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The solution to the initial value problem for the

ultradiscrete Somos-4 and 5 equations

By

Yoichi Nakata∗

Abstract

We propose a method to solve the initial value problem for the ultradiscrete Somos-4

and Somos-5 equations by expressing terms in the equations as convex polygons and regarding

max-plus algebras as those on polygons.

§ 1. Introduction

It is still a difficult problem to define the integrability of discrete equations in a way

that does not rely on the properties differently from that of differential ones. Several

criteria have been proposed for solving this problem by observing the behavior of the

solutions to discrete equations which are considered as integrable ones. For example, in

the singularity confinement test [1], the property that the singularities due to an initial

value are resolved after several time steps and that the information on the initial value is

finally restored, is considered to be a discrete analogue of the Painlevé property, which

is an indication of integrability. The algebraic entropy [2] focuses on the growth of the

degree of the solution as a rational expression of the initial values. It is considered that

the system is integrable if the degree grows in at most polynomial order and is non-

integrable if the order is exponential. These criteria are also related to the structure of

discrete equations such as co-primeness and irreducibility [3].

Over the past decade, it was discovered that cluster algebras, introduced by Fomin

and Zelevinsky [4], are strongly related with discrete integrable equations [5, 6]. The

time evolution of many integrable discrete equation can be expressed as the mutation of
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cluster variables, where these cluster variables are expressed not as rational expressions

but in the form of Laurent polynomials of the initial values by properly performing

fractional reduction in the recursive application of the equation (which includes divisions

[7]). Furthermore, recent studies discovered that such polynomials are irreducible and

co-prime for known integrable discrete equations and these properties correspond to the

criteria described above [3].

Ultradiscrete systems are difference equations in which only max and ± operators

appear. These equations are obtained from minus-free canonical difference equations

by a limiting procedure called “ultradiscretization” [8], which is defined as follows:

1. Transform the dependent variables and parameters by exponential functions, upon

introduction of a positive parameter ε, for example a = eA/ε where a is the depen-

dent variable or the parameter in the discrete system.

2. Take the logarithm and multiply ε for each side of the equation and take the limit

ε→ +0. Then, by means of the identity

(1.1) lim
ε→+0

ε log(eA/ε + eB/ε) = max(A,B)

and the exponential law, the operators + and × in canonical difference equations

are replaced with max and + respectively.

The remarkable point of this procedure is that it preserves the good properties of inte-

grable systems, although the dependent variables only take discrete values. The most

famous example is the Box and Ball system (BBS) [9], which is a cellular automaton

consisting of an infinite sequence of boxes and a finite amount of balls. The BBS has

solitons and an infinite amount of conserved quantities and is obtained by the ultradis-

cretization of the KdV equation.

For the ultradiscrete equations, we can obtain solutions by ultradiscretizing those

of discrete equations. However, it still remains the problem how to interpret good

properties of the equation, for example, the Laurent phenomenon in the ultradiscrete

systems. By ultradiscretizing Laurent polynomials naively, one expects that the form

of solutions should be expressed as maxi=1,...,N (Fi(A)), where Fi is a linear function

of A ∈ Rn. However, a mechanism corresponding to the reduction of the fraction is

required in the operation to keep such a form even if the evolution equation contains

minus terms. We believe that such a mechanism can be explained by using combinatorics

and we finally conclude that it can be interpreted as the inverse of the Minkowski sum

between convex polygons. Applying this idea to several known integrable ordinary

difference equations, we obtain the exact solution to their initial value problems.

In this paper, we first explain this key idea by a simple ultradiscrete equation in

Section 2. By virtue of this idea, we introduce the solution of the initial value problem
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to the ultradiscrete Somos-4 equation and discuss properties of its solutions and the

relation with an ultradiscrete QRT map in Section 3 and that to the ultradiscrete

Somos-5 equation in Section 4. We also discuss a numerical result for higher order

equations in Section 5.

§ 2. Key idea

Let us consider the following equation, which arises as the mutation of cluster

variables in an A
(1)
1 -type cluster algebra

(2.1) fnfn−2 = f2n−1 + 1 (n ≥ 2).

Here, as an evolution equation (2.1) contains a division. However, fn is always a

Laurent polynomial of f0 and f1 with positive coefficients [10]. Therefore, if the initial

values f0 and f1 are positive, all fn take positive values and ultradiscretizable in the

sense of [8]. Applying the ultradiscretization procedure to (2.1), we obtain:

(2.2) Fn + Fn−2 = 2max(Fn−1, 0) (n ≥ 2).

Due to the Laurent phenomenon for the discrete system, the solution to the ultradiscrete

system (2.2) should be expressible as:

(2.3) Fn = max
(α,β)∈Vn

(αA+ βB),

where Vn ⊂ Z2 is a finite set, A = F0 and B = F1. On the other hand, the equation

(2.2) can behave a evolution equation, that is, we can obtain Fn uniquely by recurrence.

