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On the expansion coefficients of Tau-functions of the

KP hierarchy

By

Yoko Shigyo∗

Abstract

We study the coefficients of the tau function of the KP hierarchy. If the tau function does

not vanish at the origin, it is known that the coefficients are given by Giambelli formula. We

introduce a generalization of Giambelli formula to the case when the tau function vanishes at

the origin. This paper is a summary of [6].

§ 1. KP hierarchy

Recently formulas like Giambelli formula in [3] play an important role in connecting

quantum integrable systems to classical integrable hierarchies. They also have an ap-

plication to the study of higher genus theta functions . In the latter case, it is necessary

to consider the generalization of Giambelli formula [2, 4, 5]. In this summary we show

the generalization of Giambelli formula with several examples.

§ 1.1. partition

A partition is a weakly decreasing sequence λ = (λ1, λ2, λ3, . . . ) of nonnegative

integers such that |λ| =
∑

i≥1 λi is finite. We identify a partition λ with its Young

diagram, which is a left-justified array of |λ| cells with λi cells in the ith row.

Example 1.1. If λ = (4, 3, 3, 1), its Young diagram is
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Given a partition λ, we put

p(λ) = #{i : λi ≥ i}, αi = λi − i, βi = λ′
i − i (1 ≤ i ≤ p(λ)),

where λ′
i is the number of cells in the jth column of the Young diagram of λ. Then we

write λ = (α1, . . . , αp(λ)|β1, . . . , βp(λ)) and call it the Frobenius notation of λ.

Example 1.2. If λ = (3, 1, 1) the Frobenius notation of λ is (2|2) with p(λ) = 1.

Its Young diagram is

.

§ 1.2. KP hierarchy

For the function τ(x) of x = (x1, x2, . . . ) the KP hierarchy [1] is the bilinear equa-

tion given by

(1.1)

∫
τ(x− y − [k−1])τ(x+ y + [k−1]) exp

−2

∞∑
j=1

yjk
j

 dk = 0,

where [k−1] = (k−1, k−2/2, k−3/3, . . . ), y = (y1, y2, . . . ) . The integral denotes taking

the coefficient of k−1 in the Laurent expansion.

We consider formal power series solution of the KP hierarchy. It is known that any

formal power series in x can be expanded by Schur functions as

τ(x) =
∑
λ

ξλsλ(x),

where λ runs over all partitions. The variables x is so-called Sato variables. Set xk =
tk1+tk2+···

k Schur functions sλ(x) become the symmetric functions of t1, t2, · · · . The KP

hierarchy reduces to the Plücker relations for the coefficients {ξλ}.

We denote the indices of the coefficients ξ(α1,··· ,αr|β1,··· ,βr) as ξ

(
α1, · · · , αr

β1, · · · , βr

)
.
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Proposition 1.3. The function τ(x) is a solution of the KP hierarchy if and

only if the coefficients ξλ satisfy the following Plücker relations:

(1.2)

p+1∑
i=1

(−1)iξ

(
m1, . . . , m̂i, . . . ,mp+1

m′
1, . . . ,m

′
p

)
ξ

(
mi, n1, . . . , nq

n′
1, . . . , n

′
q+1

)

=

q+1∑
j=1

(−1)p+jξ

(
m1, . . . ,mp+1

m′
1, . . . ,m

′
p, n

′
j

)
ξ

(
n1, . . . , nq

n′
1, . . . , n̂

′
j , . . . , n

′
q+1

)
,

for any sequences m1, . . . ,mp+1,m
′
1, . . . ,m

′
p, n1, . . . , nq, n

′
1, . . . , n

′
q+1 of nonnegative in-

tegers.

Corollary 1.4. The function τ(x) is a solution of the KP hierarchy if and only

if the coefficients ξλ satisfy the following Plücker relations:

(1.3) ξ

(
a1, . . . , ar

b1, . . . , br

)
ξ

(
c1, . . . , cs

d1, . . . , ds

)

=

r∑
k=1

(−1)r−kξ

(
a1, . . . , âk, . . . , ar

b1, . . . , br−1

)
ξ

(
ak, c1, . . . , cs

br, d1, . . . , ds

)

+
s∑

l=1

(−1)l−1ξ

(
a1, . . . , ar

b1, . . . , br−1, dl

)
ξ

(
c1, . . . , cs

br, d1, . . . , d̂l, . . . , ds

)
,

and

(1.4) ξ

(
a1, . . . , ar

b1, . . . , br

)
ξ

(
c1, . . . , cs

d1, . . . , ds

)

=

r∑
k=1

(−1)r−kξ

(
a1, . . . , ar−1

b1, . . . , b̂k, . . . , br

)
ξ

(
ar, c1, . . . , cs

bk, d1, . . . , ds

)

+

s∑
l=1

(−1)l−1ξ

(
a1, . . . , ar−1, cl

b1, . . . , br

)
ξ

(
ar, c1, . . . , ĉl, . . . , cs

d1, . . . , ds

)
,

for any sequence of nonnegative integers (a1, . . . , ar), (b1, . . . , br), (c1, . . . , cs) and (d1, . . . , ds).

