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Limit theorem of the max-plus walk

By

Sennosuke Watanabe∗, Akiko Fukuda∗∗,
Etsuo Segawa∗∗∗ and Iwao Sato†

Abstract

The max-plus algebra is a semiring on Rmax = R∪{−∞} with addition ⊕ and multiplica-

tion ⊗ defined by ⊕ = max and ⊗ = +, respectively. It is known that eigenvalues of max-plus

matrices are equivalent to the maximal average weight of the corresponding directed graph. In

[9], authors introduced the max-plus walk which is a walk model on one dimensional lattice on

Z over max-plus algebra, and discussed its properties such as the conserved quantities and the

steady state. In this paper, we will discuss the limit measure of the max-plus walk.

§ 1. Introduction

Studies on a spatial discretization of the Schrödinger equation is known as the

discrete-Schrödinger equation. Quantum walk can be regarded as a temporal discretiza-

tion of a discrete-Schroëdinger equation [6, 7]. This is a reason that quantum walk is

recently known as a quantum simulator as envisioned by Feynman [2]. On the other

hand, there is a further discretization; so called the ultradiscretization, which is intro-

duced in [8]. Ultradiscretization is a technique which transform a difference equation
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into piecewise linear equation and appears in the context of integrable systems. It is

based on the following formula.

lim
ϵ→+0

ϵ log(eA/ϵ + eB/ϵ) = max{A,B}.

Since ultradiscrete equations can be written by using operations “max” and “+”, they

can be considered over max-plus algebra. In max-plus algebra, the sum of two elements

is their maximum and the product of two elements is their sum. This algebraic structure

is known as idempotent semiring. In [9], a new walk model on one-dimensional lattice

over max-plus algebra is introduced. Such a walk is called the max-plus walk.

In the usual quantum walk (resp. random walk) on one dimensional lattice, the

limit theorem can be characterized as follows [4]: (1) the scaling order is linearly pro-

portional (resp. proportional to square root) to time steps and (2) the limit distribution

is described by the Konno distribution (resp. the Gaussian distribution). In [9], we find

the conserved quantities which are independent of the time step, such as the ℓ2-norm

conservation in the unitary quantum walk, and a useful necessary and sufficient condi-

tion of the setting of the max-plus walk for the conservation. The conserved quantities

are given by the summation of eigenvalues of the state decision matrices over all the

lattice points. In this paper, we define a measure on the lattice points under the con-

dition. We also obtain a limit theorem on this measure in the long-time limit. This

corresponds to the original unitary quantum walk.

This paper is organized as follows. In sections 2 and 3, we give a short review on

the max-plus algebra and max-plus walk, respectively. In section 4, under a certain

conserved condition, we obtain the limit theorem corresponding to the usual quantum

walk. Finally, in section 5, we give concluding remarks.

§ 2. Max-plus algebra

Max-plus algebra is defined in a set Rmax = R∪ {−∞} with two binary operations

a⊕ b = max{a, b}

and

a⊗ b = a+ b

for a, b ∈ Rmax. Addition ⊕ is commutative, associative and has the identity element

ε := −∞. Multiplication⊗ is also commutative, associative and has the identity element

e := 0. ⊗ is distributive with respect to ⊕. There exists an inverse element with respect

to ⊗ for any elements in Rmax \ {ε}. Note that there is not exist inverse elements with

respect to ⊕. ⊕ is idempotent, namely, a⊕ a = a for a ∈ Rmax.
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As in the conventional algebra, we extend the operations ⊕ and ⊗ to matrices. Let

Rm×n
max be the set of m × n matrices whose entries are in Rmax and [X]ij be the (i, j)

entry of the matrix X. For A = (aij), B = (bij) ∈ Rm×n
max , their sum A ⊕ B ∈ Rm×n

max is

defined by

[A⊕B]ij = aij ⊕ bij .