For example, the solution Fn for the first several n is obtained as

F2 = 2max(B, 0)−A = max(−A+ 2B,−A)(2.4)

F3 = 2max(2B, 0, A)− 2A−B = max(−2A+B,−2A−B,−A−B)(2.5)

F4 = 2max(4B, 0, 2A, 2A+B)− 2max(B, 0)− 3A− 2B.(2.6)

Here, by virtue of the rules of the max-plus algebra, one has

max(4B, 0, 2A, 2A+B) = max(4max(B, 0), 2A+max(B, 0))

= max(3max(B, 0), 2A) + max(B, 0)

= max(3B, 0, 2A) + max(B, 0).(2.7)

Then, −max in (2.6) is cancelled and it is finally simplified into

(2.8) F4 = 2max(3B, 0, 2A)− 3A− 2B = max(−3A+ 4B,−3A− 2B,A− 2B).
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Continuing the calculation, we obtain

(2.9) F5 = 2max(6B, 0, 4A, 3A+ 2B)− 2max(2B, 0, A)− 4A− 3B.

However, in this case there is no immediately apparent way to put formula (2.9) in

the form (2.3), which should nonetheless be feasible because of the uniqueness of the

solution to the evolution equation (2.2). Analyzing the right-hand side of (2.9) case by

case, we can simplify F5 into

(2.10) F5 = 2max(4B, 0, 3A)− 4A− 3B.

Therefore, the following identity should hold in general:

(2.11) max(4B, 0, 3A) + max(2B, 0, A) = max(6B, 0, 4A, 3A+ 2B).

Our goal is to explain this identity by means of a general procedure. By naively ex-

panding the left hand side, we obtain

(2.12)

max(4B, 0, 3A) + max(2B, 0, A) = max(6B, 4B,A+ 4B, 2B, 0, A, 3A+ 2B, 3A, 4A).

Therefore, to prove the identity one has to show that 4B, A + 4B, 2B, A, 3A are less

than max(6B, 0, 4A, 3A+ 2B). Here, A+ 4B can be expressed as

(2.13) A+ 4B =
1

4
× 4A+

2

3
× 6B +

1

12
× 0

and the summation of coefficients of 4A, 6B and 0 is 1, that is, A + 4B is written in

a convex combination of 4A, 6B and 0. It is trivial to see that other terms are also

written as convex combinations. We can evaluate the magnitude relationship for such

convex combined terms by the following proposition.

Proposition 2.1. For the finite set of points {(αi, βi)}Mi=1 ⊂ R2, if there exists

j ∈ {1,. . . ,M} satisifying

(2.14) (αj , βj) =
M∑
i=1
i ̸=j

λi(αi, βi)

for some
∑M

i=1,i̸=j λi = 1, λi ≥ 0, one has

(2.15) max
i=1,...,M

(αiA+ βiB) = max
i=1, . . . ,M

i̸=j

(αiA+ βiB).
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Proof. By virtue of equation (2.14), one has

(2.16) αjA+ βjB =

M∑
i=1
i ̸=j

λi(αiA+ βiB),

which means (αj , βj) is expressed as the weighted average of other (αi, βi), i.e., it is less

than the maximum of others and more than the minimum.

With this proposition, it is easily confirmed that (2.12) holds. Now, let us proceed

further with this proposition.

Corollary 2.2. Let V = {(αi, βi)}Ni=1 and let Ve ⊂ V be the set of extreme

points of V (the vertices of the convex hull of V ), then

(2.17) max
(α,β)∈V

(αA+ βB) = max
(α,β)∈Ve

(αA+ βB).

Proposition 2.3. For all (α′, β′) ∈ Ve, there exists (A,B) ∈ R2 such that α′A+

β′B > αA + βB for ∀(α, β) ∈ Ve\{(α′, β′)}, that is, max(α,β)∈Ve\{(α′,β′)}(αA + βB) ̸=
max(α,β)∈Ve

(αA+ βB).

Proof. Let q = (t, s) ∈ R2 be an arbitrary internal point of the polygon whose

vertices are Ve. By denoting p = (α, β) and p′ = (α′, β′), then, the inequality to be

proven is equivalent to (α′ − t)A + (β′ − s)B > (α − t)A + (β − s)B ⇔ (α − α′)A +

(β′−β)B = ⟨p−p′, (A,B)⟩ > 0, where ⟨·, ·⟩ is the canonical inner product of R2. Here,

(A,B) = (α− t, β − s) = p− q satisfies this inequality because the angle of two vectors

whose origins are the same vertex and the destinations are in the polygon, respectively,

is acute due to convexity.

