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Space of initial conditions for the four-dimensional

Fuji-Suzuki-Tsuda system

By

Tomoyuki Takenawa∗

Abstract

A geometric study for an integrable 4-dimensional dynamical system so called the Fuji-

Suzuki-Tsuda system is given. By the resolution of indeterminacy, the group of its Bäklund

transformations is lifted to a group of pseudo-isomorphisms between rational varieties obtained

from (P1)4 by blowing-up along eight 2-dimensional subvarieties and four 1-dimensional sub-

varieties. The root basis is realised in the Néron-Severi bilattices. A discrete Painlevé system

with quadratic degree growth is also realised as its translational element.

§ 1. Introduction

§ 1.1. Background and the results

The Painlevé equations are nonlinear second-order ordinary differential equations

whose solutions are meromorphic except some fixed points, but not reduced to known

functions such as solutions of linear ordinary differential equations or Abel functions.

In [7] Okamoto introduced the notion of space of initial conditions where the flow of

each Painlevé equation is regularised on a family of rational algebraic surfaces (minus

some subvarieties called vertical leaves) even around poles. In [9] Sakai extended this

notion to the discrete case and used it to obtain symmetry group of the equations. A

benefit of this approach is that the root systems can be realised geometrically in the

Picard group on the surfaces.
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In recent years, research on four-dimensional Painlevé systems has been progressed

mainly from the viewpoint of isomonodromic deformation of linear equations [10] and

pointed out that there are 4 master equations in the sense that other equations can be

obtained from them by limiting procedure [6]. The four-dimensional Fuji-Suzuki-Tsuda

system is one of these 4 master equations. In [5, 12] Suzuki and Fuji obtained the 2N -

dimensional (N = 1, 2, 3, · · · ) system by a reduction from so called the Drinfeld-Sokolov

hierarchies of type A and in [14] Tsuda obtained it from so called the UC-hierarchies.

In this paper, starting from known Bäclund transformations, we construct the space

of initial conditions for the 4D Fuji-Suzuki-Tsuada system. By resolution of indetermi-

nacy, the Bäklund transformations are lifted to pseudo-isomorphisms between rational

varieties obtained from (P1)4 by blowing-up along eight 2-dimensional subvarieties and

four 1-dimensional subvarieties1. The root basis is realised in the Néron-Severi bilat-

tice. A discrete Painlevé system with quadratic degree growth is also realised as its

translational element.

§ 1.2. Fuji-Suzuki-Tsuda system and its Bäcklund transformations

The 4D Fuji-Suzuki-Tsuada system is a Hamiltonian system

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, (i = 1, 2)(1.1)

with

t(t− 1)H =HVI(q1, p1; a2, a0 + a4, a3 + a5 − η, ηa1)

+HVI(q2, p2; a0 + a2, a4, a1 + a3 − η, ηa5)

+ (q1 − t)(q2 − 1){(q1p1 + a1)p2 + p1(p2q2 + a5)}(1.2)

and a0 + a1 + · · · + a5 = 1, where HVI is the polynomial Hamiltonian of the sixth

Painlevé equation introduced by Okamoto in [8]:2

HVI(q, p; a, b, c, d) =q(q − 1)(q − t)p2 − {(a− 1)q(q − 1)

+ bq(q − t) + c(q − 1)(q − t)}p+ dq.(1.3)

This equation has Bäcklund transformations, i.e. transformations of variables which

keep the equation except parameters as in the following two tables3.

1Sasano has also constructed the space of initial conditions in [11], where he started from a four-
dimensional analog of the Hirzebruch surface. In our study, the structure of the Picard group
becomes simple, since we start from the direct product of P1 instead of the analog of the Hirzebruch
surface.