For A = (aij) ∈ Rm×k
max and B = (bij) ∈ Rk×n

max , their product A ⊗ B ∈ Rm×n
max is defined

by

[A⊗B]ij =
k⊕

l=1

ail ⊗ blj .

We denote A⊗k as the k-th power of A, namely,

A⊗k := A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
k times

.

For a matrix A = (aij) ∈ Rn×n
max , we define the tropical determinant of A by

tropdet(A) =
⊕
σ∈Sn

a1σ(1) ⊗ a2σ(2) ⊗ · · · ⊗ anσ(n)

where Sn denotes the symmetric group of order n.

Although it has different operators to the conventional algebra, the eigenvalue

problem for matrices is fundamental in both algebra.

Definition 2.1. For a max-plus matrix A ∈ Rn×n
max , a scalar λ ∈ Rmax is called

an eigenvalue of A if there is a vector x ̸= (ε, . . . , ε)⊤ ∈ Rn
max satisfying

A⊗ x = λ⊗ x.

Such vector x is called an eigenvector of A with respect to λ.

The max-plus eigenvalues were shown, for example, in Baccelli et al. [1] to have a

close relationship with the weighted directed graphs.

For a max-plus matrix A = (aij) ∈ Rn×n
max , we define a weighted directed graph

(briefly digraph) G(A) = (V,E,w) as follows. The vertex set and the edge set are

V = {1, 2, . . . , n} and E = {(i, j)|aij ̸= ε} ⊂ V ×V , respectively, and the weight function

w : E → R is defined by w((i, j)) = aij for (i, j) ∈ E. A sequence C = (i1, i2, . . . , is, i1)

of vertices is called a circuit if (ik, ik+1) ∈ E for all k = 1, 2, . . . , s where is+1 = i1

and ip ̸= iq for 1 ≤ p < q ≤ s. The number ℓ(C) := s is called the length of C and

w(C) := w((i1, i2)) + w((i2, i3)) + · · ·+ w((is, i1)) is called the weight of C. We define

the average weight of C by ave(C) := w(C)/ℓ(C).



128 S. Watanabe, A. Fukuda, E. Segawa, I. Sato

Proposition 2.2 (cf. F. Baccelli et al. [1]). For a max-plus matrix A ∈ Rn×n
max ,

λ ̸= ε is an eigenvalue of A if there exists a circuit in the weighted digraph G(A) whose

average weight is equal to λ. In particular, if a max-plus matrix A is irreducible, A

has precisely one eigenvalue and is equal to the maximum average weight of circuits in

G(A).

§ 3. Max-plus walk [9]

In this section, we give a brief review of the max-plus walk which is introduced in

[9]. We consider the one dimensional lattice on Z and a max-plus vector ψn
k ∈ R2

max

given on a lattice point. The vector ψn
k is called the state at a position k ∈ Z and a

discrete time n. We set the initial state ψ0
k as

ψ0
k =



α
β

 , k = 0,

ε
ε

 , k ̸= 0.

In the max-plus walk, the state ψn
k changes according to two max-plus matrices P,Q ∈

R2×2
max given as

P =

[
a b

ε ε

]
, Q =

[
ε ε

c d

]
.

Then, the state ψn
k is determined by the following evolution equation.

ψn
k = (P ⊗ ψn−1

k+1 )⊕ (Q⊗ ψn−1
k−1 ) = An

k ⊗ ψ0
0 ,

where An
k ∈ R2×2

max is called the state decision matrix. It is easy to see that, at discrete

time n, An
k =

[
ε ε

ε ε

]
for k = −n+1,−n+3, . . . , n−3, n−1. We define a set of positions

whose state vector has at least one finite element as K = {−n,−n + 2, . . . , n − 2, n}.
Time evolution of the max-plus walk is illustrated in Figure 1. For example, A3

−3 = P⊗3

and A3
1 = Q⊗ (Q⊗P ⊕P ⊗Q)⊕P ⊗Q⊗2. Here we introduce two matrices R,S ∈ R2×2

max

as follows.