Corollary 2.4 ([11]). Let F = {f : R2 → R | f(A,B) = max(α,β)∈V (αA+βB),

V ⊂ R2 is finite set.}. Then, there exists one-to-one correspondence between convex

polygons on R2 and elements of F .

By this corollary, we can regard formulae for max as convex polygons. Next we

want to interpret the algebra for max formulae as polygon operations. By the relations

max(max
i

(αiA+ βiB),max
j

(γjA+ δjB)) = max
i,j

(αiA+ βiB, γjA+ δjB)(2.18)

max
i

(αiA+ βiB) + max
j

(γjA+ δjB) = max
i,j

((αi + γj)A+ (βi + δj)B),(2.19)

we obtain that max operation gives the convex hull of the union of two polygons and +

operation gives the Minkowski sum of two polygons, where the Minkowski sum of two

subsets is defined as U + V := {u+ v | u ∈ U, v ∈ V }.
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From these dicussions, it is found that the expressions of max correspond to convex

polygons and the max-plus algebra for these expressions can be replaced with calcula-

tions on convex polygons. In general, however, it is very difficult to determine the

extreme points of the Minkowski sum. Fortunately, by virtue of the results of com-

putational geometry, there is a simple method to calculate Minkowski sums for planar

convex polygons, by focusing on their edges [12].

Proposition 2.5. ([12]) Let P and Q be convex polygons in R2 and let E(X) be

the set of edge vectors of polygon X. Then, the edges of their Minkowski sum E(P +Q)

are obtained by the following algorithm:

• Let E(P ) = {ei}ni=1, E(Q) = {ẽj}mj=1, where indices are sorted by the argument.

• Start from i = 1 and j = 1 and apply the following until i > n or j > m:

• Compare two arguments of ei and ẽj.

– If arg ei > arg ẽj, append ei to E(P +Q) and let i 7→ i+ 1.

– If arg ei < arg ẽj, append ẽj to E(P +Q) and let j 7→ j + 1.

– If arg ei = arg ẽj, append ei + ẽj to E(P +Q) and let i 7→ i+1 and j 7→ j+1.

• If i > n, append ẽj , . . . , ẽm to E(P +Q).

• If j > m, append ei, . . . , en to E(P +Q).

We note that max(0, A) does not seems to be a polygon but a line segment. In this

case, we consider this as a dihedral and its edge vectors are {(1, 0), (−1, 0)}. We also

note that the sum of all edge vectors is 0.

Here, we demonstrate this algorithm by an example. Let us consider two poly-

gons P = {(0, 4), (0, 0), (3, 0)} and Q = {(0, 2), (0, 0), (1, 0)} (we express polygons by

their extreme points) . The edge vectors of each polygon are expressed as E(P ) =

{(0,−4), (3, 0), (−3, 4)} and E(Q) = {(0,−2), (1, 0), (−1, 2)}. Then, the edge vectors of

their Minkowski sum are E(P +Q) = {(0,−6), (4, 0), (−1, 2), (−3, 4)}. By transforming

this to extreme points, one has P + Q = {(0, 6), (0, 0), (4, 0), (3, 2)}, which is another

proof of identity (2.12). We can confirm the result visually in Figure 1.

The remarkable point is that we can obtain the inverse of the Minkowski sum by

executing this algorithm:

Corollary 2.6. Let P and R be convex polygon in R2. Then, we can obtain a

convex polygon Q which satisfies R = P +Q by the following algorithm:

• Let E(P ) = {ei}ni=1, E(R) = {e′k}lk=1, where indices are sorted by the argument.
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= +

Figure 1. Polygon interpretation of equation (2.12). The + operator in the max-plus

algebra corresponds to the Minkowski sum of polygons.

• Start from i = 1 and k = 1 and apply the following until i > n or k > l.

• Compare two arguments of ei and e
′
k.

– If arg ei < arg e′k, append ei to E(Q) and let i→ i+ 1.

– If arg ei = arg e′k, next compare lengths of two vectors:

∗ If ei = e′k, append ei to E(Q) and let i→ i+ 1 and k → k + 1.

∗ If there exists c > 1 such that e′k = cei, append e
′
k − ei to E(Q) and let let

i→ i+ 1 and k → k + 1.

∗ If there exists c < 1 such that e′k = cei, such a polygon Q does not exist.

– If arg ei > arg e′k, such a polygon Q does not exist.

• If i > n, append e′j , . . . , e
′
l to E(Q).

• If k > l, such a polygon Q does not exist.

The key point is E(P ) ⊂ E(R) if R = P +Q. This algorithm also yields that the

necessary and sufficient condition for calculating the inverse of the Minkowski sum.