2Precisely saying, HVI is the Hamiltonian introduced by Okamoto multiplied by t(t− 1).
3 si’s are reported in [5], while π is in [12], where a misprint has been corrected, and ρ is in [14].
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Actions on parameters

ā0 ā1 ā2 ā3 ā4 ā5 η̄ t̄

s0 −a0 a0 + a1 a2 a3 a4 a0 + a5 η + a0 t

s1 a0 + a1 −a1 a1 + a2 a3 a4 a5 η − a1 t

s2 a0 a1 + a2 −a2 a2 + a3 a4 a5 η + a2 t

s3 a0 a1 a2 + a3 −a3 a3 + a4 a5 η − a3 t

s4 a0 a1 a2 a3 + a4 −a4 a4 + a5 η + a4 t

s5 a0 + a5 a1 a2 a3 a4 + a5 −a5 η − a5 t

π a1 a2 a3 a4 a5 a0 −η t−1

ρ a0 a5 a4 a3 a2 a1 η t−1

Actions on dependent variables

q̄1 q̄2 p̄1 p̄2

s0 q1 q2 p1 − a0(q1 − q2)
−1 p2 + a0(q1 − q2)

−1

s1 q1 + a1p
−1
1 q2 p1 p2

s2 q1 q2 p1 − a2(q1 − t)−1 p2

s3 q1 + a3q1B
−1 q2 + a3q2B

−1 p1 − a3p1A
−1 p2 − a3p2A

−1

s4 q1 q2 p1 p2 − a4(q2 − 1)−1

s5 q1 q2 + a5p
−1
2 p1 p2

π C1C
−1
t C2C

−1
t −(q1 − t)Ct(t− 1)−1 −(q2 − q1)Ct(t− 1)−1

ρ q2t
−1 q1t

−1 p2t p1t

where A = q1p1 + q2p2 + η, B = A − a3, C1 = A − p1 − p2, C2 = A − tp1 − p2 and

Ct = A− tp1 − tp2.

These transformations constitute so called the extended affine Weyl group of type

A
(1)
5 , whose fundamental relations are

s2i = ρ2 = π6 = identity

si ◦ si+1 ◦ si = si+1 ◦ si ◦ si+1, si ◦ sj = sj ◦ si (|i− j| > 1)

si ◦ π = π ◦ si+1, si ◦ ρ = ρ ◦ s6−i, (π ◦ ρ)2 = identity,

where indices are considered to be cyclic as αi+6 = αi.

In order to construct its space of initial conditions without blowing-downs, we

introduce a new coordinate system (qi, ri) = (qi, qipi) (i = 1, 2), exactly the same

manner with the case of two-dimensional Painlevé equations.
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The action on dependent variables become

Actions on new dependent variables

q̄1 q̄2 r̄1 r̄2

s0 q1 q2 r1 − a0q1(q1 − q2)
−1 r2 + a0q2(q1 − q2)

−1

s1 q1(1 + a1r
−1
1 ) q2 r1 + a1 r2

s2 q1 q2 r1 − a2q1(q1 − t)−1 r2

s3 q1 + a3q1D
−1 q2 + a3q2D

−1 r1 r2

s4 q1 q2 r1 r2 − a4q2(q2 − 1)−1

s5 q1 q2(1 + a5r
−1
2 ) r1 r2 + a5

π E1E
−1
t E2E

−1
t −(q1 − t)E1F

−1 −(q2 − q1)E2F
−1

ρ q2t
−1 q1t

−1 r2 r1

where D = r1 + r2 − a3 + η, E1 = q1q2(r1 + r2 + η)− q2r1 − q1r2, E2 = q1q2(r1 + r2 +

η)− tq2r1 − q1r2, Et = q1q2(r1 + r2 + η)− tq2r1 − tq1r2 and F = q1q2(t− 1).

§ 1.3. Basic facts

In this paper, we use the following basic facts; see § 2 of [3] for details.

Let X and Y be smooth projective varieties. For a birational map f : X → Y, let

I(f) denote the indeterminate set (i.e. the set of points where f is not defined) of f in

X .

We say a sequence of birational maps φn : Xn → Xn+1 for smooth projective

varieties Xn (n ∈ Z) to be algebraically stable if

(φn+k−1 ◦ · · · ◦ φn+1 ◦ φn)
∗
= φ∗

n ◦ φ∗
n+1 ◦ · · · ◦ φ∗

n+k−1

holds as a mapping from the Picard group of Xn+k to that of Xn for any integers n

and k ≥ 1.