R =

[
c d

ε ε

]
, S =

[
ε ε

a b

]
.

Let ℓ andm be the number of moving left (P ) and right (Q), respectively, and r = ⌊r̃/2⌋,
where r̃ is the summation of the number of making a turn from left to right and from
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Figure 1. Max-plus walk.

right to left. Note here that ℓ =
n− k

2
and m =

n+ k

2
. Then, the state decision

matrices An
k at position k ∈ K and discrete time n can be given as

An
k =

(ℓ−1)∧m⊕
r=1

{(ℓ− r − 1)a+ rb+ rc+ (m− r)d} ⊗ P

⊕
ℓ∧(m−1)⊕

r=1

{(ℓ− r)a+ rb+ rc+ (m− r − 1)d} ⊗Q

⊕
ℓ∧m⊕
r=1

{(ℓ− r)a+ rb+ (r − 1)c+ (m− r)d} ⊗R

⊕
ℓ∧m⊕
r=1

{(ℓ− r)a+ (r − 1)b+ rc+ (m− r)d} ⊗ S,

where a ∧ b = min{a, b}. Let U = P ⊕ Q =

[
a b

c d

]
and impose the following condition

to the entries a, b, c, d ∈ Rmax of U . a⊗ d = e,

b⊗ c = e.
(C1)

Then the condition (C1) is an analogue of the property that the absolute value of the

determinant of unitary matrices is 1 in conventional algebra, namely,

tropdet(U) = (a⊗ d)⊕ (b⊗ c) = e.
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Under the condition (C1), An
k can be rewritten as

An
k = {(ℓa+md− a)⊗ P} ⊕ {(ℓa+md− d)⊗Q}

⊕ {(ℓa+md− c)⊗R} ⊕ {(ℓa+md− b)⊗ S}

=

[
ℓa+md max{ℓa+md− a+ b, ℓa+md− c+ d}

max{ℓa+md+ a− b, ℓa+md+ c− d} ℓa+md

]
,

n = 0, 1, . . . , k = −n+ 2,−n+ 4, . . . , n− 4, n+ 2.

Noting that ℓa+md = (ℓ−m)a = −ka, then the state decision matrices An
k is given as

follows.

An
k =



[
−ka (−k − 1)a+ b

(−k + 1)a− b −ka

]
if k = −n+ 2,−n+ 4, . . . , n− 4, n− 2,[

na (n− 1)a+ b

ε ε

]
if k = −n,[

ε ε

(−n+ 1)a− b −na

]
if k = n,[

ε ε

ε ε

]
otherwise.

Let λ(An
k ) be the eigenvalue of An

k . From Proposition 2.2, we have

λ(An
k ) = −ak, k ∈ K.

It is remarkable here that the eigenvalues of An
k is not dependent of the discrete time

n. Moreover, let Φn be the summation of eigenvalues λ(An
k ) of all the position k ∈ K

at arbitrary discrete time n, namely

Φn =
∑
k∈K

λ(An
k ) =

∑
k∈K

−ak.

Then, we have the following theorem.

Theorem 3.1 (S. Watanabe, A. Fukuda, E. Segawa, I. Sato [9]). Under the con-

dition (C1), the summation of all the eigenvalues Φn are invariant under the time evo-

lution of the max-plus walk and is given as

Φn = 0.

Namely, the summation of the eigenvalues are the conserved quantities of the max-plus

walk.
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In the quantum walk, the ℓ2-norm of the state vectors are probability and their

summation is 1, which is conserved quantities of the quantum walk. Noting that, in the

max-plus algebra, the identity element with respect to ⊗ is 0, Theorem 3.1 is a max-plus

analogue of the conserved quantities of the quantum walk. In the next section, using

the analogue of the probability, we will discuss the limit measure of the max-plus walk.