By virtue of these discussions, we can regard the max-plus algebra as polygon

calculus and apply this result to ultradiscrete equations which correspond to discrete

ones that have the Laurent property.

For example, let us go back to obtain the solution Fn of (2.2). By virtue of Corollary

2.6, we obtain the solution to the initival value problem:

(2.20) Fn = 2max
(
(n− 1)B, 0, (n− 2)A

)
− (n− 1)A− (n− 2)B (n ≥ 2).

The proof is derived by the identity

(2.21)

max
(
0, nA, (n+1)B

)
+max

(
0, (n−2)A, (n−1)B

)
= max

(
0, 2(n−1)A, 2nB, nA+(n−1)B

)
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for n ≥ 2, which is also proved by Proposition 2.5.

Equation (2.1) is equivalent to the linear equation [13]:

(2.22) fn + fn−2 =
f20 + f21 + 1

f0f1
fn−1.

By ultradiscretizing this relation, we find

(2.23) max(Fn, Fn−2) = Fn−1 + 2max(A,B, 0)−A−B.

Substituting (2.20), we have another identity

max
(
(n− 1)B, 0, (n− 2)A, (n− 2)B +A,A+B, (n− 3)A+B

)
= max

(
(n− 2)B, 0, (n− 3)A

)
+ 2max(B, 0, A).(2.24)

for n ≥ 2 which can be proven using polygon calculus. It is an interesting point that

we cannot obtain Fn recursively from (2.23) because it does not form an evolution

equation although the corresponding discrete equation (2.22) is linear (which is generally

considered to be easier to solve than a non-linear one).

The polygon corresponding to the max formula is nothing but the Newton Polygon

of the polynomial before the ultradiscretization. It is known that the Newton Polygon

behaves as a lattice for the union and Minkowski sum operation. One can obtain

that the necessary condition to factorize a polynomial is that its Newton polygon is

decomposable. However, this is not sufficient. For example, a2 + 3ab + b2 ̸= (a + b)2

but their ultradiscretizations are equal. Furthermore, the polygon decomposition is not

unique. For example, max(2E, 2D, 3D, 3D + E, 3D + E,D + 2E) is decomposed into

max(E,D,D + E) + max(E,D, 2D) or max(D, 0) + max(2E, 2D, 2D + E) and both

of these cannot be decomposed further. The reason for such phenomena is that the

Newton polygon ignores the terms except those corresponding to the extreme points.

Finally, let us note that the polygon we dealt with in this section is considered to

be dual to a tropical curve, and that operations between polygons can therefore be also

interpreted as operations on tropical curves.

§ 3. Ultradiscrete Somos-4 equation

The Somos sequences are the difference equations expressed as

(3.1) fnfn−q =

⌊ q
2 ⌋∑

i=1

fn−ifn−q+i,
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where q is an integer more than 4. This equation is also called Somos-q equation for

some specific value of q.

In these sequences, the case where q satisfies 4 ≤ q ≤ 7 is related to integrable

systems. For these value of q, it has been proven that fn is a Laurent polynomial of

f0, . . ., fq−1 with positive coefficients [7]. Furthermore, these sequences are derived as

reductions of some integrable partial difference equations. For example, the Somos-4

and 5 equations are derived from the discrete KP equation and the Somos-6 and 7

equations are from the discrete BKP equation [14]. We also note that Somos-6 and 7

are not obtained from cluster algebras rather from Laurent Phenomenon algebras [15],

which are analogues of the cluster algebras [16].

By applying the ultradiscretization procedure to the Somos-4 equation, we obtain

(3.2) Fn + Fn−4 = max(Fn−1 + Fn−3, 2Fn−2) (n ≥ 4).

We call this the ultradiscrete Somos-4 equation. This equation is a fourth order differ-

ence equation and solutions are expressed in terms of F0, F1, F2, F3. However, since

this equation is invariant under the gauge transformation Fn 7→ Fn + a+ bn (a, b ∈ R),
we can set F0 = F1 = 0 without loss of generality by taking the proper gauge. There-

fore, the solution should be expressed by planar polygons. Due to Corollary 2.6, we can

calculate the evolution of this equation as the polygon representation and finally obtain

the solution of its initial value problem.