Proposition 1.1 ([2, 1]). A sequence of birational maps φn : Xn → Xn+1 for

smooth projective varieties Xn (n ∈ Z) is algebraically stable if and only if there do

not exist integers n and k ≥ 1 and a divisor D on Xn−1 such that φ(D \ I(φn−1)) ⊂
I(φn+k−1 ◦ · · · ◦ φn+1 ◦ φn).

4

We call a birational mapping f : X → Y a pseudo-isomorphism if f is isomorphic

except on finite number of subvarieties of codimension two at least. This condition is

equivalent to that there is no prime divisor pulled back to the zero divisor by f or

f−1. Hence, if φn is a pseudo-isomorphism for each n, then {φn}n∈Z and {φ−1
n }n∈Z are

algebraically stable.

4This statement is a non-autonomous analog of a proposition shown in [2, 1]. The proof does not
change except in notations.
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Proposition 1.2 ([4]). Let X and Y be smooth projective varieties and φ a

pseudo-isomorphism from X to Y. Then φ acts on the Néron-Severi bi-lattice as an

automorphism preserving the intersections.

The Néron-Severi bi-lattice of a smooth rational variety X is isomorphic toH2(X ,Z)×
H2(X ,Z) which is explicitly given in the following.

Blowup of a direct product of P1

In accordance with [15], we take the basis of the Néron-Severi bi-lattice as follows.

Let X be a rational variety obtained by K successive blowups from (P1)N and

(x1,x2, . . . ,xN ) = (x10 : x11, x20 : x21, · · · , xN0 : xN1)

the direct product of homogeneous coordinate chart. Let Hi denote the total transform

of the class of a hyper-plane cixi = ci0xi0 + ci1xi1 = 0, where ci = (ci0 : ci1) is a

constant vector in P1, and Ek the total transform of the k-th exceptional divisor class.

Let hi denote the total transforms of the class of a line

{x | ∀j ̸= i, (xj0 : xj1) = (cj0 : cj1)},

where cj = (cj0 : cj1)’s (j ̸= i) are constant vectors in P1, and ek the class of a line in

a fiber of the k-th blow-up. Note that the exceptional divisor for a blowing-up along a

d-dimensional subvariety V is isomorphic to V × PN−d−1, where PN−d−1 is a fiber.

Then the Picard group ≃ H2(X ,Z) and its Poincaré dual ≃ H2(X ,Z) are lattices

H2(X ,Z) =
n⊕

i=1

ZHi ⊕
K⊕

k=1

Z Ek, H2(X ,Z) =
n⊕

i=1

Zhi ⊕
K⊕

k=1

Z ek(1.4)

and the intersection form is given by

⟨Hi, hj⟩ = δij , ⟨Ek, el⟩ = −δkl, ⟨Hi, ek⟩ = 0, ⟨Ek, hi⟩ = 0.(1.5)

Degree of a mapping

Let ψ be a rational mapping from CN to itself:

ψ : (x̄1, . . . , x̄N ) = (ψ1(x1, · · · , xN ), . . . , ψN (x1, · · · , xN )).

The degree of x̄i of ψ with respect to xj is defined as the degree of ψi as a rational

function of xj , i.e. the maximum of degrees of numerator and denominator. If CN is

compactified as (P1)N , the degree of x̄i of ψ with respect to xj is given by the coefficient

of Hj in ψ∗(Hi). This formula also holds when (P1)N is blown-up if Hi denotes the

total transform with respect to blowing-up as the above settings.
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§ 2. Construction of the space of initial conditions

First of all, let us compactify the phase space {(q1, q2, r1, r2) ∈ C4} to (P1)4 by

introducing new coordinates Q1 = q−1
1 , Q2 = q−1

2 , R1 = r−1
1 , R2 = r−1

2 around q1 = ∞,

q2 = ∞ and so on.

Next, we search (P1)4 for hyper-surfaces which are contracted to lower dimensional

subvarieties. Such hyper-surfaces appear as a factor of the numerator of Jacobian of a

map ∂(q̄1, q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2). However, note that (P1)4 has essentially 24 = 16

charts, and the Jacobian should be considered between all the pairs of charts.

