be a closed normal subgroup of K.
Let p € N. If E is an s-small p set in Lk, then EN A(Zk, H) is an s-small p set in
Tku =2 A(Zk, H).

Proof. We note that Sy = A(Zk, H) (cf. [9, (28.10) Corollary]).
Let vn € Mpnagn)(K/H)(n = 1,2,---,p), and let 7 : K — K/H be the canonical
map. It follows from Lemma 3.3 that there exists p, € M(K) such that

(1) ”(l‘ﬂ) = Vn,

(2) fn(6) =0 foroe€ Lk \ A(Zk,H), and

®) {0 € A(Sx, H) : fn(0) # 0} = {0 € A(Exe, H) : 9a(0) # O}.
Then

{0 € Tk : fm(0) # 0} C ENA(Zk, H).

Since E is an s-small p set, p; *- - - % pp, belongs to L*(K), which yields that vy -+ %y, =
(g * -+« * pp) € LY(K/H). This completes the proof. a

The following lemma is due to {16]. For a subset P of Xk, A(K,P) denotes the
annihilator of P in K.

Lemma 3.5 (cf. [16, Lemma 3.3]). Let K be a compact group. Let uy be a nonzero mea-
sure in M(K), and let p and v be mutually singular positive measures in M (K). Let o,
be an element in Tk such that fig(00) # 0. Then there exists a countable subset P of T,
with [P] = P, such that

® oo € P,
(i) (o) (00) #0, and
(i) () L),

where H = A(K, P) and w : K — K/H is the canonical map. Moreover, for any P’ D P
with [P'] = P, we have

(v) (L),
where H' = A(K, P') and 7' : K — K/H' is the canonical map.

Now we prove Theorem 2.1. Suppose there exist measures y, € Mg, x5, (K1 X K3) (n =
1,2, ,p) such that p - - * p, does not belong to L}(X; x K,). Let

AR N e e

369



be the Lebesgue decomposition of p * -+ * p, with respect to mg,xx,. Then pug # 0.
Thus there exists gq = (01,02) € Tk, X g, such that ji,(oo) # 0. It follows from Lemma
3.5 that there exists a countable subset P of L, xk,, with [P] = P, such that

(31) Og = (0’1, 0’2) € P,
(3:2) m(us) (00) #0,  and
(3‘3) W(l#sl) L 7l-(‘rnl'(x)d{z)v

where 7 : K} X Ky = K; X Kp/A(K, x K, P) is the canonical map. Moreover, P can be
chosen so that, for any P’ D P with [P'] = P/,

(3-4) 7 (|1sl) L 7 (mxsors),

where 7' : K; x K3 — Ky x K5 /A(K; x Ky, P') is the canonical map. Let 7; : T, X T, (=
Tkixk,) = Lk, be the projection (i = 1, 2), and let P; be a countable subset of L, such
that 7;(P) C P, and [P] = P, (i = 1,2). Set H; = A(K;, P,), and put H = Hy x H,.
Then H; and H are closed normal subgroups of K; and K; x K, respectively. Let 7y :
K, x K = K; x K,/H =2 K, /H; x Ko/H, be the natural map. Since P C P, X P,, we
have, by (3.4),

(35) WH(]I‘SI) L '”H(me sz)'
Since 0y = (01,02) € Py X P, and fi,(00) # 0, we note that
(3.6) T (pts) (00) # 0

(cf. the proof of Lemma 3.3 in [16]). It follows from Lemma 3.4 that E; N A(Zg,, H;)
is an s-small p set. Since P; is countable, K;/H; is a metrizable compact group. Hence
(By N A(Zk,, H1)) x (B2 N A(Sk,, Hz)) is an s-small p set in Tk, xk,/0 = A(Zk,, H1) ¥
A(Zk,, Hz)(& P, x Py), by Proposition 3.3. Since spec(mg(in)) C (B1 N A(Zk,, H1)) X
(B2 N A(Zk,, Hz)), we have

(8.7 T(pn * - % pp) = () * - -+ * T (pp) € L' (K x Ko/H).

On the other hand, (3.5) shows that 7y (p * - * ) = m () + mr(ps) is the Lebesgue
decomposition of 7y (i %- - -*t,) with respect to (M, xk,). By (3.6), we have my(u,) #
0, which contradicts (3.7). This shows that F; x E; is an s-small p set in g, xxk,, and
the proof is complete.

Next we prove Theorem 2.2, We need several lemmas.
For p € M(K), define & € M(K) by

(3.8) E(B) = u(B)

for Borel sets B on K. Let 0 € £x. We denote by B(H,) the space of all bounded linear
operators on H,. For p € M(K), we define T, € B(H,) by

(3.9) (Tu,m) = /K (DT D, mhdu(c)

for £, € H,. The following can be found in the proof of (9, (28.44) Theorem).
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Lemma 3.6. There ezists an onto linear isometry C : Hy — H, such that (@) =
CT,C.

Lemma 3.7. Let p € M(K) and o € Zx. Then ji(¢) = D,T,D,.
Proof. For &, n € H,, we have

(o)) = /K T, nydn(z) = /K (T, mydu(z)

= / (D,T%€, Dymydu(z) = / (D,0D,D,€, Dyndp(z)
K K

= <T,,D,§, D,n) = (DaTnDa§: ).
This completes the proof. a

Remark 3.1. Let p € M(K) and o € Zk. It follows from Lemmas 8.6 and 8.7 that the
following are equivalent.

() o) £0.

@  wE)#0.

Corollary 3.1. Let p € M(K). Then spec(g) = spec(n)~, where spec(p)™ ={g:0 €
spec(p)}.

Proof. For ¢ € T, we note that @ = o. Thus the corollary follows from Remark 3.1. O
The following lemma is due to [15).

Lemma 3.8 (cf. [15, Lemma 3.3]). Let 0 € g and A C Tx. For f € %,(K) and
€ M(K) with spec(p) C A, we have spec(fu) C o x A.

Now we prove Theorem 2.2. Let p,v € Ma(K). Then
(3.10) () * (u)?) € L'(K)

for all 0,7 € Lk ; ug') € %, (K ),ug) € %,(K). In fact, since spec(p) C A, we have, by
Lemma 3.8,

spec(u,(;)u) CoxA.
Similary Corollary 3.1, together with the previous lemma, yields
spec(u(yP) C 1 x A.
Hence we have
spec((uf) ) * (ufy?)) C (o x A)N (7 x B),

which implies (3.10), since (o x A) N (T x A) is finite by the hypothesis (2.3). It follows
from (3.10) that

(3.11) (fu) = (hv) € LY(K) forany f,h € T(K).

3



On the other hand, there exist sequences {f,} and {h,} in T(K) such that nllx;{.xo || fatt —
4l =0 and. lim [lhn = 91 = 0. Since iz (fn) + (ha?) |+ ] = 0, (3T1) yelds
|| * [v] = |l * [P| € L(K). This completes the proof.
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