Theorem 3.1. The solution of the initial value problem for (3.2) is expressed

as:

(3.3) Fn = −νn+2C − νn+1D + F̃n,

where C = F2, D = F3 and νn is the solution to the same equation (3.2) for the initial

values ν0 = 1, ν1 = ν2 = ν3 = 0, represented as follows:

ν8k = 4k2 − 4k + 1(3.4)

ν8k+1 = 4k2 − 3k(3.5)

ν8k+2 = 4k2 − 2k(3.6)

ν8k+3 = 4k2 − k(3.7)

ν8k+4 = 4k2 − 1(3.8)

ν8k+5 = 4k2 + k(3.9)

ν8k+6 = 4k2 + 2k(3.10)

ν8k+7 = 4k2 + 3k.(3.11)
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F̃n is

F̃8k = (4k2 − k)Q+ kP(3.12)

F̃8k+1 = 4k2Q+ kP(3.13)

F̃8k+2 = (4k2 + k)Q+ kP(3.14)

F̃8k+3 = (4k2 + 2k)Q+ kP(3.15)

F̃8k+4 = (4k2 + 3k)Q+ kP +max(D, 2C)(3.16)

F̃8k+5 = (4k2 + 4k)Q+ kP +max(D,C +D, 3C)(3.17)

F̃8k+6 = (4k2 + 5k)Q+ kP +max(3D, 2D, 4C, 3C +D)(3.18)

F̃8k+7 = (4k2 + 6k)Q+ kP +max(4D, 3D, 6C, 7C,C + 4D),(3.19)

and Q = max(2D,D, 2C, 3C) and P = max(4D, 3D, 6C).

Before starting the proof, we calculate the first several expressions by the recurrence

and obtain

F0 = F1 = 0, F2 = C,F3 = D(3.20)

F4 = max(D, 2C)(3.21)

F5 = max(D,C +D, 3C)(3.22)

F6 = −C +max(3D, 2D, 4C, 3C +D)(3.23)

F7 = −D +max(4D, 3D, 6C, 7C,C + 4D),(3.24)

which are consistent with the above result for k = 0.

Proof. We first prove the statement concerning νn. Substituting νn in both sides

of (3.2), the terms depending on k are factored out from the max in the right hand side,

such that the terms are the same on both sides. For example, ν8k+4 + ν8k = 8k2 − 4k

and max(ν8k+3 + ν8k+1, 2ν8k+2) = 8k2 − 4k. Therefore, we should consider only the

cases from n = 4 to 11 and prove these by simple calculations.

Next we consider F̃n. Since νn satisfies (3.2), we transform (3.2) to an equation for

F̃n:

(3.25)

F̃n + F̃n−2 = max(F̃n−1 + F̃n−3 + (dn)−C + (dn−1)−D, 2F̃n−2 + (dn)+C + (dn−1)+D),

where dn := νn + νn+2 − 2νn+1, (a)+ := max(a, 0) and (a)− := max(−a, 0). Here, due

to (3.4)–(3.11), one obtains that dn has period 8.

Therefore, by virtue of the same discussion as for νn solving (3.2), we have to

consider only the cases from n = 4 to 11 and obtain that F̃n solves (3.25) by the using

polygon calculus in the previous section.
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Next, we focus on the properties of the solution that we obtained. We first point out

that the solution (3.3) is decomposable (actually already decomposed) and contains the

same polygon in decomposed ones in contrast with the irreducibility and co-primeness

of the solution which was proven for the (discrete) Somos-4 equations. The reason is

the same as for the polygon expression described in the previous section. We also note

that the growth of the coefficients of C, D in the solution for n is of square order, which

follows the preceding studies [17].

We next discuss the relation to the QRT systems. By introducing the dependent

variable gn = fnfn+2/f
2
n+1, the Somos-4 is written as

(3.26) gngn−2 =
gn−1 + 1

g2n−1

,

which is one of the QRT maps [14]. The corresponding ultradiscrete dependent variable

is

(3.27) Gn = Fn + Fn+2 − 2Fn+1

and the ultradiscrete Somos-4 (3.2) is transformed into

(3.28) Gn +Gn−2 = max(Gn−1, 0)− 2Gn−1,

which is one of the ultradiscrete QRT maps.

By substituting (3.3) into relation (3.27) we obtain the following corollary.

Corollary 3.2. The solution to the equation (3.28) for the initial values G0 = C

and G1 = −2C +D is expressed as

G8k = C(3.29)

G8k+1 = −2C +D(3.30)

G8k+2 = C − 2D +max(D, 2C)(3.31)

G8k+3 = D +max(2D,C +D, 3C)− 2max(D, 2C)(3.32)

G8k+4 = −C +max(3D, 2D, 4C, 3C +D) + max(D, 2C)

−2max(2D,C +D, 3C)(3.33)

G8k+5 = C −D +max(4D, 3D, 6C) + max(0, C)

+max(2D,C +D, 3C)− 2max(3D, 2D, 4C, 3C +D)(3.34)

G8k+6 = −C +D +max(3D, 2D, 4C, 3C +D) + max(2D,D, 2C, 3C)

−max(4D, 3D, 6C)− 2max(0, C)(3.35)

G8k+7 = −D +max(0, C).(3.36)

Therefore, the period of the solution is 8 for arbitrary initial values.
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This corollary can be also proved by directly calculating Gn from equation (3.28)

recurrently.