For example, the Jacobian ∂(q̄1, q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) of s0 is a constant of 1 in

the original chart, while it becomes nontrivial on another chart as

∂(q̄1, q̄2, R̄1, R̄2)/∂(q1, q2, r1, r2) =
(q1 − q2)

4

(a0q1 − q1r1 + q2r1)2(a0q2 + q1r2 − q2r2)2
.

Thus, the image of the generic part of hyper-surface q1 − q2 = 0 is contracted to some

lower dimensional subvariety. Indeed, substituting q2 = q1 + ε to (q̄1, q̄2, R̄1, R̄2), we

have

(q̄1, q̄2, R̄1, R̄2) =

(
q1, q1 + ε,

ε

a0q1
+O(ε2),− ε

a0q1
+O(ε2)

)
,

where O is the big O asymptotic notation, Hence, we can see that the generic part of

hyper-surface q1 − q2 = 0 is contracted to a two-dimsensional variety

{(q̄1, q̄2, R̄1, R̄2) ∈ C4 | q̄1 − q̄2 = 0, R̄1 = R̄2 = 0}.(2.1)

Similarly, for s1, from

∂(q̄1, q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) =
a1 + r1
r1

and

∂(Q̄1, q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) = − r1
q21(a1 + r1)

,

we see that r1 + a1 = 0 is contracted to

{(q̄1, q̄2, r̄1, r̄2) ∈ C4 | q̄1 = 0, r̄1 = 0}(2.2)

and r1 = 0 is contracted to

{(Q̄1, q̄2, r̄1, r̄2) ∈ C4 | Q̄1 = 0, r̄1 + ā1 = 0}.(2.3)

For s2, from

∂(q̄1, q̄2, R̄1, r̄2)/∂(q1, q2, r1, r2) = − (q1 − t)2

(a2q1 − q1r1 + r1t)2
,
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we see q1 − t = 0 is contracted to

{(q̄1, q̄2, R̄1, r̄2) ∈ C4 | q̄1 − t̄ = 0, R̄1 = 0}.(2.4)

For s3, from

∂(q̄1, q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) =
(r1 + r2 + η)2

(r1 + r2 − a3 + η)2

and

∂(Q̄1, Q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) =
(r1 + r2 − a3 + η)2

q21q
2
2(r1 + r2 + η)2

,

we see that r1 + r2 + η = 0 is contracted to

{(q̄1, q̄2, r̄1, r̄2) ∈ C4 | q̄1 = q̄2 = 0, r̄1 + r̄2 − ā3 + η̄ = 0}(2.5)

and r1 + r2 − a3 + η = 0 is contracted to

{(Q̄1, Q̄2, r̄1, r̄2) ∈ C4 | Q̄1 = Q̄2 = 0, r̄1 + r̄2 + η̄ = 0}.(2.6)

For s4, from

∂(q̄1, q̄2, r̄1, R̄2)/∂(q1, q2, r1, r2) = − (q2 − 1)2

(a4q2 + r2 − q2r2)2
,

we see that q2 − 1 = 0 is contracted to

{(q̄1, q̄2, r̄1, R̄2) ∈ C4 | q̄2 − 1 = 0, R̄2 = 0}.(2.7)

For s5, from

∂(q̄1, q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) =
a5 + r2
r2

and

∂(q̄1, Q̄2, r̄1, r̄2)/∂(q1, q2, r1, r2) = − r2
q22(r2 + a5)

,

we see that r2 + a5 = 0 is contracted to

{(q̄1, q̄2, r̄1, r̄2) ∈ C4 | q̄2 = 0, r̄2 = 0}(2.8)

and r2 = 0 is contracted to

{(q̄1, Q̄2, r̄1, r̄2) ∈ C4 | Q̄2 = 0, r̄2 + ā5 = 0}.(2.9)

Let us take a closer look at the image (2.1) of q1 − q2 = 0 by s0 and introduce new

coordinates (by blowing-up)

(w, q2, u, v) =

(
q1 − q2
R1

, q2, R1,
R2

R1

)
.(2.10)
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Then, from

∂(w̄, q̄2, ū, v̄)/∂(q1, q2, r1, r2) =
(q1 − q2)

2

(a0q2 + q1r2 − q2r2)2
,

we see that q1 − q2 = 0 is still contracted to

{(w̄, q̄2, ū, v̄) ∈ C4 | w̄ − ā0q̄2 = 0, ū = 0, v̄ + 1 = 0}.(2.11)

Let us introduce further new coordinates (by blowing-up)

(w′, q2, u
′, v′) =

(
w − a0q2

u
, q2, u,

v + 1

u

)
.(2.12)

Then, from

∂(w̄′, q̄2, ū
′, v̄′)/∂(q1, q2, r1, r2) = −1,

we see that there is no hyper-surface in the affine space of (q1, q2, r1, r2) chart contracted

to a subvariety whose generic part is included in the affine space of (w̄′, q̄2, ū
′, v̄′) chart.