Example 1.5. In case of a1 = α, b1 = β, c1 = γ and d1 = δ the first term of

the right hand side of (1.3) becomes zero. Then we have

ξ

(
α

β

)
ξ

(
γ

δ

)
= ξ

(
α

δ

)
ξ

(
γ

β

)
.(1.5)

Example 1.6. In case of (a1, a2) = (α1, α2), (b1, b2) = (β1, β2), c1 = γ and
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d1 = δ (1.3) becomes

ξ

(
α1, α2

β1, β2

)
ξ

(
γ

δ

)
= −ξ

(
α2

β1

)
ξ

(
α1, γ

β2, δ

)
+ ξ

(
α1

β1

)
ξ

(
α2, γ

β2, δ

)

+ξ

(
α1, α2

β1, δ

)
ξ

(
γ

β2

)
.(1.6)

Example 1.7. In case of (a1, a2) = (α1, α2), (b1, b2) = (β, δ), c1 = γ and d1 = δ

(1.4) becomes

ξ

(
α1, α2

β, δ

)
ξ

(
γ

δ

)
= −ξ

(
α1

δ

)
ξ

(
α2, γ

β, δ

)
+ ξ

(
α1, γ

β, δ

)
ξ

(
α2

δ

)
.(1.7)

We use (1.5), (1.6) and (1.7) in Example 6.

§ 2. Main theorem

Fix a partition µ = (γ1, . . . , γs|δ1, . . . , δs). We assume that τ(x) has the following

expansion:

(2.1) τ(x) = sµ(x) +
∑
λ⊋µ

ξλsλ(x).

Theorem 2.1. [6] The function τ(x) gievn by (2.1) is a solution of the KP

hierarchy if and only if the expansion coefficitnes {ξλ}λ satisfy the following formulae

for a partition λ = (α1, . . . , αr|β1, . . . , βr):

(2.2) ξλ = (−1)s det

( (
zαi,βj

)
1≤i,j≤r

(
u
(j)
αi

)
1≤i≤r,1≤j≤s(

v
(i)
βj

)
1≤i≤s,1≤j≤r

O

)
,

where zα,β, u
(j)
α , v

(i)
β satisfy

(2.3)



zα,β = ξ

(
α, γ1, . . . , γs

β, δ1, . . . , δs

)
,

u(j)
α = ξ

(
α, γ1, . . . , γ̂j , . . . , γs

δ1, . . . , δs

)
,

v
(i)
β = ξ

(
γ1, . . . , γs

b, δ1, . . . , δ̂i, . . . , δs

)
.

To derive the determinant formulae (2.2) we need the following lemma.
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Lemma 2.2. Fix a partition µ. Suppose that τ(x) given by (2.1) is a solution

of the KP hierarchy. Then ξλ can be expressed as a polynomial in

Iµ =

{
ξ

(
a, γ1, . . . , γs

b, δ1, . . . , δs

)
: a, b ∈ Z≥0

}

∪

{
ξ

(
a, γ1, . . . , γ̂j , . . . , γs

δ1, . . . , δs

)
: a ∈ Z≥0, 1 ≤ j ≤ s

}

∪

{
ξ

(
γ1, . . . , γs

b, δ1, . . . , δ̂i, . . . , δs

)
: b ∈ Z≥0, 1 ≤ i ≤ s

}
.

Example 2.3. We consider the case of µ = (γ|δ). The set Iµ becomes

Iµ =

{
ξ

(
a, γ

b, δ

)}
∪

{
ξ

(
a

δ

)}
∪

{
ξ

(
γ

b

)}
.

In this case ξ

(
γ

δ

)
= 1. We derive the coefficients in case of λ = (α1, α2|β1, β2).

Using(1.6) we have

ξ

(
α1, α2

β1, β2

)
= −ξ

(
α2

β1

)
ξ

(
α1, γ

β2, δ

)
+ ξ

(
α1

β1

)
ξ

(
α2, γ

β2, δ

)
+ ξ

(
α1, α2

β1, δ

)
ξ

(
γ

β2

)
.

Similarly using (1.5) and (1.7) we have

ξ

(
αi

βj

)
= ξ

(
αi

δ

)
ξ

(
γ

βj

)
,

ξ

(
α1, α2

β1, δ

)
=−ξ

(
α1

δ

)
ξ

(
α2, γ

β1, δ

)
+ ξ

(
α1, γ

β1, δ

)
ξ

(
α2

δ

)
Then we have

ξ

(
α1, α2

β1, β2

)
= −det



ξ

(
α1, γ

β1, δ

)
ξ

(
α1, γ

β2, δ

)
ξ

(
α1

δ

)

ξ

(
α2, γ

β1, δ

)
ξ

(
α2, γ

β2, δ

)
ξ

(
α2

δ

)

ξ

(
γ

β1

)
ξ

(
γ

β2

)
O


.

This equation is the case of r = 2 and s = 1 in (2.2).

We also introduce the generalization of Giambelli formula in case of BKP hierarchy

[7].
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