Nobe solved the ultradiscrete QRT maps including (3.28) by regarding the systems

as additions on Tropical Elliptic Curves and obtained the same result [18]. In [18]

it is pointed out that the solution to the discrete equation (3.26) has no periodicity,

although that to the ultradiscrete equation (3.28) is periodic. The reason why the

discrete equation has no periodicity is explained by the irreducibility and co-primeness

of the solution [3] and by due to the discussion in the previous section, we must conclude

that the ultradiscrete solution has periodicity because the information of non-dominant

terms in the solution to the Somos-4 equation, which correspond to the irreducibility, is

dropped by the ultradiscretization. We note that these preceding studies [18, 19] also

employ the polygon geometry. However, in their approach, the solution is expressed as

a point on polygon facets and our approach considers the solution as a polygon itself,

which is a major difference. Finally, we note that Fordy and Hone also obtained the

solution of the ultradiscrete Somos-4 equation before [20] by employing Nobe’s result.

We stress again that our solution is obtained without property of (3.28).

§ 4. Ultradiscrete Somos-5 equation

By ultradiscretizing the Somos-5 equation, one obtains the ultradiscrete Somos-5

(4.1) Fn + Fn−5 = max(Fn−1 + Fn−4, Fn−2 + Fn−3). (n ≥ 5)

This equation is a fifth order difference equation. However, by employing the same

approach to solving the ultradiscrete Somos-4, this equation is invariant under the

gauge Fn 7→ Fn+a+bn+c(−1)n (a, b, c ∈ R) and we can set F0 = F1 = F2 = 0 without

loss of generality. Therefore, the solution is also expressed as a planar polygon. Since

the approach of the proof is the same as that for the ultradiscrete Somos-4 equation,

we omit the details and show only results.

Theorem 4.1. The solution is written as

(4.2) Fn = −νn+3D − νn+2E + F̃n,

where D = F3, E = F4, νn is the solution to the same equation (4.1) for the initial
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value ν0 = 1, ν1 = ν2 = ν3 = 0 = ν4 = 0 and represented as follows:

ν7k = 1 + 1
8 (−ϕk − 6k + ψk)(4.3)

ν7k+1 = 1
8 (ϕk − 2k + ψk)(4.4)

ν7k+2 = 1
8 (−ϕk + 2k + ψk)(4.5)

ν7k+3 = 1
8 (ϕk + 6k + ψk)(4.6)

ν7k+4 = 1
8 (−ϕk + 10k + ψk)(4.7)

ν7k+5 = −1 + 1
8 (ϕk + 14k + ψk)(4.8)

ν7k+6 = 1
8 (−ϕk + 18k + ψk).(4.9)

F̃n is

F̃7k =
1

8
(−ϕk − 2k + ψk)Q+

−ϕk + 2k

4
R+ kP(4.10)

F̃7k+1 =
1

8
(ϕk + 2k + ψk)Q+

ϕk + 2k

4
R+ kP(4.11)

F̃7k+2 =
1

8
(−ϕk + 6k + ψk)Q+

−ϕk + 2k

4
R+ kP(4.12)

F̃7k+3 =
1

8
(ϕk + 10k + ψk)Q+

ϕk + 2k

4
R+ kP(4.13)

F̃7k+4 =
1

8
(−ϕk + 14k + ψk)Q+

−ϕk + 2k

4
R+ kP(4.14)

F̃7k+5 =
1

8
(ϕk + 18k + ψk)Q+

ϕk + 2k

4
R+ kP +max(E,D)(4.15)

F̃7k+6 =
1

8
(−ϕk + 22k + ψk)Q+

−ϕk + 2k

4
R+ kP +max(E,D,D + E),(4.16)

ϕk = 1− (−1)k, ψk = 14k(k− 1), Q = max(E, 0)+max(E,D, 2D), R = max(E, 0) and

P = max(2E, 2D, 2D + E).

By introducing a new dependent variable gn = fnfn+3/fn+1fn+2, the Somos-5

equation can be written as

(4.17) gngn−2 =
gn−1 + 1

gn−1
,

which is also a QRT map. The corresponding transformation of the dependent variable

in the ultradiscrete system is

(4.18) Gn = Fn + Fn+3 − Fn+1 − Fn+2

and we obtain its ultradiscretization:

(4.19) Gn +Gn−2 = max(Gn−1, 0)−Gn−1.
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Corollary 4.2. The solution to the equation (3.28) for the initial values G0 = D

and G1 = −D + E is expressed as

G7k = D(4.20)

G7k+1 = −D + E(4.21)

G7k+2 = −D − E +max(E,D)(4.22)

G7k+3 = D − E +max(D,E,D + E)−max(E,D)(4.23)

G7k+4 = E +max(2E, 2D, 2D + E)−max(E,D)−max(E,D,D + E)(4.24)

G7k+5 = −D +max(E,D)−max(E,D,D + E) + max(E, 0)(4.25)

G7k+6 = −E +max(E,D,D + E) + max(E,D, 2D)−max(2E, 2D,D + E).(4.26)

Therefore, the period of the solution is 7 for arbitrary initial values [18].