(Charts (2.10) and (2.12) are the same with U11 and U12 below.)

By investigating other transformations in the same way, we can see that, resolution

of singularities requires two infinitesimally near blowing-ups (i.e. the center of the

second blowing-up is included in the exceptional divisor of the first blowing up) for s0,

s2 or s4, while it also requires two blowing-ups but not infinitesimally near for s1, s3 or

s5.

These blowing-ups are given by the following list.

C1 : q1 = r1 = 0 U1 : (u1, q2, v1, r2) = (q1, q2, r1q
−1
1 , r2)

C2 : Q1 = r1 + a1 = 0 U2 : (u2, q2, v2, r2) = (Q1, q2, (r1 + a1)Q
−1
1 , r2)

C3 : q2 = r2 = 0 U3 : (q1, u3, r1, v3) = (q1, q2, r1, r2q
−1
2 )

C4 : Q2 = r2 + a5 = 0 U4 : (q1, u4, r1, v4) = (q1, Q2, r1, (r2 + a5)Q
−1
2 )

C5 : q1 = q2 = r1 + r2 − a3 + η = 0

U5 : (u5, v5, w5, r2) = (q1, q2q
−1
1 , (r1 + r2 − a3 + η)q−1

1 , r2)

C6 : Q1 = Q2 = r1 + r2 + η = 0U6 : (u6, v6, w6, r2) = (Q1, Q2Q
−1
1 , (r1 + r2 + η)Q−1

1 , r2)

C7 : q1 − t = R1 = 0 U7 : (v7, q2, u7, r2) = ((q1 − t)R−1
1 , q2, R1, r2)

C8 : u7 = v7 − a2t = 0 U8 : (v8, q2, u8, r2) = ((v7 − a2t)u
−1
7 , q2, u7, r2)

C9 : q2 − 1 = R2 = 0 U9 : (q1, v9, r1, u9) = (q1, (q2 − 1)R−1
2 , r1, R2)

C10 : u9 = v9 − a4 = 0 U10 : (q1, v10, r1, u10) = (q1, (v9 − a4)u
−1
9 , r1, u9)

C11 : q1 − q2 = R1 = R2 = 0

U11 : (w11, q2, u11, v11) = ((q1 − q2)R
−1
1 , q2, R1, R2R

−1
1 )

C12 : u11 = v11 + 1 = w11 − a0q2 = 0

U12 : (w12, q2, u12, v12) = ((w11 − a0q2)u
−1
11 , q2, u11, (v11 + 1)u−1

11 ),

(2.13)
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where we write only one of new coordinate systems where the exceptional divisor is

given by ui = 0 (i = 1, 2, · · · , 12). The other coordinate systems are automatically

determined from the above data. For example, the other two coordinate systems for

blowing up along C5 are

U ′
5 : (u′5, v

′
5, w

′
5, r2) = (q1q

−1
2 , q2, (r1 + r2 − a3 + η)q−1

2 , r2)

and

U ′′
5 : (u′′5 , v

′′
5 , w

′′
5 , r2) = (q1(r1+r2−a3+η)−1, q2(r1+r2−a3+η)−1, r1+r2−a3+η, r2),

where the exceptional divisor is given by v′5 = 0 and w′′
5 = 0 respectively. More precisely,

above coordinate systems are obtained only by blow-ups along open subset of Ci’s,

but the other systems are also determined automatically by algebraic continuation (we

assume Ci’s are irreducible).