For the readers’ reference, the following are also conserved quantities of the max-plus

walk: ⊕
k∈K

{
1

n
λ(An

k )

}
=

⊕
k∈K

{
1

k
λ(An

k )

}
= |a|,

which is written by using the max-plus analogue of the summation. This quantity

corresponds to the pseudo velocity of traditional quantum walks [3].

§ 4. Limit measure of max-plus walk

First let us give a short review on the limit theorem for the traditional quantum

walk on Z [4]. Let µn : Z → [0, 1] be the probability distribution of this quantum walk

at time n with the mixed initial state at the origin. Then µn converges in law as follows:

For any x ∈ R,

lim
n→∞

∑
k≤nx

µn(k) =

∫ x

−∞
fK(u; |a|)du

where fK(u; |a|) is the Konno distribution with the parameter |a|

fK(u; |a|) =


√

1− |a|2

π(1− u2)
√

|a|2 − u2
, if − |a| ≤ u ≤ |a|,

0, otherwise

In the following, let us consider the corresponding limit theorem for the max-plus

walk. Since the counterpart of the probability distribution µn(k) is the eigenvalues of

the state decision matrix An
k , then we compute∑

k∈K,k≤nx

λ(An
k ) =

∑
k∈K,k≤nx

(−ak).

Putting p ∈ Z by nx− 2 < −n+ 2p ≤ nx, we have∑
k∈K,k≤nx

(−ak) = −a{−n+ (−n+ 2) + · · ·+ (−n+ 2p)}

= a(p+ 1)(n− p)(4.1)
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Since −n+ 2p ≤ nx < −n+ 2p+ 2,

− 1

n
+
x+ 1

2
<
p

n
≤ x+ 1

2
,(4.2)

taking the limit of n→ ∞, we have

lim
n→∞

p

n
=
x+ 1

2
.

Therefore

lim
n→∞

1

n2

∑
k∈K,k≤nx

λ(An
k ) = lim

n→∞

1

n2
a(p+ 1)(n− p)

= lim
n→∞

a

(
p

n
+

1

n

)(
1− p

n

)
=
a

4
(1− x2).(4.3)

RHS of (4.3) is rewritten by

a

4
(1− x2) =

∫ x

−∞
f(u)du.

Here

f(u) =

−au
2

: u ∈ [−1, 1],

0 : otherwise.

We summarize the above statement in the following theorem.

Theorem 4.1. The limit measure of the max-plus walk is expressed by

lim
n→∞

1

n2

∑
k∈K,k≤nx

λ(An
k ) =

∫ x

−∞
f(u)du.

Here

f(u) =

−au
2

: u ∈ [−1, 1],

0 : otherwise.

§ 5. Concluding remarks

In this paper, we obtained the limit measure on the max-plus walk proposed by [9].

Theorem 3.1 implies that if the setting of the max-plus walk satisfies some conditions,

then we obtain the conservation quantity with respect to the time step and we can define
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the sighed measure on Z at each time step. This corresponds to the ℓ2-conservation

property of the unitary time evolution of quantum walks. Let Bn
k be the state decision

matrix of the usual quantum walk. (See for its explicit expression, for example, [4]). If

we start the usual quantum walk from the mixed state at the origin, then the distribution

at time n µn : Z → [0, 1] is described by ∥Bn
k ∥2F = 2

∑
i(σi)

2 which is quite similar to

the measure of the max-plus walk. Here, ∥·∥F is the Frobenius norm and σi is a singular

value of Bn
k .

By Theorem 4.1, the linearly spreading is also reflected in the max-plus walk since

the scaling orders of both this measure of the max-plus walk and usual quantum walk

are linearly proportional to the time steps. Moreover, it is also interesting that the

limit measure of the max-plus walk depends only on the parameter a while the pseudo

velocity of the usual quantum walk which is the parameter of the Konno distribution

depends only on also “a”. How usual quantum walk’s behaviors are extracted in the

max-plus walk’s measure more clearly is one of the interesting future’s problems.
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