§ 5. The higher degree of freedom cases

To apply this approach to higher order ultradiscrete ordinary differential equa-

tions, we have to treat higher dimensional polytopes because the degree of freedom

becomes more. However, we can easily extend the discussion between polytopes and

max-combined linear functions in the section 2 to the higher dimensional ones and the

Minkowski sum operation for the higher dimensional polytopes are presented by Fukuda

[21]. In this section, we introduce the result of numerical calculation for the ultradis-

crete ODEs with Laurent property and 4 degree of freedom. First, let us consider this

equation:

(5.1) Fn + Fn−4 = max(Fn−1 + Fn−3, Fn−2) (n ≥ 4)

with initial values F0 = A, F1 = B, F2 = C, F3 = D. For sufficiently large n, the

solution is expressed as

(5.2) Fn = max
(α,β,γ,δ)∈Ve

(αA+ βB + γC + δD)− νnA− νn−1B − νn−2C − νn−3D,

where ν is a sequence (−1, 0, 0, 0, 1, 1, 1, 2, 2, 2, . . .) and Ve is expressed as in the case

n = 3k, Ve = {(−13 + 2k,−8 + k,−8 + k, 3), (−13 + 2k, 0, 0,−6 + k), (−14 + 2k,−6 +

k,−6 + k, 0), (−14 + 2k, 1, 1,−7 + k), (−15 + 2k,−4 + k,−8 + k, 1), (−15 + 2k,−8 +

k,−3 + k, 1), (−6 + k,−7 + k,−7 + k,−5 + k), (−6 + k, 0, 0,−12 + 2k), (−7 + k,−12 +

2k, 0, 1), (−7+ k,−13+2k, 1, 0), (−7+ k,−5+ k,−7+ k,−6+ k), (−7+ k,−7+ k,−5+

k,−6+k), (−7+k, 1,−13+2k, 0), (−7+k, 0,−3+k, 1), (0,−12+2k, 0,−6+k), (0,−6+

k,−6 + k,−12 + 2k), (0,−6 + k,−6 + k, 0), (0, 0,−12 + 2k,−6 + k)},
in the case n = 3k+1, Ve = {(−12+2k,−7+k,−6+k, 1), (−12+2k, 0, 1,−6+k), (−13+
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2k,−7+k,−4+k, 0), (−13+2k,−7+k,−8+k, 4), (−13+2k, 1, 0,−4+k), (−6+k,−3+

k,−8+k, 2), (−5+k,−14+2k, 1, 1), (−6+k,−6+k,−5+k,−6+k), (−6+k,−6+k,−7+

k,−4+k), (−6+k, 1, 0,−11+2k), (−6+k, 0,−11+2k, 0), (−6+k, 0, 1,−12+2k), (−7+

k,−11 + 2k, 0, 2), (−7 + k,−13 + 2k, 2, 0), (−7 + k,−4 + k,−7 + k,−5 + k), (0,−11 +

2k, 0,−5+k), (0,−5+k,−6+k,−11+2k), (0,−6+k,−5+k, 0), (0, 0,−11+2k,−6+k)}
and in the case n = 3k + 2, Ve = {(−11 + 2k,−7 + k,−7 + k, 2), (−11 + 2k, 0, 0,−5 +

k), (−12+ 2k,−5+ k,−7+ k, 1), (−13+ 2k,−7+ k,−3+ k, 0), (−15+ 2k,−3+ k,−7+

k, 2), (−5 + k,−12 + 2k, 0, 1), (−5 + k,−6 + k,−6 + k,−5 + k), (−5 + k, 0, 0,−11 +

2k), (−6+ k,−6+ k,−4+ k,−6+ k), (−6+ k, 0,−2+ k, 0), (−7+ k,−3+ k, 1, 2), (−7+

k,−13 + 2k, 3, 0), (−7 + k,−4 + k,−6 + k,−5 + k), (1,−12 + 2k, 0,−5 + k), (1,−6 +

k,−6 + k, 1), (0,−11 + 2k, 1,−5 + k), (0,−5 + k,−5 + k,−11 + 2k), (0,−6 + k,−4 +

k, 0), (0, 0,−10 + 2k,−6 + k)}.
Apparently, the coefficients of A, B, C and D grow linear order of n. Here, (2.20)

also grows linear order and solves second order equation (2.2) due to an n-dependent

identity (2.24). Then, it is considered that (5.2) solves (5.1) by virtue of some n-

dependent identity (which may contain about 400 arguments in max!).