Theorem 2.1. Let XA (A = (a0, a1, · · · , a5, η, t)) be a rational variety obtained

by blowing-ups along C1, · · · , C12 above. Each Bäclund transformation s0, · · · , s5 or

ρ is lifted to a pseudo-isomorphism from a rational variety XA to X Ā, where Ā =

(ā0, ā1, · · · , ā5, η̄, t̄) is given by Table ‘Actions on parameters”.

Proof. It is confirmed by direct computation that the Jacobians of lifted mappings

do not vanish.

Remark. Transformation π is not lifted to a pseudo-isomorphism from XA to

X Ā. Indeed, q2 = 0 (a hyper-surface) is mapped to

(w̄11, q̄2, ū11, v̄11) =

(
r1
q1
,
1

t
, 0,−1 +

t

q1

)
with q̄1 − q̄2 = R̄1 = R̄2 = 0. Hence the image of q2 = 0 is included in a two-

dimentional subvariety of C11 such that the subvariety is different from C12. Hence

q2 = 0 is contracted to lower dimensional variety in X Ā. The same thing happens also

for Q1 = 0: which is contracted to a two-dimentional subvariety of C11 different from

C12.

Of course, there is possibility to be able to construct the space of initial conditions

that allow π, but it needs several more blowing-ups, and the action of the root system

would become more complicated.

Let us denote E i as the class of total transform of the exceptional divisor obtained

by the blowing-up along Ci. Then, since C5, C6, C11, C12 are subvarieties of codimension

3, while the others are of codimension 2, the anti-canonical divisor class is

−KXA
= 2Hq1 +2Hq2 +2Hr1 +2Hr2 −

∑
i=1,2,3,4,7,8,9,10

E i −2
∑

i=5,6,11,12

E i .
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Moreover, since C8, C10 and C12 are subvarieties of E7, E9 and E11 respectively,

E7 −E8, E9 −E10 and E11 −E12 are effective divisor class in XA. Hence, −KXA
is

decomposed into irreducible divisors as

−KXA
=(Hq1 −E1 −E5) + (Hq1 −E2 −E6) + (Hq2 −E3 −E5) + (Hq2 −E4 −E6)

+ 2(Hr1 −E7 −E11) + 2(Hr2 −E9 −E11)

+ (E7 −E8) + (E9 −E10) + 2(E11 −E12),(2.14)

where each irreducible divisor is explicitly written by coordinates as

Hq1 −E1 −E5 :q1 = 0

Hq1 −E2 −E6 :Q1 = 0

Hq2 −E3 −E5 :q2 = 0

Hq2 −E4 −E6 :Q2 = 0

Hr1 −E7 −E11 :R1 = 0

Hr2 −E9 −E11 :R2 = 0.

Note that these subvarieties correspond to vertical leaves, i.e. the ordinary differential

equations are not defined on these subvarieties.

Remark. Through the natural identification between exceptional divisors for dif-

ferent values of parameter A’s, we use the same symbol E i’s for all A’s.

§ 3. The root system and the actions on the bilattice

We can directly compute the actions si’s on the Picard group. However, in order

to see a geometric way of construction of the root system explicitly, let us reconstruct

the Bäcklund transformations from a root system defined in the Neron-Severi bilattice.

We use a higher dimensional analog of the notion of Cremona isometry introduced

in [3].

Definition 3.1. An automorphism s of the Néron-Severi bilattice is called a

Cremona isometry if the following three properties are satisfied:

(a) s preserves the intersection form;

(b) s leaves the decomposition of −KX fixed;

(c) s leaves the semigroup of effective classes of divisors invariant.

Our aim is to realise the group of Cremona isometries as a root system, though

it is the most heuristic part of this procedure. Different to the two-dimensional case,
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we merely know the decomposition of the null-root (the anti-canonical divisor) in one

of the dual spaces as (2.14), and hence, we can collect the vectors orthogonal to the

elements of the decomposition only in the homology space.

Let us set the roots and co-roots as

α0 = Hq1 +Hq2 −E5,6,11,12, α1 = Hr1 −E1,2, α2 = Hq1 −E7,8,

α3 = Hr1 +Hr2 −E5,6,11,12, α4 = Hq2 −E9,10, α5 = Hr2 −E3,4

and

α̌0 = hr1 + hr2 − e11,12, α̌1 = hq1 − e1,2, α̌2 = hr1 − e7,8,

α̌3 = hq1 + hq2 − e5,6, α̌4 = hr2 − e9,10, α̌5 = hq2 − e3,4,

where E i1,...,in and ei1,...,in are the abbreviations of E i1 + · · · + E in and ei1 + · · · + ein
respectively. Then, they constitute the root basis of type A

(1)
5 whose Cartan matrix and

the Dynkin diagram are as follows.

2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1−2



α0

α1 α2 α3 α4 α5

Remark.

1. The decomposition (2.14) constitutes of 9 irreducible divisors in rank 14 space (with

null-vector). Hence, rank 6 of type A
(1)
5 is maximum.

2. The number of free parameters of the space of initial conditions having the decom-

position (2.14) is 19: 2 for Ci (i = 1, 2, 3, 4, 7, 9, 12), and 1 for Ci (i = 5, 6, 8, 10, 11).

We can reduce it using Möbius transformation with respect to each coordinate to

19− 3× 4 = 7. We leave one of 12 variables (able to be fixed by Möbius transfor-

mations) to be free for the continuous time variable t, while the sum of ai’s is fixed

to be 1. Hence we have 7 variables in total as a0, · · · , a5, η and t in the formulation

of Fuji-Suzuki [5].

The actions of the roots on the Néron-Severi bilattice are given by the formulae

si(D) = D − 2
⟨D, α̌i⟩
⟨αi, α̌i⟩

αi, si(d) = d− 2
⟨αi, d⟩
⟨αi, α̌i⟩

α̌i
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for any D ∈ H2(XA,Z) and d ∈ H2(XA,Z), while ρ acts on H2(XA,Z) as

Hq1 ↔ Hq2 , Hp1
↔ Hp2

hq1 ↔ hq2 , hp1
↔ hp2

E1 ↔ E3, E2 ↔ E4 e1 ↔ e3, e2 ↔ e4

E7 ↔ E9, E8 ↔ E10 e7 ↔ e9, e8 ↔ e10

(3.1)

Translation

A translation of A
(1)
5

Tαi
: ᾱi = αi + 2δ, ᾱi±1 = αi±1 − δ, ᾱj = αj (|i− j| > 1),(3.2)

where δ = −KX , is realised as

Tαi
= si+1 ◦ si+2 ◦ si+3 ◦ si+4 ◦ si+5 ◦ si+4 ◦ si+3 ◦ si+2 ◦ si+1 ◦ si.

The action of Tαi on the Picard group is given by Kac’s formula

T ∗
αi
(D) = D + ⟨D, δ̌⟩αi +

(
⟨D, δ̌⟩+ 1

2
⟨αi, α̌i⟩⟨D, α̌i⟩

)
δ,(3.3)

for any D ∈ H2(XA,Z), where

δ̌ =

5∑
i=0

α̌i = 2hq1 + 2hq2 + 2hr1 + 2hr2 −
12∑
i=1

ei.(3.4)

Since the degrees of the iteration of this mapping with respect to q1, q2, r1, r2 are given

by the coefficients of Hq1 , Hq2 , Hr1 , Hr1 in

((Tαi
)n)

∗
(D) = D + n⟨D, δ̌⟩αi +

(
n2⟨D, δ̌⟩+ n

2
⟨αi, α̌i⟩⟨D, α̌i⟩

)
δ(3.5)

with D = Hq1 ,Hq2 ,Hp1 ,Hp2 (as explained in § 1.3), they increase quadratically with

respect to n.
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of type A. Algebraic and geometric aspects of integrable systems and random matrices,

125–141, Contemp. Math. 593 (Amer. Math. Soc., Providence, RI, 2013).

[13] Takenawa, T., Algebraic entropy and the space of initial values for discrete dynamical

systems, J. Phys. A: Math. Gen. 34 (2001), 10533–10545.

[14] Tsuda, T., UC hierarchy and monodromy preserving deformation, J. Reine Angew. Math.

690 (2014), 1–34.

[15] Tsuda, T., Takenawa, T., Tropical representation of Weyl groups associated with certain

rational varieties, Adv. Math. 221 (2009), 936–954.