The Somos-6 equation is an example of the equations whose solutions grow square

order and its ultradiscretization is written in

(5.3) Fn + Fn−6 = max(Fn−1 + Fn−5, Fn−2 + Fn−4, 2Fn−3) (n ≥ 6).

The order of this equation is sixth. However, similar as the ultradiscrete Somos-4

equation, this equation is invariant for the gauge transformation of Fn 7→ Fn + a+ bn.

Then, the real degree of freedom is 4. Though the solution to the initial value problem

of this equation is expressed as a polytope. However, differently from that for the

ultradiscrete Somos-4 and 5 equations, we cannot obtain the explicit formula of this

representation because the number of the vertices grow as n increases. By the dependent

variable transformation

(5.4) Gn = Fn + Fn−2 − 2Fn−1,

the ultradiscrete Somos-6 equation (5.3) is transformed into a 4th order difference equa-

tion:

(5.5)

Gn+Gn−4 = max(Gn−1+2Gn−2+Gn−3, Gn−2, 0)−(2Gn−1+3Gn−2+2Gn−3) (n ≥ 4).

If the solution is decomposed into several polytopes and n affects only the scale of

polytopes similarly to that of the ultradiscrete Somos-4 and 5 equations, the solution to

(5.5) should be periodic regardless of the initial value. However, for a given numerical

initial value, the solution has a period, which depends on the initial value.
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It is known that the solution of the (discrete) Somos-6 equation is expressed as the

Wierstrass sigma function and the it evolves linearly on the corresponding Jacobian [22].

Since this approach is very similar to that for theta function solution to discrete Toda

equation with periodic boundary condition, if we assume that it can be ultradiscretized

by the similar method to that of theta function [23], the evolution of the solution is

linearlized on the Jacobian of ultradiscrete sigma function, which is a double-torus.

Then, one can consider that the orbit forms quasi-periodic and never come back to

the initial point for general initial values. This is why the solution to the ultradiscrete

Somos-6 equation becomes more complex as n grows.

Finally, we remark that such a phenomenon does not occur because the discrete

Somos-6 equation is obtained from not the discrete KP equation but the discrete BKP

one. We have the same problem for the generalization of the ultradiscrete Somos-4

equation:

(5.6) Fn + Fn−4 = max(C + Fn−1 + Fn−3, D + 2Fn−2).

The solution corresponds to a 4 dimensional convex polytope and its shape becomes

more complex as n grows. We also note that such phenomenon does not occur just

because the degree of freedom increases. We observed that the same phenomenon

happens with simply dropping several informations (e.g. setting A = B = 0).

§ 6. Concluding Remarks

In this paper, we proposed a purely ultradiscrete calculus-based method to solve

the initial value problem for the ultradiscrete Somos-4 and 5 equations by regarding max

formulae as convex polygons. The solution can be written as a single max expression

even if the evolution equations contain minus terms, which is an analogue of the Laurent

property in ultradiscrete systems.

The idea discussed in Section 2 faithfully replaces the max-plus algebra with poly-

gon operations. This means that problems arising in the max-plus algebra, are also

present in polygon operations. For example, by setting P = max(B,A,B+2A,A+2B)

and Q = max(0, 2A, 2A + 2B, 2B), max(P,Q) in fact no longer depends on P , which

corresponds to the fact that a polygon included in other polygons, no longer influences

their geometrical properties.

Our approach can be applied to equations with the Laurent property, even if they

are higher order ones or have higher degree non-linearities. For example, the equation

(6.1) fnfn−2 = (fn−1)
m + 1

for m > 2 has the Laurent property. The corresponding ultradiscrete equation is

(6.2) Fn + Fn−2 = mmax(Fn−1, 0)
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and its solution is expressed as Fn = max(bn−1F1, bn−2F0, 0)−αnF0−αn−1F1 (n ≥ 2),

where bn is the solution of bn = mbn−1 − bn−2, b0 = 0, b1 = m and αn is the solution

of the same difference equation αn = mαn−1 − αn−2 with the different initial value

α0 = −1, α1 = 0. Though the growth of bn and αn is of exponential order, the

ultradiscretized solution is also expressible by means of the polygons. This solution also

holds even when m is not integer. This result may indicate a suggestion on what is the

Laurent property about difference equations with the non-integer degree non-linearity.

We finally note that the method used in the proofs of Theorems 6 and 8 to obtain the

general solution Fn after finding a special solution νn, is very similar to the quadrature

method for the general solution of the Riccati equation.
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